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Socioeconomic and genomic roots of verbal ability from
current evidence
Guang Guo 1,2✉, Meng-Jung Lin 1,2 and Kathleen Mullan Harris1,2

This research examines how the human genome and SES jointly and interactively shape verbal ability among youth in the U.S. The
youth are aged 12–18 when the study starts. The research draws on findings from the latest GWAS as well as a rich set of
longitudinal SES measures at individual, family and neighborhood levels from Add Health (N= 7194). Both SES and genome
measures predict verbal ability well separately and jointly. More interestingly, the inclusion of both sets of predictors in the same
model corrects for about 20% upward bias in the effect of the education PGS, and implies that about 20–30% of the effects of
parental SES are not environmental, but parentally genomic. The three incremental R2s that measure the relative contributions of
the two PGSs, the genomic component in parental SES, and the environmental component in parental SES are estimated to be
about 1.5%, 1.5%, and 7.8%, respectively. The total environmental R2 and the total genomic R2 are, thus, 7.8% and 3%, respectively.
These findings confirm the importance of SES environment and also pose challenges to traditional social-science research. Not only
does an individual’s genome have an important direct influence on verbal ability, parental genomes also influence verbal ability
through parental SES. The decades-long blueprint of including SES in a model and interpreting their effects as those of SES needs to
be amended accordingly. A straightforward solution is to routinely collect DNA data for large social-science studies granted that the
primary purpose is to understand social and environmental influences.
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INTRODUCTION
Cognitive ability has been shown to be one of the most important
predictors of life outcomes such as educational attainment, occupa-
tional achievement, income, wealth, and health1–6. For decades, tests
of cognitive ability and related achievement tests were routinely and
nearly universally used in elementary and secondary education,
college admissions, and admissions of graduate schools and
professional schools in the United States7,8.
A critical question about cognitive ability is how much of it is

innate and how much is environmental. The answer is related to
how much cognitive ability could be improved by schooling and
other individual and public efforts. Past few decades have seen two
major advances in the understanding of genetic influences on
cognitive ability. Behavior geneticists, taking advantage of genetic
relatedness among blood relatives, have long established a
substantial genetic base for cognitive ability, reporting a heritability
estimate of 50% or more from adolescence through older age9–12.
The second major advance came with the genome-wide association
study (GWAS) of educational attainment13 and cognitive ability14.
These GWAS yield a large number of genetic variables at molecular
level that predict cognitive ability.
In this article, we report findings from research that investigates

how the human genome and socioeconomic (SES) environment
jointly and interactively shape verbal ability among youth in the
United States. The research draws on results from two recent
GWAS as well as a rich set of longitudinal SES measures at
individual, family and neighborhood levels from the National
Longitudinal Study of Adolescent to Adult Health (Add Health)15.
Our work promises significant improvements in the assessment

of the relative importance of SES and genomic factors for verbal
ability. First, recent GWAS provide an opportunity for genomic
influence to be measured at individual DNA level. Twin studies

decompose the total variance of cognitive ability into proportions
due to genetic, shared environmental and unshared environ-
mental factors at population level. Traditional twin data whose
genetic information is based on genetic relatedness alone
without DNA measures cannot investigate the relative contribu-
tions from genetics and environment as do data with correlated
genetic and SES measures at the individual level. Second, we
build our analysis from a social-science model of verbal ability;
such a model often includes a rich set of longitudinal measures of
SES. This approach allows us to examine the changes in a
traditional social-science model of verbal ability after adding
genomic measures. In an era when DNA evidence for human
traits was by and large unavailable, twin studies understandably
focused on genetic evidence. Typically, environmental informa-
tion was insufficiently addressed in twin analysis. Understanding
the relative importance of genomics and SES requires both sets of
measures at individual level. Third, simultaneous inclusion of
offspring genomic and family-SES data allows us to evaluate the
genomic component within family SES16,17, which in turn allows
us to correct for substantial upward bias in the effects of offspring
genome and parental SES. Our findings have important implica-
tions and challenges for researchers dedicated to establishing
genetic impact on cognitive ability and for researchers with a
decades-long tradition of examining social and environmental
impact on cognitive ability.
The influence of family SES on cognitive measures has been

investigated extensively in a variety of academic fields over the
past few decades. These previous analyses suggest the kinds of
SES measures and analysis models that we can use in this
research. SES is an umbrella concept with multiple dimensions at
individual, family and community levels that attempts to capture
family financial resources, knowledge, social connections, and
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the larger social context. SES is typically measured by parental
income, education and occupation, one vs. two biological
parents in the household, sibship size, quality of neighborhood,
and quality of school18–21.
SES is most frequently measured by family income or

poverty21–23. Other family characteristics such as family instabil-
ity24 and parenting style25 are also examined. Entwisle and
Alexander26 concludes that family SES has a larger impact than
the interruption of schooling from summer breaks on cognitive
test scores in elementary schools. Using data from the Child
Development Supplement in the Panel Study of Income Dynamics,
Hill21 shows that after income level is controlled, an increasing
5-year trend in income-to-needs income is positively associated
with child achievement. In a meta-analysis of adoption studies of
IQ, Locurto27 shows that adoption into high SES families raises the
adopted children’s IQ by 10–12 points. These adoptive children
tend to come from low SES families.
Mechanism studies explain why SES makes a difference in

results of cognitive tests. Employing four waves of Dutch data,
Kloosterman et al.28 shows that part of the relationship between
parental education and children’s academic performance can be
explained by parental reading and school involvement. Guo and
Harris29 investigates the mechanisms through which family SES
affects children’s cognitive ability. Using data from the National
Longitudinal Survey of Youth (NLSY), they show that the effect of
family SES is completely mediated by the intervening mechan-
isms measured by the latent factors of cognitive stimulation in
home, home physical environment, parenting style, and child
health at birth. Cognitive ability in the study is measured by four
Peabody tests including a reading recognition test, a reading
comprehension test, a mathematics assessment test, and a
Peabody Picture Vocabulary test.
Hart and Risley30 observes children in 42 families for one hour

per week for two and a half years and their calculation suggests
that large differences exist in the total number of words heard by
children from birth to age four across professional families (45
millions words), working class families (25 millions), and families in
poverty (13 millions). Using the children of the NLSY, Farkas and
Beron31 shows that by the 36th month of age, large gaps in
vocabulary already emerge across social classes and racial/ethnic
groups, and the gaps are not closed afterwards.
Formal schooling is commonly viewed as the most critical for

the development of cognitive ability. Tests of cognitive ability are
hardly meaningful out of the context of modern education. Dutch
children’s schooling was delayed by the Nazi regime during WWII
and these children’s IQ are seven points lower on average than
those who went to school at normal ages after the war32,33 p. 41.
In a longitudinal study of the effects of family SES, racial mix, and
summer breaks on children’s mathematics achievement, Entwisle
and Alexander26 concludes that “when school is in session, poor
children and better-off children perform at almost the same level.
Schools seem to be doing a better job than they have been given
credit for (pp.82.)” They demonstrate the effect of schooling by
showing the loss in mathematics scores after every summer break
on the part of children in poverty relative to children not in
poverty. Through a natural experiment, Cahan and Cohen34

reports a schooling effect distinct from the effect of biological age
on an IQ test score. The study compares fourth graders and fifth
graders (ages 9–11) who were essentially of the same age.
Winship and Korenman35 reviews the literature that estimates the
effect of education on cognitive ability and carefully reanalyzes
the data from the NLSY used by Herrnstein and Murray36. They
conclude that each year of education increases 2.7 points of IQ
units. In this analysis, we consider respondents’ own schooling a
paramount SES determinant of cognitive ability.
The afore-reviewed SES studies almost always assume

explicitly or implicitly that all of the SES influences under
consideration are environmental. These studies generally do not

consider genomic influences. Nor do they address the issue that
family SES itself could be partially genetic.
Getting to the root of cognitive ability requires DNA data.

