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Determinants of postnatal spleen tissue regeneration and
organogenesis
Jonathan K. H. Tan 1 and Takeshi Watanabe2,3

The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ
with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this
characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for
decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid
organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal
similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen
formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-
mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will
assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of
organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as
well as infectious diseases.
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INTRODUCTION
Spleen is an organ with the innate capacity to regenerate.1

Spontaneous tissue regeneration can be observed after cases of
splenic trauma, when fragments of ruptured spleen tissue spill
into the abdominal cavity and seed the formation of small, spleen-
like nodules.2 The natural ability for spleen to regenerate has led
to the development of spleen auto-transplantation techniques,
aimed at preserving or reinstating normal organ function in
patients otherwise requiring a total splenectomy. This intervention
is essential to maintain blood–borne immunity against encapsu-
lated bacteria such as Streptococcus pneumoniae, which is the
leading cause of overwhelming post-splenectomy infection (OPSI),
and is associated with a 50–70% mortality rate.3 Various surgical
approaches have been developed to re-implant whole or
dissociated spleen fragments into the body,1 and these spleen
auto-transplantation techniques continue to undergo constant
refinement.4

Fragments of spleen tissue are typically used for both clinical
and experimental spleen auto-transplantation.5,6 However, the
rationale for transplanting fragmented spleen cubes or slices, the
events surrounding graft survival and tissue regeneration, and
more precisely the cells controlling de novo spleen formation, are
not well defined or understood. Indeed, it is accepted that most
graft tissue does not even survive the initial transplantation
period, and instead undergoes rapid and almost complete
necrosis.1,7 When examined in animal models, mostly non-
hematopoietic cells have been observed to survive the primary
necrotic phase,7 raising the possibility that spleen stroma
instigates or provides a foundation for new tissue growth. This
has been supported by studies transplanting neonatal spleen
stromal tissue grafts, prepared by mechanically separating

hematopoietic cells from the stromal component of murine
spleen tissue.8 Transplantation of these grafts have demonstrated
that spleen stroma is sufficient to initiate new tissue
development.8

An underlying contribution of stromal cells to lymphoid tissue
organogenesis has been recognised during embryonic develop-
ment. The formation of lymph nodes and Peyer’s patches is
heavily dependent on early interactions between stromal VCAM-
1+ICAM-1+MAdCAM-1+ lymphoid tissue organiser (LTo) cells, and
hematopoietic CD3−CD4+IL-7Rα+ lymphoid tissue inducer (LTi)
cells.9,10 Lymphotoxin-α1β2 (LTα1β2) is also an essential molecule
for lymphoid tissue development, and in the absence of a
functional lymphotoxin signalling pathway, both lymph node and
Peyer’s patch formation is abolished.11–13 Intriguingly, embryonic
spleen develops in the absence of lymphotoxin signalling.
Lymphoid tissue inducer cells are similarly dispensable, since
RORγ gene knockout which is critical for LTi development leads to
the cessation of embryonic lymph node, but not spleen
organogenesis.14

To understand these relationships in the context of neonatal
spleen regeneration, spleen stromal tissues derived from LTi-
deficient RORγt-/- neonatal mice were grafted into wild-type
recipients.8 Here, the formation of gross spleen tissue was
unimpeded, consistent with LTi-independent spleen embryogen-
esis as previously reported.14 However, the transplantation of
lymphotoxin-deficient LTα-/- neonatal spleen stromal grafts did
not induce tissue regeneration.8 This contradicted reports that
embryonic spleen develops in the absence of lymphotoxin, as well
as transplantation studies involving embryonic day (E)15 LTα-/-

spleen grafts which retained the capacity for full tissue develop-
ment.15 Thus, in contrast to spleen development during early
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embryogenesis, spleen tissue regeneration after birth requires
functional lymphotoxin signalling.

DEFINITION OF SPLEEN ORGANISER CELLS
Specialised subsets of lymphoid tissue organiser cells guide lymph
node and Peyer’s patch development.9,10,16 Only recently have the
equivalent stromal cell subsets controlling neonatal spleen
regeneration been functionally defined. Using cell-aggregated
grafts constructs, manipulation and transplantation of various
CD45− stromal cell subsets enabled the identification of MAdCAM-
1+CD31 (PECAM-1)+ spleen organiser (SPo) cells, which were
indispensable for neonatal spleen regeneration.17 In common with
LTo cells,18 organiser cells in spleen expressed high levels of
lymphotoxin β receptor (LTβR), as well as ICAM-1 and MAdCAM-1
adhesion molecules. The localisation of MAdCAM-1+CD31+ cells
around the marginal zone of neonatal spleen also supported an
organiser cell identity,17 indicating a close relationship with
CD4+CD3− LTi and migratory B220+ B cells which simultaneously
cluster around the central arteriole during development.17,19,20

