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Unveiling multipole physics and frustration of icosahedral
magnetic quasicrystals
Junmo Jeon 1 and SungBin Lee 1✉

Multipolar physics and their hidden orders have been widely discussed in the context of heavy fermions and frustrated magnets.
However, despite extensive research, there are few examples of purely multipolar systems in the absence of magnetic dipoles. Here,
we show the magnetic behavior of an icosahedral quasicrystal is generally described by multipoles, and in a specific case by pure
magnetic octupoles, resulting from the interplay of spin-orbit coupling and crystal field splitting. Importantly, we emphasize that
non-crystallographic symmetries of quasicrystals result in multipolar degrees of freedom, in contrast to the conventional crystals.
We first classify the characteristics of multipoles and derive the effective spin Hamiltonian. We then explore how frustration and
quantum fluctuations induce entangled quantum phases. Our study presents the magnetic icosahedral quasicrystal as a platform
for investigating the exotic multipolar physics.

npj Quantum Materials             (2024) 9:5 ; https://doi.org/10.1038/s41535-023-00617-z

INTRODUCTION
Several examples in condensed matter systems are not easily
observable through conventional experimental techniques. Such
hidden orders have been in debate for several decades and have
been waiting to be discovered1–7. In particular, unusual higher
rank multipole moments, beyond the conventional electric and
magnetic dipole moments, have been suggested as a key player
to exhibit various hidden orders8–33. Multipolar degrees of
freedom are renowned for not only generating hidden orders,
but also contributing to a range of other intriguing and intricate
phenomena. For example, in heavy fermion materials, multipolar
degrees of freedom can lead to the emergence of unconventional
superconductivity and non-Fermi liquid behavior with exotic
Kondo physics34–45. In addition, exotic ground states, known as
multipolar quantum spin liquids, can emerge from the magnetic
frustration between the multipolar moments46–49. Therefore, the
investigation of multipolar physics properties has been the
primary objective of extensive research with significant implica-
tions and fresh insights that could potentially lead to various
applications50–56. However, there are few such examples, and
many of the magnetic systems contain not only multipoles but
also magnetic dipoles at the same time.
Finding multipolar degrees of freedom in the magnetic systems

requires a delicate combination of spin-orbit couplings and
crystalline electric field (CEF) splitting based on the point group
symmetries33,57–59. In conventional crystals, the point group
symmetry, which should be compatible with the translational
symmetry, limits the exploration of pure multipolar degrees of
freedom in the magnetic systems57. On the other hand, the
quasicrystals, and their approximants could exhibit the point
group symmetries beyond the space group such as pentagonal
rotational symmetry, due to their ordered structure lacking spatial
periodicity60–62. Thus, quasicrystalline materials provide a good
platform for finding multipolar degrees. Several rare-earth
magnetic quasicrystals exhibit icosahedral symmetry, but their
multipolar physics and related exotic phenomena have yet to be
investigated63–68.

In this paper, we consider the non-crystallographic 5-fold
rotational symmetry and icosahedral symmetry with f-orbital
electrons of the rare earth atoms. First, we classify all possible
multipole degrees of freedom found in rare-earth magnetic
quasicrystals in the presence of noncrystallographic 5-fold
symmetry. We note that this generally leads to the higher order
multipoles of the pseudospin x and y components, and magnetic
dipoles of the Ising moments. More interestingly, if magnetic
quasicrystals with Yb3+ ions are in a perfect icosahedral crystal
field symmetry, they host the Kramers doublet that carries pure
magnetic octupole moments without magnetic dipole moments.
On symmetry grounds, the generic spin Hamiltonian is introduced
for both Kramers and non-Kramers doublet. In the antiferromag-
netic Ising limit, we first discuss the degenerate ground state
resulting from the geometrically frustrated icosahedron structure.
Subsequently, with the introduction of quantum fluctuations, a
distinctive ground state is established, which has non-zero
entanglement. In this case, depending on (anti-) ferromagnetic
XY interaction, the specific linear combination of the degenerate
ground states found in the Ising limit becomes a non-degenerate
ground state. Our work provides a perspective for finding
multipolar degrees of freedom and their magnetic frustration
originated from noncrystallographic symmetries. Furthermore, it
opens a paradigm for enriching hidden orders, spin liquids and
Kondo effects in quasicrystals.