When social scientists reflect about genetic influences on
cognitive ability, the first thing that often comes to mind is the
well-publicized position that considers cognitive ability an “…
inborn, all around intellectual ability … inherited, but not due to
teaching or training… uninfluenced by industry or zeal37, cited
by Nisbett33.” Similarly, Jensen maintains that “… the means for
changing intelligence per se lie in the province of biology rather
than psychology or education38.” Herrnstein and Murray36

expresses a parallel assessment that the differences in intelli-
gence are mostly at the hand of nature and there is little that
government policies could change. This position tends to dismiss
the influence of environmental factors and views cognitive
ability largely as a genetic trait.
In the meanwhile, mainstream behavior geneticists, relying on

twins and other blood relatives, show a heritability estimate of
cognitive ability that ranges between 0.2 to 0.89,10 and a shared
non-genetic factor that quickly reduces to zero after maturity9.
These findings have set a benchmark for ensuing work to be
compared and assessed. Nevertheless, twin studies’ estimates at
population level and the usual lack of extensive SES measures
make them inadequate for understanding how heredity and SES
jointly and interactively mold human cognitive ability.
Advances in molecular genetics over the past two decades

have brought forth DNA data at individual level. The efforts
linking DNA variation to cognitive ability began in earnest in the
early 2000s. By then, it is evident that cognitive ability is a
complex trait subject to the influence of a large number of genes
each with a tiny effect39. The challenge to find specific genes for
cognitive ability is enormous. A human genome consists of
millions of genetic variants or sections of DNA that may differ
across individuals. Testing whether each one of them predicts
ability and setting the critical value for significance at the
conventional level of 0.05 would by chance generate a large
number of false positives. Although the genome is large, it is
finite. The solution is to set a stringent critical value of 5 × 10−8

for significance and to request a replication of a discovered
genetic variant in an independent data source. Initial successes
of the GWAS employing thousands of individuals are performed
on human traits such as type 2 diabetes and body mass index
(BMI)40,41. The number of GWAS-identified genetic loci are small
but tended to be replicated.
It soon became clear that by far the single most important

factor in GWAS is sample size. The GWAS of educational
attainment in 2018 assembles 1.1 million individuals and reports
1,271 independent SNPs associated with years of education at the
genome-wide significance level of 5 × 10−8 13. The polygenic score
(PGS) for educational attainment constructed from all common
SNPs in the GWAS reports an R2 of about 12% using data from Add
Health. Many of the genetic loci are implicated in biological
pathways that play a role during prenatal brain development.
The 2018 GWAS of cognitive ability14 employs 269,867

individuals and identifies 205 independent genome-wide sig-
nificant loci. The analysis data for the GWAS are assembled from
more than a dozen cohorts, and different cohorts tend to use
different cognitive tests. In spite of the differences in form,
cognitive tests are all based on the common underlying fluid
intelligence or the Spearman’s g, which is likely to have a large
impact on multiple domains of cognitive functioning. The g
factors extracted from different cognitive tests are highly
correlated42,43, substantiating the approach used in the GWAS.
The GWAS-identified genes are mostly expressed in brain

tissues. The genetic correlation between intelligence and educa-
tion is estimated to be about 0.70 with p= 2.5 × 10−287 44. The
genetic correlation computes the correlation between the genetic
influence behind cognitive ability and that behind education,
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suggesting that the education-based GWAS-identified genetic
variants ought to be reasonable predictors of cognitive ability. In
the present analysis, the latest findings of GWAS for cognitive
ability and educational attainment are used to construct the
genomic measures to be included in models predicting verbal
ability. See additional discussion in Supplementary Materials: I.
Genetic terms and concepts.
Gene-environment (G×E) interaction analysis in this context

examines how genotype exacerbates or suppresses the effect of
SES or vice versa. Our G×E-interaction hypothesis predicts that a
favorable SES context enhances the positive effect of genomic
measures of verbal ability. The reasoning goes that a favorable SES
context would help realize the genetic potential of an individual’s
ability. Previous G×E-interaction work on cognitive development
using twin data generated mixed results. Several studies report
evidence supporting our hypothesis45–47; however, an exception-
ally large study failed to find any significant G×E-interaction
effect48. G×E-interaction analysis is methodologically challenging.
To mitigate the threat of multiple testing, our analysis uses a
principal component as a summary measure for the multiple
dimensions of SES. We have also considered a number of issues
raised in recent literature on G×E-interaction studies including the
lack of sufficient controls49, coarsened outcome variables and
sample selection50, and the collider bias51.
Family SES has a genomic component. Kong et al.16 measures

the genomic component in family SES directly by transmitted
parental alleles (T) and non-transmitted parental alleles (NT). “T”
refers to transmitted from parents to children. Kong et al.
estimates the effects of T and NT on children’s educational
attainment. Both effects are highly significant. The estimated NT
effect confirms the genomic component in parental SES (Fig. 1).
The estimated T effect is about three times as large as that of
NT; but this is an upward-biased effect of children’s genome.
Kong et al. concludes that the unbiased effect of children’s
genome is T-NT.
Without parental genomic data, our analysis is unable to

estimate the effect of NT directly. Instead, our analysis capitalizes
on offspring genome and parental SES. Figure 1 describes our
conceptual model that illustrates what may be learned from a
regression of verbal ability on parental SES and offspring genome.
In the figure, an arrowed line indicates a causal effect, a double-
arrowed line indicates a correlation; solid lines represent observed
relationships while interrupted lines represent unobserved rela-
tionships. Parental SES is traditionally viewed as environmental.
Current literature points to a substantial genomic component in
parental SES16,52,53. Parental genomes likely shape family SES such
as education, occupation, income, and wealth at the family level
as well as the neighborhood the family lives in and the schools the
children attend, which is the genomic component in parental SES.
Parental SES could be decomposed into an environmental

component and a genomic component. The latter originates from
parental genomes. Fifty percent of each parent’s alleles transmit to
offspring; but 100% of each parent’s alleles act on parental SES. This
observation suggests that (1) a common origin of family SES and
offspring genome induces a correlation between the two (path C),
(2) the essence of path C is Correlation path D generated by the
same set of alleles shared by offspring and parents, (3) the
subcomponent not shared with offspring in the genomic compo-
nent is acted upon by parental alleles that are not transmitted to
offspring, (4) the two subcomponents are hypothesized to be about
the same since each subcomponent is acted upon by about 50% of
total parental alleles, implying that the size of the genomic
component is twice as large as the subcomponent shared with
offspring; and (5) we most likely have not exhausted the genomic
confounding of SES influences.
The recognition of these subtleties when parental SES and

offspring genome data are available leads to three payoffs even in
the absence of parental genomic data. First, we have the

opportunity to correct for the upward bias in the effect of
offspring genome. The usually-reported genomic effect includes
the effect of offspring genome as well as the impact of the
genomic subcomponent in parental SES shared between parents
and offspring. This subcomponent could be considered the
upward bias in the typically-estimated offspring genome effect.
The upward bias could be corrected by including parental SES in
the model. Second, including offspring genome and parental SES
in the same model provides an estimated size of the genomic
component in parental SES, which we hypothesize to be about
twice as large as the reduction in the parental SES effect when
estimated simultaneously with offspring genome. Third, our
analysis yields an estimated size of the environmental component
of parental SES, which may be calculated as enviSES = Parental
SES-2(ReducedSES), where enviSES is the environmental SES,
Parental SES is the estimate from a model including only parental
SES, and ReducedSES is the reduced size of parental SES when
offspring genome is added.
Ethnic samples complicate genetic analysis. Our analysis is

based on European Americans (whites) and Hispanic European
Americans (Hispanic whites). We provide results separately for
whites, Hispanic whites and the combined sample of the two.
African Americans, Asian Americans, Native Americans and
Hispanic African Americans are excluded because the published
GWAS studies are mostly based on individuals of European
descent including the GWAS that identified the genetic loci
associated with educational attainment and cognitive ability54.
Substantial genomic differences in individuals from different
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Fig. 1 Conceptual model of how parental genome, parental SES
and offspring genome influence verbal ability. (An arrowed line
indicates a causal effect; a double-arrowed line indicates a correlation.
Solid lines represent observed relationships while interrupted lines
represent unobserved relationships). a While offspring genome
receives 50% of genetic alleles from each parent’s genome
randomly (path A), parental SES is subject to the influence of all
parental alleles (100% from each parent, (path B). b Offspring
genome and parental SES are correlated (path C) due to the shared
alleles between offspring genome and the subcomponent of the
genomic component in parental SES (path D). c The same set of
alleles from offspring and parents act on the subcomponent shared
between parents and offspring; the subcomponent not shared with
offspring is only acted upon by parental alleles not transmitted to
offspring. The two subcomponents are hypothesized to be about
the same. d In regression of verbal ability, the effects of offspring
genome and parental SES are expected to be reduced because of
the correlation. e The size of reduction in the offspring-genome
effect may reflect the size of an overestimate in a regression in
which parental SES is not included. f The effect of parental SES is
reduced because the inclusion of offspring genome removes about
one half of the entire genomic component in parental SES. The
total size of the genetic component in parental SES is reasoned to
be about twice as large as the reduction in the effect of parental
SES when offspring genome is included.
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continents have been known since 1990s55. The partial overlap
between the European genetic variants, and those of Africans and
Asians implies that the related GWAS must have missed a
substantial number of genetic loci among the ethnic minorities
that are associated with educational attainment and cognitive
ability. This, in turn, suggests that the GWAS findings do not apply
to racial minorities as well as they do to European Americans56.
Do problem behavior and general health, especially mental