Notably, MAdCAM-1+CD31+ cells are also present in human foetal
spleen from 14 weeks gestation,21 representing a potential spleen
organiser cell type in humans.
Rather than a single spleen organiser cell subset controlling

tissue formation, a second population of mesenchymal
PDGFRβ+MAdCAM-1lo/+CD31− cells was also found essential for
tissue regeneration.17 In humans, these cells may correspond to a
population of MAdCAM-1+CD31− cells that can be detected in
foetal spleen from 18 weeks.21 At this stage, the precise identity of
PDGFRβ+MAdCAM-1lo/+CD31− cells is unclear and may encompass
a range of mesenchymal stromal cell subsets in spleen.22 Further
examination of the phenotypic profile and spatial localisation will
better inform the identity of this cell type, and any potential
interactions with MAdCAM-1+CD31+ organiser cells, LTi, or B cells.
Nevertheless, a combination of distinct endothelial and mesench-
ymal lymphoid tissue organiser subsets is required for lymph node
development,16 giving precedence for the action of dual organiser
populations in spleen tissue regeneration.

REGULATING EARLY AND LATE STAGES OF SPLEEN
DEVELOPMENT
Recent advances have elucidated the cellular components and
molecular signalling events driving postnatal spleen regeneration.
Yet, how do these findings integrate into a paradigm for
secondary lymphoid organogenesis? The regulation of spleen
organogenesis is considered distinctive because compared to
other secondary lymphoid organs, embryonic spleen develops in
the absence of lymphotoxin signalling.11–14 However, the spleen is
also structurally and functionally unique, exerting dual functions in
red blood cell filtration that is carried out in the red pulp, and in
adaptive immune responses which are generated in the white
pulp.23 Contrary to embryonic spleen organogenesis, both
MAdCAM-1+ marginal zone maturation and white pulp compart-
mentalisation of T and B lymphocytes occurs postnatally, and both
structures are severely compromised in lymphotoxin-deficient
mouse models.11,12 Therefore, spleen organogenesis can be
divided into two separate stages. The initial phase of primitive
red pulp formation begins during embryonic spleen development.
This occurs independently of lymphotoxin signalling and is
instead reliant on the expression of homeobox transcription
factors including Tlx1 and Pbx1.24 Subsequently, full white pulp
and marginal zone formation ensues during postnatal spleen
development, and similar to lymph node organogenesis, occurs in
a lymphotoxin-dependent manner.7

Thus, distinct spleen stromal cell types may exist which
independently regulate embryonic and postnatal spleen develop-
ment. During embryogenesis, specification of spleen

mesenchymal cells and formation of splenic anlage commences
at E10.5.24 Spleen Nkx2-5+Islet1+ mesenchymal progenitors
contribute to early tissue development and give rise to the
majority of mesenchymal stromal lineages in spleen including
gp38+ fibroblastic reticular cells, CD35+ follicular dendritic cells
and NG2+ pericytes.22 It has also been shown that lymphoid tissue
organiser cells can derive from this pool of multipotent
mesenchymal stromal cells.22 Since LTo are typically defined as
PDGFRβ+ cells,9,25 early spleen development may in part be
regulated by mesenchymal PDGFRβ+ organiser cells, but any
activity at this stage would not involve lymphotoxin signalling.
From E12-E13, LTi or their precursors emerge in foetal spleen.20 At
E16.5, these cells can be observed surrounding CD31+ or VE-
Cadherin (CD144)+ central arterioles in close proximity to
MAdCAM-1+VE-Cadherin+ endothelial cells,19,20,26 thus localising
in areas of future white pulp development.27,28 At least up to E15,
LTi co-localisation with organiser cells in the vicinity of spleen
central arterioles occurs independently of lymphotoxin, and these
interactions are dispensable for normal spleen development.14,15

At a time-point between late embryonic and early postnatal
development, lymphotoxin becomes essential for spleen tissue
regeneration and organisation of white pulp compartments.
Nuclear factor kappa B (NFκB) signalling is critical for lymphoid
tissue organiser cell maturation and function,29 and in spleen this
signalling begins at E17.5.30 This may herald the first lymphotoxin-
binding events, which trigger NFκB activation through the ligation
of LTβR expressed on spleen organiser cells. However, most LTβR-
mediated signalling is presumed to occur after birth, when larger
numbers of LTi begin to express LTα1β2.