RESULTS
Multipolar degrees of freedom in icosahedral magnetic
quasicrystals
In this section, we begin by categorizing all potential multipolar
degrees of freedom for rare-earth magnetic systems with
noncrystallographic 5-fold symmetry and icosahedral symmetry.
We then shift our attention to a scenario wherein magnetic
dipoles are absent, and pure magnetic octupole moments are
present. We examine the characteristics of such moments.
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The most general CEF Hamiltonian in a 5-fold rotational
symmetry is given as follows, using the Stevens operators,

HCEF ¼ B60O
0
6 þ B65O

5
6 þ B20O

0
2 þ B40O

0
4 (1)

Here, Bnm=−γnmqCnm〈rn〉θn are the Stevens coefficients obtained
by the radial integrals, where γnm is a term calculated from the
ligand environment expressed in terms of tesseral harmonics. q is
the charge of the central atom, Cnm are the normalization factors
of the spherical harmonics, r is the radial position, θn are constants
associated with electron orbitals of the magnetic ion69. Here, we
assume the point charge model. We neglect the finite extent of
the charges on the ions, the overlap of the wave functions of the
magnetic ions with those of neighboring ions, and the complex
effects of the screening of the magnetic electrons by the outer
electron shells of the magnetic ion. Nevertheless, we emphasize
that it serves as a first approximation to illustrate the principles
involved, and can be used to calculate the ratios of terms of the
same degree in the Hamiltonian for lattice sites of high symmetry,
since these ratios are independent of the models and are
determined solely on symmetry grounds70. Note that the z-axis
is a 5-fold rotational symmetry axis. The Om

n are Stevens operators
with respect to the total angular momentum operators (See
Supplementary Methods for the detailed forms of Om

n .). When we
consider the full icosahedral symmetry, which has 5-fold rotational
symmetry plus mirror reflection symmetries, it leads to B20=
B40= 0, and B65=− 42B60. We examine two cases one where
perfect icosahedral symmetry exists, and another where only
5-fold symmetry exists. These cases are applicable to different
situations. The latter case can be taken into account using the
charge defects which breaks the icosahedral symmetry down to
C5v. In this case, the charge defect on a ligand is placed on a z-axis
as q→ q(1+ α). As a result, the Stevens coefficients, B65, B20, B40
are changing as a function of α. Since Bnm ¼ �αγ0nmqCnmhrniθn for
a single point charge defect, B60 is unchanged if the charge defect
is placed on the z-axis. Most of the binary, ternary and complex Al-
TM (TM= transition metal) icosahedral quasicrystals, similar to the
Al-Mn or Al-Mn-Si compounds, belong to the Mackay-type of
icosahedral quasicrystals which have perfect icosahedral

symmetry. In contrast, for instance, Ce15Au65Sn20 has only C5v
point group symmetry around its magnetic atom, Ce61.
For both full icosahedral symmetry, Ih and 5-fold rotational

symmetry, C5v with nonzero α, we summarize the CEF states in
Figs. 1 and 2 for half-integer J and integer J values, respectively.
For α= 0, the point group symmetry restores the full icosahedral
symmetry and multiple degenerate levels appear. It is noteworthy
that for J= 7/2 which is the case for Yb3+, the (Kramers) doublet
exists under the perfect icosahedral symmetry group as shown in
the red box of Fig. 1a. Specifically, there are two eigenspaces of
HCEF, the Kramers doublet and the sextet71. On the other hand, for
any given α ≠ 0, the CEF states under 5-fold symmetry are split
into doublets or singlets for all given values of the total angular
momentum J of the rare earth atom. In both Figs. 1 and 2, the
tentative orders of the energy levels are given for α= 0.5. Given
α ≠ 0, every energy levels for half-integer J are Kramers doublet
due to the time-reversal symmetry. However, for integer J, some
singlets are allowed. Notably, in all cases, the pseudospins of the
doublets exhibit magnetic dipoles along the z-component, while
typically showing multipoles such as quadrupoles, octupoles, and
higher orders along the x and y-components. For half-integer
values of J, Σx(y) could be dipole, octupole and dotriacontapole
(see Fig. 1), whereas for integer values of J, the doublets carry
either quadrupole or hexadecapole Σx(y) (see Fig. 2). Again, it is
because of the time-reversal symmetry. It is interesting to note
that for the low lying Kramers doublet, Σx(y) for J= 7/2 always
represents magnetic octupoles originated from the Kramers
doublet, whereas, Σx(y) for J= 9/2 and J= 15/2 could take
magnetic octupoles or dotriacontapoles. We also note that for
the low lying non-Kramers doublets, Σx(y) for J= 4 and J= 6 take
either quadrupole or hexadecapole, while for J= 8, it could take
only quadrupole (see Fig. 2c).
We emphasize that the loss of translational symmetry generally

allows such unconventional multipolar degrees of freedom. The
aperiodic system allows the non-crystallographic point group
symmetries which give rise to the unconventional terms of CEF
Hamiltonian. For instance, 5-fold rotational symmetry leads to the
O5
6 term in Eq. (1). Note that the O5