health affect cognitive measures? Over the past decades, there has
been a sustained effort to examine how educational attainment
and educational achievement are impacted by problem beha-
vior57–61 and health62, especially mental health and stress60,61,63–66.
In this project, we test the impact of adding delinquency, self-
reported health and depression to the model that already has SES
and offspring genome as predictors.
This research has one overall objective and five hypotheses. The

present research has an overarching objective of estimating the
relative contribution of offspring genome and parental SES to
verbal ability and five specific hypotheses. The first two establish
in our analysis data what is known previously. The first
hypothesizes that collectively, SES significantly predicts verbal
ability (path F in Fig. 1) when offspring genome is not included in
the model. The second hypothesizes that the two PGSs for
education and ability significantly predict verbal ability (path E)
without parental SES in the model. The third hypothesizes that the
inclusion of SES reduces the effect size of the two PGSs. The fourth
hypothesizes that the inclusion of the PGSs reduces the effect size
of SES. The fifth is a G×E-interaction hypothesis testing whether
favorable SES increases the positive effect of the PGSs.

RESULTS
Main-effect models
Table 1 shows the means and the standard deviations of the
continuous variables, and the percentage distribution of catego-
rical variables used in the analysis for whites, Hispanic whites and
the combined whites and Hispanic whites. The heritability is
estimated to be 0.38; this estimate is based on a small sample of
73 pairs of MZ twins and 92 pairs of DZ twins in our analytic Add-
Health sample.
We organize our findings by Table 2 (SES results), Table 3

(genomic results), and Table 4 (SES and genomic results) so that
we could observe the impact of SES and genome. Table 2
presents the coefficients and their standard errors of SES context
and other covariates from multilevel models of verbal ability for
whites, Hispanic whites and the two combined. The model is a
3-level model of verbal ability (Eq. 1). The two random effects at
the individual and family levels are highly statistically significant.
The OLS R2 is estimated to range from 12.7% to 19.9% across the
different samples.
The models presented in Table 2 are traditional social-science

models that include a full set of SES predictors without any
genomic measure. SES context proves important. All social-
contextual characteristics except for mother’s occupation signifi-
cantly and simultaneously predict verbal ability in direction
consistent with expectation. For example, in the combined
sample, individuals whose mothers have at least a college degree
score 5.65 points higher on verbal ability than those whose
mothers have an education less than high school. Those whose
fathers have at least a college degree score 1.96 points higher
than those whose fathers have an education less than high school.
Those whose fathers hold a professional and managerial job are
about 2.50 points higher than those whose fathers hold a manual
and blue-collar job. Individuals living in a household in the top
20% income group score 3.88 points higher than those in the
lowest 20% income group. Individuals living in a household with 3
to 5 siblings score 2.84 points lower than those who are the only

child in a family. An increase in one standard deviation in the
index of the neighborhood disadvantage is associated with a
decrease of 0.60 point of the verbal ability score. Those who are in
a school session when taking the test score about 1.47 points
higher than those who are not in a school session.
Table 3 presents the coefficients and their standard errors of

ability PGSs from multilevel models of verbal ability. Among
whites and Hispanic whites, one standard deviation of the
education PGS is associated with 2.27 points of verbal ability,
and one standard deviation of the ability PGS is associated with
0.44 points of verbal ability. These results establish the importance
of the two PGSs.
The models in Table 4 include all SES measures as well as

the two ability PGSs. These models could be compared with the
models in Table 2 to assess the impact of the two PGSs on the
effects of parental SES. Essentially, all SES measures that are
statistically significant in the model without the two PGSs have
remained significant in the model with the PGSs. As expected, the
inclusion of the PGSs attenuates the SES effect sizes. In most cases,
the inclusion of the PGSs reduces the SES coefficients in models in
Table 2 by about 10–15%. For example, in Table 2, the two
categories of mother’s education “high-school graduation/some
college” and “at least college degree”, respectively, are associated
with 2.63 and 5.65 additional points in the verbal ability score
relative to “less than high school” in the model without the PGSs.
The two comparable estimates in the model with the two PGSs in
Table 4 are 2.21 and 4.98, which represent reductions of 15.9%
and 11.8%, respectively. The models in Table 4 could also be
compared with the models in Table 3 to assess the impact of
parental SES on the two PGS estimates. The effects of both PGSs
are reduced, with reductions of 23.6% and 6.8%, respectively, for
the education PGS and the ability PGS when parental SES is
included in the model.
The incremental or “net” R2s in Table 4 are the R2s due to the

two PGSs above and beyond SES. These R2s may be considered a
measure of the impact of offspring genome on verbal ability. Such
an incremental R2 could be obtained by subtracting the R2 of a
model containing SES and the principal components (PCAs) from
the R2 in the corresponding model in Table 4. The incremental R2

or “net” R2 in the combined sample is 1.5%. A comparison of
another direction can be made between the R2 (21.9%) in Table 4
and that (12.6%) of Table 3. The incremental R2 of 21.9–12.6= 9.3%
due to parental SES is apparently much larger than the incremental
R2 of 21.9–20.4= 1.5% due to the two PGSs, but this R2 of 9.3%
needs to be interpreted carefully.
Supplementary table 1 presents findings from three models

based on 719 full siblings and DZ twins in Add Health. The analysis
tests the robustness of the effects of ability PGSs when controlling
for the genomic impact in parental SES17. The first of the three
models estimates the effects of the two PGSs alone; the second
adds observed parental SES; the third estimates a sibling-fixed-
effect model that controls for all shared effects among the
siblings. Consistent with the findings from our full-sample analysis
(Table 4), adding observed parental SES reduces the effects of the
two PGSs. The fixed-effects model reduces further the effects of
the PGSs. The PGS effects in the fixed-effects model remain
significant and substantial in size.
The models in Table 5 add the Wave-1 verbal ability as a

predictor to the model that uses SES measures and the two PGSs
to predict the Wave-3 verbal ability (Eq. 2). The Wave-1 verbal
ability was measured about seven years before the Wave-3 verbal
ability was measured. A total of 2,176 individuals are excluded in
the analysis because an individual must contribute two measures
of verbal ability to be included in this analysis. Little surprise that
the PVT score at Wave 1 is highly predictive of the PVT score at
Wave 3. In the combined sample, an increase of one point in the
Wave-1 PVT score is associated with an increase of about 0.49
points in the Wave-3 PVT score. The effect of one standard
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Table 1. Descriptive statistics for the Add-Health data.

Variables Whites
(N= 5820)

Hispanic Whites
(N= 1374)

Whites and Hispanic Whites
(N= 7194)

Mean or % (S.D.) Mean or % (S.D.) Mean or % (S.D.)