19 Even then, LTβR
signalling is likely to be augmented by a combination of LTi and
mature B cells, which co-localise around central arterioles and
functionally express lymphotoxin.19 Transgenic animals that
selectively delete or express B cell LTα1β2 further support their
involvement in lymphotoxin-mediated white pulp maturation.31,32

In addition to white pulp development, lymphotoxin signalling
during this specific time window is essential for uptake of
neonatal spleen grafts and full tissue regeneration.8

EMERGENCE OF THE MARGINAL ZONE AND WHITE PULP
Following elevated lymphotoxin cues in the spleen, formation of
the marginal zone becomes a critical stage in white pulp
formation and ultimately the establishment of immune compe-
tence. Between early spleen development and adult marginal
zone formation, there is no clear connection surrounding the
events leading to marginal zone maturation. Outstanding ques-
tions include the origins of the marginal zone, and whether
marginal zone reticular cells (MRC) in fact represent adult spleen
organiser cells.27 In lymph nodes, a positive feedback loop
generated by initial LTi engagement leads to the maturation of
stromal organiser cells and the upregulation of homoeostatic
chemokines such as CXCL13, and VCAM-1, ICAM-1 and MAdCAM-1
adhesion molecules.33,34 Consistent with this, upregulation of
VCAM-1 and ICAM-1 is observed in stromal cells surrounding the
central arteriole in spleen post-birth,19,20 at a time when mature B
cells influx into the nascent white pulp region.17,19 Both of these
events do not occur in LTα-/- mice.19,20 From this point on, three
key reports help shape our understanding of spleen organiser cell
maturation and marginal zone formation.
Katakai and colleagues27 first presented striking images

detailing the expression of MAdCAM-1 in murine spleen from
birth to adulthood. At day 0, MAdCAM-1 expression was dispersed
throughout spleen tissue, which by day 6 coalesced into foci
surrounding central arterioles. The final expansion of characteristic
ring-shaped marginal zone structures was observed from 2 weeks
of age. In 2009, work by Zindl et al. showed that adult marginal
zone sinus-lining vessels, which express both MAdCAM-1 and the
arterial endothelial marker ephrinB2,27,35 branched directly from
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the central arteriole. Not only were ephrinB2+ cells in the marginal
zone a physical continuum of the central arteriole, but cells in this
region also expressed markers including CD31, Flk-1 (VEGFR-2)
and VE-Cadherin. These reports suggest that after birth, MAdCAM-
1+ cells in the marginal zone extend directly from and closely
encompass the central arteriole, and share the expression of
several endothelial cell markers.27,36

The finding that MAdCAM-1+CD31+ stromal cells are organiser
cells functioning in neonatal spleen tissue regeneration17 now
consolidates these previous reports. Moreover, it supports an
ontogenetic relationship between embryonic/neonatal SPo and
adult marginal zone reticular cells, which share co-expression of
MAdCAM-1 and CD31, and require LTβR signalling to maintain
normal architecture.36 It is therefore proposed that MAdCAM-
1+VE-Cadherin+/CD31+ cells which are distributed around central
arterioles shortly before and after birth represent SPo (Fig. 1).17,19

Postnatally, these cells are in spatial alignment with LTi and
incoming B cells and upon LTα1β2 ligation, serve as functional
spleen organisers. Lymphotoxin signalling during this develop-
mental window is required to enforce MAdCAM-1 upregulation in
the marginal zone, which leads to the remodelling of the marginal
sinus vascular network and the organisation of adult white pulp
structures.

SUMMARY
Spleen auto-transplantations have been performed clinically for
decades, yet the organiser cells controlling tissue regeneration are
only starting to be understood. Defining the cellular and
molecular events which drive tissue regeneration will be
important for addressing limitations in spleen graft functionality,
such as the age-related decline in successful spleen auto-
transplantations that regenerate full tissue immunoarchitecture.37

A reduction in grafting efficiency leads to the development of
spleen tissue with poor structural and functional qualities,
evidenced by large fibrotic regions and irregular white pulp
areas.38,39 Similarly, ageing is associated with a general loss of
lymphoid tissue organisation and the development of immuno-
senescence.40 Since MAdCAM-1+CD31+ cells are essential for
driving the regeneration of spleen tissue and regulating white
pulp organisation, it will be of interest to determine whether

numerical or functional changes in this population manifest with
age. Answers to these questions may inform better approaches to
engineer immune-competent spleen grafts, or may stimulate the
development of therapies aimed at directly repairing or rejuvenat-
ing aged spleen tissue in situ.
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