6 term relates Jz ¼ mj i and

Fig. 1 Summary of the CEF states and multipoles under non-crystallographic point group symmetries for given half-integer values of J.
a J= 7/2 (Yb3+) (b) J= 9/2 (Nd3+) and (c) J= 15/2 (Dy3+). Under the icosahedral symmetry Ih, the CEF states are split into several multiplets.
Particularly, note that J= 7/2 which is the case for Yb3+ has a Kramers doublet and it hosts pure magnetic octupoles without magnetic dipoles
or quadrupoles, as shown in the red box. Whereas, for C5v where the mirror reflection of Ih is absent, all the multiplets are split into Kramers
doublets. In this case, the z-component of the pseudospin, Σz is dipole for any Kramers doublets. In contrast, the x, y-components, Σx,y, could
be not only dipoles but also octupoles and dotriacontapoles. Depending on the energy scale of the breaking of the mirror symmetry, the
order of energy could change. d Dipoles (black-copper), octupoles (red-white) and dotriacontapoles (red-yellow). See the main text for more
details.
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Jz ¼ m± 5j i states, which are not related to each others in the
conventional periodic systems. This allows us to obtain the
multipolar degrees of freedom in the aperiodic system.
From now on, we focus on the special case where the lowest

Kramers doublet is represented by pure octupoles, i.e. J= 7/2 in
an icosahedral crystal field symmetry and discuss their character-
istics. Then, in the following subsections, we discuss the generic
spin Hamiltonian, geometrical frustration and quantum fluctuation
effects. It is important to note that all these arguments are
generally applicable to any cases of multipolar physics with J listed
in Figs. 1 and 2.
Let us define the Kramers doublet as ±j i, which are written in

terms of the eigenstates of the Jz operator,

þj i ¼ �
ffiffiffiffi
7
10

q
Jz ¼ � 3

2

�� �
þ

ffiffiffiffi
3
10

q
þ 7

2

�� �

�j i ¼
ffiffiffiffi
3
10

q
� 7

2

�� �
þ

ffiffiffiffi
7
10

q
þ 3

2

�� �
:

(2)

With respect to the Yb3+ ion, it is established that B6 < 0, thus the
ground eigenspace of the CEF Hamiltonian is the Kramers doublet,
which is well separated from the sextet72,73. The CEF energy gap is
given by 25200∣B60∣ ~O (10meV), where detailed numerical value
depends on icosahedral magnetic materials with Yb. Since the
energy scale of spin exchanges between rare-earth ions are
generally much smaller than the crystal field splittings, one can
expect the magnetic properties at low temperature are explained
within this Kramers doublet. From Eq. (2), one can easily find that
〈 ± ∣Ji∣ ∓ 〉 and 〈 ± ∣Ji∣ ± 〉 vanish where i= x, y, z. Importantly, Jz also
vanishes due to the symmetric coefficients of the states. This
confirms that there is no magnetic dipole moment. Thus, one
should consider the multipolar degrees of freedom given by the
irreducible tensor operators. However, since ±j i are the Kramers
doublet, the time-reversal even operators such as quadrupole
moments vanish. Hence, it is reasonable to anticipate the

presence of higher-order degrees of freedom, such as octupoles,
in the absence of dipolar or quadrupolar degrees of freedom.
To show that the Kramers doublet, ±j i in Eq. (2), describes the

octupolar degrees of freedom, let us define the pseudospin ladder
operators, Σ±, as follows.