PVT Standardized Score (Verbal Ability) 104.5 (11.8) 94.7 (17.3) 102.7 (13.6)

Ability Polygenic Scores (PGS)

PGS for education 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)

PGS for cognitive ability 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)

SES context

Mother’s education

Less than high school 11.4 36.4 16.1

High school/some college 59.1 43.2 54.1

≥College graduation 26.8 12.4 25.1

Missing 2.8 8.0 3.8

Father’s education

Less than high school 11.0 37.7 16.0

High school/some college 56.5 39.8 53.4

≥College graduation 26.3 12.2 23.6

Missing 6.2 10.3 7.0

Mother’s occupation

None and other 24.3 33.8 26.1

Manual or blue collar 15.1 25.3 17.0

Sales/service/administrative 26.2 19.3 24.9

Professional or managerial 29.2 16.6 26.8

Missing 5.2 5.1 5.2

Father’s occupation

None and other 11.8 14.6 12.3

Manual or blue collar 36.2 42.5 37.4

Sales/service/administrative 6.3 3.1 5.7

Professional or managerial 25.7 13.3 23.4

Missing 20.1 26.4 21.3

Household income

0–20 percentile 9.5 20.5 11.6

20–40 percentile 12.4 17.6 13.4

40–60 percentile 18.5 15.6 17.9

60–80 percentile 21.2 12.2 19.5

80–100 percentile 20.9 7.5 18.4

Missing 17.6 26.6 19.3

Family structure

2 Biological parents 53 47 51

Sibling size

No sibling 4.1 3.6 4.0

1 to 2 sibling(s) 55.2 41.4 52.6

3 to 5 siblings 27.0 33.7 28.2

6 to 20 siblings 13.6 21.2 15.1

Other and missing 0.1 0.2 0.1

Neighborhood disadvantages 0.0 (1.0) 0.0 (0.9) 0.0 (1.0)

In School 58 54 57

Demographics

Age 18.9 (3.6) 19.3 (3.6) 18.9 (3.6)

Gender

Female 53 49 52

Male 47 51 48

Race and Ethnicity

White – – 81.1
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deviation of the education PGS is reduced from 1.73 points in the
combined sample in Table 4 to 0.51 points in Table 5. The ability
PGS has lost its statistical significance.
Conditional on the Wave-1 PVT, the effects of SES are expected

to be largely washed out. This is what we observe. Most of the SES
measures no longer significantly predict verbal ability at Wave 3.
The two remarkable exceptions are years of education by Wave 3
and neighborhood disadvantage at Wave 1. The former is
significantly predictive of Wave-3 PVT with a P value of 0.001,
with each additional year of schooling associated with about 0.78
point of verbal ability score. It is neighborhood disadvantage in
earlier life at Wave 1 rather than at Wave 3 that has turned out to
be negatively associated with verbal ability.
Supplementary Tables 2–5 provide a set of findings parallel to

those in Tables 2–5. The difference is that in Supplementary Tables
2–5, the SES measures are represented by a single summary score
obtained from the first principal component of a principal
component analysis. In the models, the summary score is always
highly significant. The results convey a comparable story as that
told by using specific SES measures.

G×E interaction and other models
Table 6 shows the main effects and G×E-interaction effects on
verbal ability between the PGSs and a PCA summary score of SES.
A likelihood ratio test shows that the G×E-interaction model
(−2LogL= 67,058; df= 24) has significantly more explanatory
power than the main effects model (−2LogL= 67,064; df= 22) at
the level of 5% with two degrees of freedom. The interdepen-
dence between the education PGS and SES is positive, indicating
that a favorable SES environment would enhance the effect of
offspring genome.
Supplementary Table 7 tests additional effects of general

health, mental health and delinquency behavior on verbal ability
when parental SES and the two PGSs are in the model. Out of the
three, only mental health significantly predicts verbal ability with
an expected negative impact.
We carried out the MICE analysis, an alternative way of

addressing missing values and the analysis yielded a very similar
set of results as those in the analysis that codes missing values as a
separate category.

DISCUSSION
To summarize, our analysis regresses verbal ability on two ability
PGSs and parental SES in an Add-Health sample of 7194
individuals. Our first two hypotheses concerning the effects of
parental SES alone (Table 2) and the effects of the two PGSs alone
(Table 3) are supported. The traditional sociological model of SES
context predicts verbal ability well (Table 2). Of the two PGSs, the
education PGS has a much more robust prediction of verbal
ability than the intelligence PGS; the much larger discovery
sample size for the former could be one of the explanations. After
demographic variables and immigration status are adjusted,
mother’s education, father’s education, father’s occupation,

household income, sibship size, neighborhood disadvantage,
and in school over the past year are all significantly and
simultaneously associated with verbal ability. Only mother’s
occupation is an exception. The two PGSs significantly and
simultaneously predict verbal ability (Table 3). These SES and PGS
estimates are “nominal” effects in the sense that both the PGS
and SES estimates are upwardly biased because of the impact of
parental genomes (Fig. 1).
Key evidence supporting Hypotheses 3 and 4 is revealed after

comparing Table 4 with Tables 2, 3. When SES and PGSs are
included in the same model, both continue to significantly predict
verbal ability; but the estimates are reduced. The reduction in the
education PGS is more than 20% and the reduction in the ability
PGS is about 7%. These reductions may be interpreted as the
upward biases when parental genomic effects are not controlled.
The reduction in the SES effects is about 10–15%. These
percentages may be interpreted as one half of the effect in
parental SES induced by parental genomes. In other words, about
20–30% of parental SES effects is genomic from parental
genomes. Sample variation in a particular study is likely a major
source of the variation in these estimates. But the empirical
evidence does seem to support an important role of parental
genomes in parental SES.
The relative contribution of SES and genomes to verbal ability

may be assessed by incremental R2s. GWAS studies routinely
report R2 as an indicator of the amount of explanatory power they
have secured in explaining an outcome13. Supplementary Table 6
lists the R2s of models with different combinations of parental SES,
two ability PGSs and the PCAs. The model in Table 4 yields an R2 of
21.9% reflecting the effects of offspring genome, parental SES and
population stratification. Incremental R2s could be derived from
comparing the R2s across the models. The incremental R2 of
offspring genome measures the explanatory power of offspring
genome on verbal ability above and beyond SES. Similarly, the
incremental R2 of SES measures the overall explanatory power of
SES in addition to offspring genome. To estimate the incremental
R2 from the influence of offspring genome, we deduct from 21.9%
the R2 of 20.04% in the comparison model that includes parental
SES and PCAs; this yields an R2 of 1.5%. This incremental R2 is from
offspring genome alone and the impact of the genomic
component in parental SES is excluded. Importantly, this R2 is
also net of the explanatory power due to population stratification.
To estimate the contribution of parental SES, we deduct from
21.9% the R2 of 12.6% in model 3 that includes the two PGSs and
the PCAs, obtaining an R2 of 9.3%. However, not all of the 9.3% is
explained by environmental SES. Some of it is genomic. The 9.3%
excludes the effect of offspring genome, but includes about one
half of the effect of the genomic component in parental SES.
To weigh the relative contribution of offspring genome vs. that

of SES, we’d like to directly compare the incremental R2 of
offspring genome with that of the environmental component in
parental SES (Fig. 1). But the latter is unknown even though we
know that it must be smaller than 9.3% because the 9.3% results
from the impact of environmental parental SES and the impact of
one half of the genomic component in parental SES. Drawing from

Table 1 continued

Variables Whites
(N= 5820)

Hispanic Whites
(N= 1374)

Whites and Hispanic Whites
(N= 7194)

Mean or % (S.D.) Mean or % (S.D.) Mean or % (S.D.)

Hispanic – – 18.9

Immigration status

US Born 71 53 67

Speaking English at Home 100 55 91

Heritability: MZ (73 pairs), DZ (92 pairs) 0.38

G. Guo et al.

6

npj Science of Learning (2022)    22 Published in partnership with The University of Queensland



Table 2. Multilevel models of Wave-1 and 3 verbal ability showing coefficients (standard errors) of SES context.

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES SES SES

β (S.E.) β (S.E.) β (S.E.)

SES context

Mother’s education

Less than high school – – –

High school/some college 3.29 (0.56)*** 0.49 (1.37) 2.63 (0.52)***

≥College graduation 6.10 (0.69)*** 4.73 (1.99)* 5.65 (0.67)***

Missing −0.53 (1.05) −1.90 (2.32) −1.07 (0.96)

Father’s education

Less than high school – – –

High school/some college 1.87 (0.54)*** 3.39 (1.34)* 2.09 (0.51)***

≥College graduation 2.16 (0.66)** 0.80 (1.90) 1.96 (0.64)**

Missing 0.94 (0.94) 0.51 (2.28) 0.59 (0.89)

Mother’s occupation

Manual or blue collar – – –

None and others −0.04 (0.39) 0.67 (0.97) 0.03 (0.37)

Sales/service/administrative 0.49 (0.39) 0.01 (1.19) 0.44 (0.39)

Professional or managerial 0.35 (0.41) 0.77 (1.28) 0.42 (0.41)

Missing −0.37 (0.82) 0.07 (2.05) −0.16 (0.78)

Father’s occupation

Manual or blue collar – – –

None and others −0.06 (0.40) −0.31 (1.08) −0.14 (0.39)

Sales/service/administrative 1.27 (0.52)* 2.73 (2.02) 1.51 (0.54)**

Professional or managerial 2.40 (0.34)*** 2.57 (1.21)* 2.50 (0.34)***

Missing 0.62 (0.40) 0.54 (1.07) 0.45 (0.39)

Household Income W1

0–20 percentile – – –

20–40 percentile 1.16 (0.59)* 3.91 (1.33)** 1.91 (0.54)***

40–0 percentile 2.24 (0.56)*** 5.83 (1.40)*** 2.91 (0.53)***

60–80 percentile 2.90 (0.56)*** 4.70 (1.62)** 3.31 (0.54)***

80–100 percentile 3.46 (0.59)*** 6.69 (1.91)*** 3.88 (0.57)***

Missing 1.15 (0.56)* −0.30 (1.20) 0.84+ (0.51)

2 biological parents W1 0.09 (0.34) −1.17 (0.95) −0.17 (0.33)

Sibship size

No sibling – – –

1 to 2 siblings −2.22 (0.68)** −1.81 (2.14) −2.14 (0.68)**

3 to 5 siblings −2.57 (0.71)*** −4.12 (2.16)+ −2.84 (0.70)***

6 to 20 siblings −3.04 (0.76)*** −5.37 (2.24)* −3.62 (0.74)***

Other and Missing 1.14 (4.20) 0.03 (10.03) 0.71 (3.95)

Neighborhood Disadvantages −0.41 (0.10)*** −1.0 (0.32)5*** −0.60 (0.10)***

In School 1.54 (0.31)*** 0.97 (1.03) 1.47 (0.32)***

Demographics

Age 0.34 (0.04)*** 0.63 (0.15)*** 0.40 (0.04)***

Female −1.20 (0.26)*** −0.70 (0.76) −1.10 (0.26)***

Immigration status

US Born 1.65 (0.29)*** 3.58 (0.79)*** 2.00 (0.28)***

Speaking English Home 6.35 (2.05)** 3.63 (0.91)*** 4.60* (0.61)**

Race and Ethnicity

White – – –

Hispanic – – −4.41 (0.43)***

Constant 84.34 (2.42)*** 76.47 (4.12)*** 84.98 (1.43)***

Random effects

σ2u , family-level 1.78 (0.05)*** 2.40 (0.04)*** 1.94 (0.04)***
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the findings of Kong et al.16 a rough upper bound may be set at
1.5% for the incremental R2 of the genomic component in
parental SES. Kong et al.16 estimates the effect of transmitted
parental alleles to be three times as large as that of non-
transmitted parental alleles. This suggests that the effect of the
genomic component in parental SES is about two thirds of the
effect of offspring genome; the genomic component is subject to
the influence of non-transmitted alleles as well as transmitted
alleles. This result suggests that the genomic component in
parental SES has an effect smaller than that of offspring genome.
Assuming that the genomic component in parental SES has an
impact equal or smaller than that of offspring genome (which has
an incremental R2 of 1.5%), we set the upper bound of the
incremental R2 of the genomic component in parental SES to
1.5%. Thus, our rough estimates of the incremental R2s for
offspring genome, the genomic component in parental SES, and
the environmental component in parental SES are 1.5%, 1.5% and
9.3− 1.5= 7.8%, respectively.
We performed additional analyses and present the results in

Supplementary Materials to demonstrate the robustness of the
effect of offspring genome. The sibling-fixed-effects model adds
evidence that offspring genome indeed predicts verbal ability net
of parental genomes in spite of a much smaller sample
(Supplementary Table 1). The fixed-effects model may be an
over-stringent test in this context. It controls for the genomic

component in parental SES and it also unduly controls for some of
the effect of offspring genome.
Replacing multiple SES measures by a single summary score of

SES produces a set of findings (Supplementary Tables 2–5) that
are parallel to those in Tables 2–5. The coefficients of the SES
summary score are always highly significant and in the same
direction as the SES measures, telling a substantially similar story
as those in Tables 2–5. The two approaches each have
advantages. The SES summary score is much simpler and the
simplicity in the measurement of SES is almost a necessity when
carrying out a G×E-interaction analysis. On the other hand,
specific SES measures are directly from survey items and can be
interpreted much more intuitively.
When general health, mental health and delinquency are

entered into the model with SES and the two PGSs, only mental
health negatively predicts verbal ability. Importantly, these
additions do not change the findings from a model with parental
SES and the two PGSs presented earlier.
To further test what SES predictors would remain important to

the Wave-3 verbal ability, above and beyond what had already
gone into the Wave-1 ability, we condition the prediction of the
Wave-3 ability on the Wave-1 ability (Table 5). A coefficient of
about 0.5 of Wave-1 ability indicates that the Wave-1 score
predicts the Wave-3 score with about 50% accuracy. Conditional
on the Wave-1 ability, the effects of the PGS and SES predictors

Table 2 continued

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES SES SES

β (S.E.) β (S.E.) β (S.E.)

σ2v , person-level 1.74 (0.05)*** −7.09 (0.65)*** 1.69 (0.06)***

σ2e , wave-level 2.00 (0.01)*** 2.46 (0.02)*** 2.13 (0.01)***

Model-level parameters

(−2) Log-Likelihood 77,794 20,004 98,618

Person-observations 10,401 2421 12,822

Number of Families 5208 1276 6466

Number of Persons 5820 1374 7194

OLS R2 0.127 0.140 0.199

***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.1.

Table 3. Multilevel models of Wave-1 and 3 verbal ability showing coefficients (standard errors) of ability-related PGSs.

Predictors Whites Hispanic Whites Whites and Hispanic Whites

PGS PGS PGS

β (S.E.) β (S.E.) β (S.E.)

Ability PGSs

PGS for education 2.32 (0.14)*** 1.91 (0.44)*** 2.27 (0.15)***

PGS for IQ 0.31 (0.14)* 0.89 (0.43)* 0.44 (0.14)**

Population admixture Omitted# Omitted# Omitted#

Constant 102.8 (0.74)*** 100.6 (1.06)*** 100.7 (0.43)***

Random effects Omitted# Omitted# Omitted#

Model-level parameters Some omitted# Some omitted# Some omitted#

Number of persons 5820 1374 7194

(−2)Log-Likelihood 78,396 20,170 99,396

OLS R2 0.042 0.080 0.126

#“Omitted” indicates that the parameters are very similar to those in previous models and omitted to avoid redundancy.
***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.1.
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Table 4. Multilevel models of Wave-1 and 3 verbal ability showing coefficients (standard errors) of SES context and ability-related PGSs.

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES+ PGS SES+ PGS SES+ PGS

β (S.E.) β (S.E.) β (S.E.)

Ability PGSs

PGS for education 1.72 (0.14)*** 1.62 (0.42)*** 1.73 (0.14)***

PGS for IQ 0.25 (0.13)+ 1.00 (0.41)* 0.41 (0.13)**

SES context

Mother’s Education

Less than high school – – –

High school/some college 2.96 (0.55)*** −0.22 (1.36) 2.21 (0.52)***

≥College graduation 5.56 (0.68)*** 3.45 (1.96)+ 4.98 (0.66)***

Missing −0.61 (1.04) −2.22 (2.28) −1.18 (0.94)

Father’s Education

Less than high school – – –

High school/some college 1.87 (0.53)*** 3.25 (1.32)* 2.00 (0.50)***

≥College graduation 2.04 (0.65)** 0.81 (1.88) 1.81 (0.63)**

Missing 0.77 (0.93) 0.45 (2.25) 0.43 (0.88)

Mother’s occupation

Manual or blue collar – – –

None and others −0.12 (0.39) 0.40 (0.95) −0.06 (0.37)

Sales/service/administrative 0.43 (0.39) −0.34 (1.18) 0.27 (0.38)

Professional or managerial 0.31 (0.41) 0.60 (1.27) 0.32 (0.40)

Missing −0.37 (0.81) −0.07 (2.02) −0.25 (0.77)

Father’s occupation

Manual or blue collar – – –

None and others 0.00 (0.40) −0.57 (1.07) −0.17 (0.38)