Σþ ¼ þj i �h j Σ� ¼ ðΣþÞy; (3)

and Σz= [Σ+, Σ−]/2. Now define the octupolar operators as the
rank 3 spherical tensor operators, T ð3Þm in terms of J+, J− and Jz.
Note that octupolar operators are time-reversal odd. Thus, under
the time-reversal transformation, T , we have T Σ± T �1 ¼ �Σ ∓ ,
T ΣzT �1 ¼ �Σz. As a result, Σz � T ð3Þ

0 and Σ± � T ð3Þ
m for non-zero

m. However, T ð3Þ
1 and T ð3Þ

�1 vanish because T ð3Þ
± 1 ±j i is not in the

doublet eigenspace. Note that T ð3Þ
± 1 changes the eigenvalue of the

Jz operator by ±1. Similarly, since J2± ±j i and J3± ∓j i are not in the

doublet, the only non-trivial matrix elements are h± jT ð3Þ
± 2j ∓ i and

h ∓ jT ð3Þ± 3j± i. This leads to T ð3Þ
± 2; ∓ 3 � Σ± . In detail, one can

represent the octupolar pseudospin operators in the doublet as,

Σz � T ð3Þ0 ; Σ± � 1
2

ffiffiffiffiffi
2
15

r
T ð3Þ± 2 ∓

1
2

ffiffiffi
1
5

r
T ð3Þ

∓ 3: (4)

Specifically, T ð3Þ± 2 ¼
1
4

ffiffiffiffiffiffiffiffi
105
π

r
J2± Jz, T ð3Þ

± 3 ¼ ∓
1
8

ffiffiffiffiffi
35
π

r
J3± , and

T ð3Þ0 ¼ 1
4

ffiffiffi
7
π

r
ð5J3z � 3JzJ

2Þ, where O is the symmetrization of the

operator O74. Each pseudospin operator is a linear combination of
rank 3 tensors. From Eq. (4), one can write,

ΣxðyÞ ¼
1
4

ffiffiffiffiffi
2
15

r
T ð3Þ
2 ± T ð3Þ

�2

� �
±

ffiffiffi
1
5

r
T ð3Þ
3 � T ð3Þ

�3

� �" #
; (5)

Fig. 2 Summary of the CEF states and multipoles under non-crystallographic point group symmetries for given integer values of J. a J= 4
(Pr3+) (b) J= 6 (Tb3+) and (c) J= 8 (Ho3+). Unlike the icosahedral symmetry Ih where the CEF states are split into several multiplets. the five-
fold symmetry C5v symmetry splits all the multiplets into either non-Kramers doublets or singlets. Under C5v, the z-components of the
pseudospin, Σz are magnetic dipoles for each doublet. On the other hand, the x, y-components, Σx,y represent either quadrupoles or
hexadecapoles. Depending on the energy scale of the breaking of mirror symmetry, the order of energy could change. d Singlet (black),
quadrupoles (blue-skyblue) and hexadecapoles (violet-skyblue). See the main text for more details.
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where x(y) takes+ (−) sign in Eq. (5), respectively. Note that the
octupole moment is restricted to the 2-sphere, which represents
the set of possible expectation values of the three pseudospin
operators, Σz and Σx(y).

Generic spin Hamiltonian on symmetry grounds
By applying the symmetry transformation of the icosahedron
group (Ih) and the time reversal symmetry transformation, one can
find the generic spin Hamiltonian of the nearest neighbor
interactions. Let us define the local z-axis pointing to the center
of the icosahedron shell. Then, under the 5-fold rotational
symmetries of Ih, we have Σ±

i ! e ∓ 4iπ=5Σ±
j , where i and j are

the nearest neighboring sites. This leads to the bond dependent
phase factors in the Hamiltonian, such as Σþi Σ

þ
j or Σþi Σ

z
j terms. As a

result, the generic symmetry allowed Hamiltonian under the
icosahedral symmetry contains four independent parameters,
J±±, J±z, J± and Jzz, and is given as,

H ¼
P
hi;ji

JzzΣzi Σ
z
j þ J ± Σþi Σ

�
j þ Σ�i Σ

þ
j

� �h

þ J ± ± αijΣ
þ
i Σ

þ
j þ α�ijΣ

�
i Σ

�
j

� �

þ J ± z Σzi βijΣ
þ
j þ β�ijΣ

�
j

� �
þ i $ j

� �i
:

(6)

Here, αij takes the values 1, e±i2π/5 and e±i4π/5 depending on the
bond orientation due to the 5-fold rotational symmetry, and
βij ¼ ðα�ijÞ

2. The Hamiltonian in Eq. (6) is expressed in terms of local
coordinate axes, where the local z-axis for each site is parallel to a
high-symmetry axis of the icosahedron (See Supplementary
Methods for detailed derivation of the effective pseudospin
Hamiltonian and local axes.). The magnitudes of these spin
exchange parameters will vary depending on the case. Here, for
the simplest case, we first study the Ising limit with a finite Jzz and
then consider the quantum fluctuations in the presence of J±.