Sales/service/administrative 1.19 (0.52)* 1.86 (2.00) 1.33 (0.53)*

Professional or managerial 2.22 (0.33)*** 1.97 (1.19)+ 2.27 (0.34)***

Missing 0.54 (0.40) 0.09 (1.05) 0.30 (0.38)

Household Income Wave 1

0–20 percentile – – –

20–40 percentile 0.86 (0.58) 3.94 (1.30)** 1.79 (0.53)***

40–60 percentile 1.87 (0.55)*** 5.73 (1.38)*** 2.70 (0.52)***

60–80 percentile 2.45 (0.56)*** 4.35 (1.58)** 3.02 (0.53)***

80–100 percentile 2.84 (0.58)*** 6.13 (1.87)** 3.45 (0.56)***

Missing 0.79 (0.55) 0.10 (1.18) 0.77 (0.50)

2 Biological Parents Wave 1 0.03 (0.33) −1.09 (0.93) −0.20 (0.32)

Sibship size

No sibling – – –

1 to 2 siblings −2.24 (0.67)*** −1.21 (2.10) −2.06 (0.67)**

3 to 5 siblings −2.64 (0.70)*** −3.03 (2.13) −2.70 (0.69)***

6 to 20 siblings −2.99 (0.75)*** −3.81 (2.21)+ −3.25 (0.73)***

Other and missing 0.86 (4.14) −2.44 (9.81) −0.29 (3.88)

Neighborhood disadvantages −0.40 (0.10)*** −1.01 (0.32)** −0.59 (0.10)***

In School 1.42 (0.31)*** 0.74 (1.02) 1.34 (0.31)***

Demographics

Age 0.32 (0.04)*** 0.59 (0.14)*** 0.38 (0.04)***

Female −1.16 (0.26)*** −0.92 (0.75) −1.07 (0.25)***

Immigration status

US born 1.61 (0.28)*** 3.30 (0.78)*** 1.90 (0.28)***

Speaking English Home 6.80 (2.06)*** 3.17 (0.93)*** 4.13 (0.61)***

Race and Ethnicity

White – – –

Hispanic – – −1.04 (0.64)
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carry a distinct meaning. These effects represent effects additional
to measured and unmeasured PGSs, SES and other factors that
had already acted upon the Wave-1 ability. In the findings, two
SES predictors stand out: number of years of schooling by Wave 3
and neighborhood disadvantage at Wave 1. The large effect of
year of schooling by Wave 3 is particularly noteworthy. Years of
schooling is not used in analysis presented in Tables 2–4 because
the study participants at Wave 1 were aged 12–18 with little
variation in schooling after controlling for age. The coefficient of
0.78 implies that an additional year of schooling is associated with
about 0.8 point of verbal ability. Four measures are taken to
address the difficulty of estimating the causal effect of schooling.
First, the ability PGSs are included. Second, the model controls for
an earlier version of verbal ability. These controls are equivalent to
controlling for the ability for seeking and attaining education.
Third, the model controls for age at which the Wave-3 test is taken
because of its correlation with schooling. Lastly, we measure
schooling by the number of years of schooling before verbal
ability is taken at Wave 3. The above comments for schooling
could be also said about neighborhood disadvantage at Wave 1,
which adds prediction to verbal ability after the conditioning.
Our gene-environment interaction analysis shows a positive

interaction between the SES summary score and the education
PGS. The interpretation could be interpreted in two ways. A
favorable parental SES enhances the effect of the PGS or a higher
PGS augments the advantage of a favorable parental SES. G×E-
interaction analysis has numerous pitfalls and obtaining credible
results is challenging. Before arriving at our current G×E results,
we checked against potential issues inherent in G×E-interaction
analysis49–51. In addition, A G×E-interaction result based on a PGS
assumes that the interaction is uniform over the genome. As we
discussed earlier, a part of E is genetic.
In conclusion, including both SES and offspring genome in a

model of verbal ability results in about a 20% reduction in the
effect size of the education PGS and about 10–15% reduction in
the effect sizes of SES. The latter implies that about 20–30% of
the parental SES effects are not environmental, but genomic.
The three incremental R2s corresponding to the two PGSs, the
genomic component in parental SES, and the environmental
component in parental SES are about 1.5%, 1.5%, and 7.8%,
respectively. Thus, the total genomic R2 and the total environ-
mental R2 are estimated to be 3% and 7.8%, respectively.
These findings have implications and challenges for work that is

devoted to the study of genetic influence on cognitive ability and
for work that focuses on social environmental influences. For the
former, our analysis replicates previous finding that offspring

genome has a robust and substantial effect on verbal ability even
after stringent controls for parental genomic influences. However,
the incremental R2 of 1.5% appears surprisingly small, especially in
view of the much larger ability heritability of 50% or more from
twin studies. The latest GWAS of cognitive ability report R2s of
4.3%67 and 5.2%14, respectively. These estimates do not exclude
the effects of parental genomes and PCAs.
The work on genomic influence at DNA level on cognitive ability

is ongoing. Substantially larger samples than currently used could
be assembled to hunt for more genes in fresh GWAS. Technolo-
gical breakthroughs in genomics happen all the time. These
foreseeable and unforeseeable advances will in all likelihood raise
the percentage of variance that can be explained by offspring
genomic measures in the future.
The news for social scientists studying social environmental

influences is two-fold. Social scientists have long considered SES
context fundamentally important in shaping life outcomes
including cognitive ability. With the incremental R2 of environ-
mental parental SES estimated to be roughly about 7.8% vs.
1.5% for offspring genome and 1.5% for the genomic
component in parental SES, the current evidence confirms the
importance of SES context. After all, the development of
cognitive ability including verbal ability depends heavily on
the context of modern education and society, which in turn are
closely related to parental resources and decisions.
The much large incremental R2 of environmental parental SES than

that of offspring does not support the dismissal of shared
environmental influences. The dismissal is based on the observation
that in twin studies the variance due to shared environmental factors
tends to go to zero when individuals reach maturity. The discrepancy
between twin studies and our analysis may be partially explained by
the hypothesis that parental SES is positively correlated with
individual-level environmental influences, that is, a higher level of
parental SES affords more resources for individual-level interventions.
In social-science studies, most SES measures are at shared
family level.
Yet, the role of inheritance cannot be ignored. Not only an

individual’s genome has an important direct influence on verbal
ability; parental genomes also influence verbal ability through
parental SES. Our findings suggest that about 20–30% of the
conventionally-estimated coefficients of SES are not environmen-
tal but parentally genomic. The decades-long blueprint in research
of including SES in a model and interpreting their effects as those
of SES environment needs to be amended accordingly. A
straightforward and ready solution is to include both SES and
offspring genome in the same model. This would result in more

Table 4 continued

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES+ PGS SES+ PGS SES+ PGS

β (S.E.) β (S.E.) β (S.E.)

Population admixture Omitted# Omitted# Omitted#

Constant 82.6 (2.48)*** 80.1 (4.23)*** 84.1 (1.46)***

Random effects Omitted# Omitted# Omitted#

Model-level parameters Some omitted# Some omitted# Some omitted#

Number of persons 5820 1374 7194

(−2)Log-Likelihood 77,606 19,946 98,372

OLS R2 0.147 0.166 0.219

R2 without PGSs, with PCAs 0.128 0.154 0.204

R2 from net PGS effects 0.019 0.012 0.015

#“Omitted” indicates that the parameters are very similar to those in previous models and omitted to avoid redundancy.
***p < 0.001; **p < 0.01; *p < 0.05,+p < 0.1.
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Table 5. Multilevel models of Wave-3 verbal ability showing coefficients (standard errors) of SES context and ability-related PGSs conditional on
Wave-1 verbal ability.

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES+ PGS SES+ PGS SES+ PGS

β (S.E.) β (S.E.) β (S.E.)

Verbal Ability at Wave 1 0.49 (0.01)*** 0.48 (0.03)*** 0.49 (0.01)***

Ability PGSs

PGS for education 0.38 (0.14)** 1.00 (0.50)* 0.51 (0.15)***

PGS for IQ −0.02 (0.13) 0.78 (0.50) 0.13 (0.14)

SES context

Years of Education by Wave 3 0.74 (0.08)*** 0.90 (0.26)*** 0.78 (0.08)***

Mother’s Education

Less than High School – – –

High school/some college 1.08 (0.61)+ 0.87 (1.83) 1.14 (0.61)+

≥College graduation 1.64 (0.77)* 2.81 (2.67) 1.77 (0.79)*

Missing 0.42 (1.13) −4.62 (3.05) −0.79 (1.10)

Father’s Education

Less than High School – – –

High school/some college 0.09 (0.61) 0.95 (1.82) 0.33 (0.61)

≥College graduation 0.02 (0.76) 0.59 (2.60) 0.27 (0.78)

Missing 0.08 (1.08) 5.53 (3.11)+ 1.17 (1.08)

Mother’s Occupation Wave 1

Manual or blue collar – – –

None and others −0.22 (0.43) 0.98 (1.22) −0.55 (0.93)

Sales/service/administrative −0.11 (0.45) 1.68 (1.54) 0.11 (0.43)

Professional or managerial −0.30 (0.47) 2.46 (1.68) 0.29 (0.46)

Missing −0.05 (0.93) −2.92 (2.73) 0.17 (0.49)

Father’s Occupation Wave 1

Manual or blue collar – – –

None and others 0.21 (0.41) 0.59 (1.32) −0.27 (0.45)

Sales/service/administrative −1.07 (0.58)+ 3.18 (2.80) 0.35 (0.42)

Professional or managerial 0.31 (0.37) 0.08 (1.57) −0.69 (0.63)

Missing −0.35 (0.43) 0.52 (1.37) 0.30 (0.40)

Household Income at Wave 1

0–20 percentile – – –

20–40 percentile −0.24 (0.57) 1.34 (1.56) 0.20 (0.56)

40–60 percentile −0.53 (0.54) 2.04 (1.68) 0.02 (0.55)

60–80 percentile 0.09 (0.55) −2.15 (1.91) −0.03 (0.57)

80–100 percentile 0.10 (0.59) 3.42 (2.28) 0.46 (0.60)

Missing −0.65 (0.55) −0.53 (1.46) −0.64 (0.54)

2 Biological Parents at Wave 1 −0.61 (0.34)+ −0.94 (1.15) −0.81 (0.35)*

Sibling size

No sibling – – –

1 to 2 siblings 0.55 (0.65) −0.78 (2.41) 0.23 (0.69)

3 to 5 siblings 0.32 (0.68) −1.42 (2.44) −0.08 (0.71)

6 to 20 siblings −0.08 (0.73) −3.60 (2.56) −1.02 (0.76)

Other and Missing 3.79 (4.38) −4.84 (10.66) 2.40 (4.17)

Neighborhood disadvantages W1 −0.60 (0.15)*** 0.09 (0.53) −0.44 (0.16)**

Neighborhood disadvantages W3 −0.02 (0.13) −0.49 (0.52) −0.08 (0.14)

Demographics

Age (Wave 3) 0.43 (0.08)*** −0.25 (0.27) 0.30 (0.08)***

Female −0.44 (0.26)+ 0.09 (0.92) −0.34 (0.27)

Immigration status

US born 0.70 (0.29)* −0.27 (0.98) 0.43 (0.30)

Speaking English Home 0.51 (2.05) −1.03 (1.14) −0.55 (0.66)

G. Guo et al.

11

Published in partnership with The University of Queensland npj Science of Learning (2022)    22 



accurate estimates of the effects of SES and offspring genome.
The genetic effects would become more truly a reflection of
children’s own genome rather than his or her parents’ genomes.
More importantly, about 50% of the upward bias in the effects of
parental SES due to parental genomes would be corrected. These
findings point to the benefits of collecting DNA data in large
social-science studies like Add-Health granted that their primary
purpose is to understand social and environmental influences.

METHODS
Data source
We use data from Add Health (http://www.cpc.unc.edu/projects/
addhealth/), which is an ongoing longitudinal study of a nationally
representative sample of more than 20,000 adolescents in grades 7–12 or
ages 12–18 in 1994–95 in the United States who have been followed for
more than 25 years15. Add Health has conducted one in-school survey in
1994–1995, and five in-home interviews in 1994–1995 (Wave 1), 1996
(Wave 2), 2001–02 (Wave 3), 2008 (Wave 4), and 2016–8 (Wave 5). In
accordance with the University of North Carolina School of Public Health
Institutional Review Board guidelines which are based upon the Codes of
Federal Regulations on the Protection of Human subjects 45CFR46,
participants in Add Health provided written informed consent to
participate in all aspects of the study. The original purpose of Add Health
was to understand the causes of health, health behavior, and educational
development with a special emphasis on the role of social context at the
levels of family, neighborhoods, and communities.
We start with a sample of 9975 individuals for whom GWAS measures

are available. Excluded are those without a measure of verbal ability, those
self-identifying as African Americans, Asian Americans, Native Americans or
missing on race/ethnicity, and those with covariates missing on neighbor-
hood disadvantage. Our final analysis sample includes 7194 individuals
consisting of 5820 whites and 1374 Hispanic whites.
In January 2015, Add Health completed genome-wide genotyping on the

Wave IV participants who consented to archive their DNA for future studies.
Of the 15,701 respondents interviewed, 12,200 of the eligible respondents
agreed to archive their DNA for future analysis “related to long term health.”
Add Health utilizes two Illumina platforms for GWAS: the Illumina Human
Omni1-Quad BeadChip at first and then the Illumina Human Omni-2.5 Quad
BeadChip. The two platforms utilize tag SNP technology to identify and
include, respectively, >1.1 million and 2.5 million genetic markers, which are
derived from phases 1–3 of the International HapMap Project68 and the
1000 Genomes Project (1KGP)69.
Verbal Ability is measured by an abridged version (PVT) of the Peabody

Picture Vocabulary Test-Revised (PPVT-R) implemented twice at Waves 1 and
3 of Add Health. PVT includes 87 or half of the items of PPVT-R. Our analysis
uses the standardized score of PVT as the outcome variable. PPVT was first
published in 1959 and has been revised three times70. Psychological

Table 5 continued

Predictors Whites Hispanic Whites Whites and Hispanic Whites

SES+ PGS SES+ PGS SES+ PGS

β (S.E.) β (S.E.) β (S.E.)

Race and Ethnicity

White – – –

Hispanic – – −0.87 (0.68)

Population admixture Omitted# Omitted# Omitted#

Constant 32.4 (3.03)*** 46.0 (7.57)*** 35.9 (2.39)***

Random effects Omitted# Omitted# Omitted#

Model-level parameters Some omitted# Some omitted# Some omitted#

−2 Log-Likelihood 32,737 8550 41,922

Number of Persons 4579 1047 5626

OLS R2 0.405 0.296 0.407

#“Omitted” indicates that the parameters are very similar to those in previous models and omitted to avoid redundancy.
***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.1.

Table 6. Multilevel models of Wave-1 and 3 verbal ability showing
G×E-interaction coefficients (standard errors) between an SES principal
component and the two ability-related PGSs.

Predictors Main-effect Model G×E-Interaction Model

Whites and
Hispanic Whites

Whites and
Hispanic Whites

SES SES

β (S.E.) β (S.E.)