Remarkably, we should emphasize that the spin Hamiltonian, H
in Eq. (6), could be used to argue general characteristics of the
multipolar pseudospin models even for the C5v symmetry rather
than Ih. This is because the constraints on the Hamiltonian have
their origin in the mirror reflection symmetry shared by the C5v
and Ih groups. See Supplementary Methods and Supplementary
Fig. 1 for detailed information. The Hamiltonian in Eq. (6) would be
applicable for any Kramers or non-Kramers doublets with half-
integer or integer values of J. The only difference between
Kramers and non-Kramers doublets is the presence and the
absence of the parameter J±z. This is originated from the fact that
for non-Kramers doublet, z components represent magnetic
dipoles, whereas x, y components represent quadrupoles or
hexadecapoles, thus the coupling between Σz and Σ± is forbidden
under the time reversal symmetry.

Geometrical frustration
Let us first consider the Ising model, where only Jzz is non-zero in
Eq. (6). Figure 3 represents the structure of icosahedral
quasicrystal descended from 6-dimensional hyperspace by the
cut-and-project scheme60. As shown in Fig. 3, the distances
between the centers of the icosahedrons vary. Particularly, the
orthographic projection view of Fig. 3 shows that if we connect
two sites of the magnetic atom whose distance is less than or
equal to the length of an edge of the icosahedron shell, then there
are many isolated icosahedron shells. See Supplementary
Methods for detailed cut-and-project scheme for the icosahedral
quasicrystal. In real-world materials, the distances between shells
may vary depending on the structures of quasicrystals and
approximants63–66,75. Furthermore, it is known that the inter-shell
distance can be also controlled in terms of the external
pressure63,76,77. Thus, for general argument, we mainly focus on
the nearest neighboring sites in a single icosahedron and discuss
the magnetic states. For ferromagnetic Jzz, it is obvious there are

Fig. 3 Icosahedral quasicrystal generated by the cut-and-project scheme from 6-dimensional hyperspace. Red dots represent the sites of
the magnetic atom. We draw the sites forming the icosahedron shells only for visibility. The projection view is drawn to emphasize the high-
symmetry of the icosahedral quasicrystal. The shortest distance between the centers of the icosahedrons has different values for each
icosahedron shell in the quasicrystal. In the projection view, any pair of two sites are connected by the sky-blue line if their distance is less
than or equal to the length of an edge of an icosahedron shell. There are many isolated icosahedron shells which have no connection to the
other icosahedron shells. For the antiferromagnetic, Jzz, there is geometrical frustration on each icosahedron.
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only two degenerate ground states, where every octupole points
in local+ z and− z directions, respectively.
For the antiferromagnetic Ising model, where Jzz is positive, the

presence of triangular faces in the icosahedron leads to geometric
frustration. In this case, there exist 72 degenerate states that are
classified into two groups based on symmetry grounds (i) 60
degenerate states without 5-fold rotational symmetry, (ii) 12
degenerate states with 5-fold rotational symmetry. Figure 4a
shows an example of the first group of ground states. Note the
octupolar moments arranged on the icosahedron in Fig. 4a do not
have a 5-fold rotational symmetry axis. Since there are 6
independent choices for the Z-axis, by applying 5-fold rotational
transformation around each Z-axis, we have 30 degenerate states.
In addition, for each 30 degenerate states, the energy is invariant
under the swap of two octupoles on the sites Q and R in Fig. 4a
and c. Hence Mσ, the spatial mirror reflection with respect to the σ-
plane depicted in Fig. 4c doubles the number of degenerate states
with no 5-fold rotational symmetry, resulting in total 60
degenerate states. (See Supplementary Note for detailed discus-
sion of the symmetry argument.). Figure 4b, d illustrate 5-fold
rotational symmetric ground state. There are 12 independent
choices for the rotational symmetry axis, Z-axis in Fig. 4b of the
second group.