Ability PGSs

PGS for education 1.88 (0.16)*** 1.88 (0.16)***

PGS for IQ 0.32 (0.16)* 0.32 (0.16)*

SES PC 3.08 (0.16)*** 3.08 (0.16)***

PGS × SES

PGS for
Education*SES PC

– 0.36 (0.15)*

PGS for IQ*SES PC – −0.21 (0.15)

Demographics

Age 0.21 (0.03)*** 0.21 (0.03)***

Female −1.18 (0.30)*** −1.19 (0.30)***

Immigration status

US Born 1.80 (0.33)*** 1.83 (0.33)***

Speaking
English Home

5.04 (0.78)*** 5.08 (0.78)***

Race and Ethnicity

White –

Hispanic −1.43 (0.78)+ −1.41 (0.78)+

Population admixture Omitted# Omitted#

Constant 94.4 (1.07)*** 94.2 (1.08)***

Random effects Omitted# Omitted#

Model-level
parameters

Some omitted# Some omitted#

−2LogLikelihood 67,064 67,058

Number of Persons 4566 4566

OLS R2 0.19 0.19

#“Omitted” indicates that the parameters are very similar to those in
previous models and omitted to avoid redundancy.
***p < 0.001; **p < 0.01; *p < 0.05; +p < 0.1.
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literature considers PPVT an estimate of verbal intelligence71,72.
The correlations between PPVT and full-scale intelligence tests were found
to be between 0.40 and 0.6072.
Mother’s and father’s education are, respectively, coded into a four-

category categorical variable with less than high school, high school
graduation and some college, at least college degree, and missing. Mother’s
and father’s occupation in Add Health originally have 16 categories. They
are combined into five categories of none and other; manual or blue collar;
sales, service, or administrative; professional or managerial; and missing. In
the G×E-interaction analysis and the analysis presented in Supplementary
Materials, we construct an SES PCA, of which occupation is a component.
We test the robustness of three continuous occupation scales: the original 5
categories in Add Health, the 8-level, and the 11-level scales. In the last two,
the Add Health 16 categories are mapped onto a well-known occupational
prestige ratings73. The three sets of results are almost identical. The findings
from the 11-level occupation scale are presented.
Household income is total family income, which is only available from

the parental questionnaire at Wave 1 in 1994. Household income is coded
into a six-category variable with cutoff points at 20th, 40th, 60th, and 80th

percentile plus a category of missing. Family structure is measured by a
dichotomous variable taking the value of one if the respondent lives with
two biological parents and zero if the respondent is from a household of a
single parent, a stepparent, an adopted family, or a foster home at Wave 1.
Sibship size is the number of siblings living in the household at Wave 1.
To capture neighborhood disadvantage, we follow the approach used

by Wodtke, Harding and Elwert74. Neighborhood disadvantage is
measured by the first principal component from a principal component
analysis of six neighborhood measures that include the proportion of
households living below the poverty line, the proportion of adults who are
unemployed, the proportion of female-headed households, the proportion
of adult residents without a high school diploma, the proportion of
residents with a college degree, and the proportion of workers holding
managerial or professional jobs. In school is coded as one if the respondent
is in a school session when interviewed or if the respondent is in school in
the past school year when the respondent is interviewed in a summer
break; and in school is coded as zero otherwise.
In generating covariates, we take advantage of the longitudinal design of

Add Health. Whenever it is possible to match the repeated measures of
verbal ability at Waves 1 and 3, we use time-varying covariates measured at
Waves 1 and 3. For example, we generate two measures of neighborhood
disadvantage derived from two rounds of principal component analysis
using data at Waves 1 and 3, respectively. These two measures of
neighborhood disadvantage are included longitudinally in our analysis.
Similarly, parental education and occupation are also measured at Waves 1
and 3 and included as time-varying covariates in analysis.
The genomic measures of educational attainment and cognitive

ability are based on the 2018 GWAS of years of schooling13 and the
2018 GWAS of intelligence14, respectively. In the former, the GWAS
separately regresses each of a large number of single nucleotide
polymorphisms (SNPs) on years of schooling where SNPs are a particular
type of genetic variables taking values 0, 1, or 2. The value represents
the number of risk alleles at the genetic locus. The GWAS obtained one
β from each SNP regression.
The GWAS results are calculated into a summary polygenic score (PGS)75

for each individual using PLINK. To tap all the predictability of a GWAS, a
PGS for education for individual i is calculated using all βs from GWAS as
weights instead of excluding SNPs above a certain P value for the observed
risk alleles Xijs for this individual i: PGSi ¼

Pn
j¼ 1 βijXij , where j indexes SNP

and n stands for the total number of SNPs used in the calculation. The PGS
for cognitive ability is similarly constructed.
To facilitate interpretation, a PGS is standardized into a Z score:

PGSsi ¼ PGSi � M½ �=σ, where M is the mean PGS averaged over all
individuals in the sample and σ is the standard deviation of the PGS. When
PGSsi is included in a regression model predicting verbal ability, its
coefficient can be interpreted as the effect of one standard deviation of
the PGS. Thus, the standardized PGSs are a way to estimate and interpret
the overall genomic influence on a phenotype. The standardization is
performed three times separately: within European Americans, within
Hispanic whites, and within the combined sample of European and
Hispanic white Americans. We have similarly constructed standardized
PGS_for cognitive ability. In the rest of this article, we use PGSi to represent
PGSsi for simplicity. The original GWAS of education and cognitive ability
include data from Add Health and in this project, the Add Health PGSs are
calculated using the GWAS results with Add-health data excluded.
For more information on the QC procedures, imputation, LD patterns

and PGS construction, see Okbay et al.76 at https://addhealth.cpc.unc.edu/
wp-content/uploads/docs/user_guides/AH_GWAS_QC.pdf.

Analytical strategies
Appropriate statistical procedures were used to address the correlations
in verbal ability measures in Add Health77. One source of the correlation is
due to the inclusion of the two measures of verbal ability per individual.
The other source of the correlation originates from the study design of
Add Health, which includes a genetic-informative sample consisting of full
siblings, DZ twins, MZ twins, and other related individuals. In our analysis,
we address the data hierarchy using multilevel regression models78–80.
We implement two forms of multilevel models. The first is a three-level
model that addresses the repeated measures of verbal ability in addition
to the sibling clusters:

Vabilitytij ¼ β0 ijðsÞ þ SES0ijB1 þ G0
ijB2 þ C0

ijB3 þ etij ; ðlevel 1 modelÞ
β0ijðsÞ ¼ βjðsÞ þ vij ; ðlevel 2 modelÞ
βjðsÞ ¼ β0 þ μjðsÞ; ðlevel 3 modelÞ

(1)

where Vability stands for verbal ability; the subscripts t, i, j, and s index
Add-Health Wave, individual, sibship and type of sibship, respectively;
SES, G and C are, respectively, vectors of SES, PGSs, and other variables
including demographic indicators and principal components for addres-
sing population admixture; B1, B2, and B3 are vectors representing the
effects of these observed variables; and etij, νij, and μj(s) are random effects
at the levels of Add-Health Wave, individual and sibship, respectively. We
estimated models that distinguish different types of sibship and models
that do not make that distinction, which is equivalent to ignoring the
subscript s. The two sets of estimated coefficients of observed variables
are essentially identical. We only present estimates from the models that
do not make the distinction.
Our model that conditions on Wave-1 verbal ability is a two-level model

that uses verbal ability at Wave 3 as the dependent variable and that
estimates the effects of the same set of predictors while controlling for
verbal ability at Wave 1:

VabilityW3ij ¼ β0 jðsÞ þ αVabilityW1ij þ SES0ijB1 þ G0
ijB2 þ C0

ijB3 þ eij ; level 1 modelð Þ
β0j sð Þ ¼ β0 þ μjðsÞ; level 2modelð Þ

(2)

Adding Wave-1 verbal ability allows a further test of the effects of
offspring genome and family-SES in addition to all genomic and
environmental influences that had already acted on Wave-1 verbal ability.
Both (1) and (2) are random-intercept models.
The regression models are fit by the mixed command in STATA 16 SE.

Population admixture or population stratification is a major concern in
genetic association studies. Population groups separated over the past
50,000–100,000 years are likely to have developed private genetic
variants that differ across population groups and that are unrelated to
cognitive ability. If these population groups differ in ability test scores for
environmental reasons and if these private variants are not controlled
properly, the related genetic variants could be erroneously interpreted as
causing differences in cognitive ability. The error can be avoided by the
common practice of including the ten or so largest principle components
(PCAs) in the regression that links genetic variants to a phenotype81. The
PCAs represent ancestral genetic differences among population groups
and are highly correlated with self-reported race/ethnicity. G×E-interac-
tion terms can be added to models (1) and (2) readily. Findings are
presented based on analysis in which missing values in predictors are
coded into a separate category. Alternatively, missing values are
addressed by performing the multiple imputation via chained equations
(MICE)82. The MICE approach is accomplished by the mim command and
the xtmixed command in STATA 16 SE.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data supporting this work are available from the Add-Health website
https://addhealth.cpc.unc.edu/) but restrictions apply to the availability of the
data. The restricted-use data can however be available via contractual agreement

G. Guo et al.

13

Published in partnership with The University of Queensland npj Science of Learning (2022)    22 

https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/AH_GWAS_QC.pdf
https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/AH_GWAS_QC.pdf
https://addhealth.cpc.unc.edu/


with the Carolina Population Center (CPC Data Portal: https://data.cpc.unc.edu/
projects/2/view).
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