Quantum fluctuation
Now let us consider non-zero but small J± and study the effect of
quantum fluctuations. To study the fluctuation effects, we
introduce three subsets of the 72 degenerate states, A,B and C
in terms of the orientation preserving icosahedral rotation group,
I⊴ Ih. Specifically, the subsets A and C are generated by applying

the spatial rotations in I to the states in Fig. 4a, b, respectively.
While, the subset B is generated by applying the coset, IMσ ¼
fgMσjg 2 Ig to the state in Fig. 4a. Thus, for
H ± ¼ J ±

P
hi;jiðΣþi Σ�j þ Σ�i Σ

þ
j Þ, two states in the same subset

admit zero matrix element of H±. One can let ψAn

�� �
, ψBl

�� �
and

ψCr

�� �
, where 1 ≤ n, l ≤ 30 and 1 ≤ r ≤ 12 be the states in A,B and C,

respectively. Hence, in the sub-Hilbert space of the 72 Ising
ground states, H± has the matrix representation, ½H ± �A;B;C, given
by

½H ± �A;B;C ¼
0 TAB TAC

TBA 0 TBC
TCA TCB 0

0
B@

1
CA (7)

where TBA ¼ T y
AB is a 30 × 30 matrix, while TAC ¼ T y

CA and
TBC ¼ T y

CB are 30 × 12 matrices. Here, each non-zero matrix
element is J±. On symmetry grounds, we can write the general
form of the ground state, GSj i, as,

GSj i ¼ a
X30
n¼1

ψAn

�� �
þ b

X30
l¼1

ψBl

�� �
þ c

X12
r¼1

ψCr

�� �
; (8)

where we have only three real coefficients, a, b and c for ψAn

�� �
,

ψBl

�� �
and ψCr

�� �
, respectively (See Supplementary Note for detailed

discussion for the perturbative method.). The energy correction is
E(a, b, c)= 〈GS∣H ± ∣GS〉.
First, considering J± < 0, the Lagrange multiplier method leads

to a ¼ b ¼ ð1þ
ffiffiffi
6

p
Þc=5 for the ground state. Next, if J± > 0,

E(a, b, c) is minimized when a=− b and c= 0. Remarkably, we
have no degeneracy in either cases. Thus, any small quantum

Fig. 4 Two distinct groups of octupolar ground states on an icosahedron for antiferromagnetic Jzz based on the symmetry ground. a 60
degenerate states with no 5-fold rotational symmetry. b 12 degenerate states with 5-fold symmetry. Z-axis is the 5-fold rotational symmetry
axis in (b). c, d Top view along Z-axis in (a, b), respectively. (c) Mirror reflection with respect to σ plane containing Z-axis swaps the octupoles
on the sites Q and R. This leads to another degenerate state which lacks the 5-fold symmetry. d The state depicted in (b) possesses 5-fold
rotational symmetry along Z-axis.
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fluctuation given by H± leads to a ground state with particular
superpositions of degenerate states (See Supplementary Note for
detailed derivation).
To capture the entanglement, we compute the entanglement

negativity of the state defined by N E ¼
P

ið λij j � λiÞ=2, where λi
are all eigenvalues of the partial transpose of the density matrix
of the ground state, ρ78. N E ¼ 0 if ρ is separable, while N E > 0
for an entangled state. For the icosahedron shell, N E is
computed by partitioning 12 vertices into two hemispherical
region (one of them is highlighted as the blue shaded region in
the inset of Fig. 5). Figure 5a illustrates the entanglement is
instantaneously generated for non-zero J±.
The quantum fluctuation effects originated from J±± and J±z

appear in higher-order. In detail, let D and PD be the subspace of the
degenerate ground states of the Isingmodel (either Jzz < 0 or Jzz > 0)
and the projection operator to D, respectively. For additional terms
in the Hamiltonian, say H ± ± ¼

P
hi;ji½J ± ± Σ

þ
i Σ

þ
j þ h:c:� or

H ± z ¼
P

hi;ji½J ± zΣ
þ
i Σ

z
j þ h:c:�, we have PDH±±PD= PDH±zPD= 0. This

is because J ±± and J±z terms do not preserve the total Σz. Thus, the
degeneracy is not lifted at the first-order in perturbation theory. This
implies that the quantum fluctuations originated from the J++ or
J+z terms appear in higher-orders, for instance PDH ±±QDH±±PD,
where QD= 1− PD. On the other hand, J± terms in the Hamiltonian
lift the degeneracy at the first-order because PDH±PD ≠ 0. As a result,
compared to the J± term, J±± and J±z select a distinct linear
superposition of the degenerate subspace of an icosahedron shell.

Influence of the inter-icosahedron interaction
Now let us discuss the inter-icosahedral interaction effect. See
Supplementary Fig. 3 for the case of the ferromagnetic intra-
icosahedron Ising interaction. Here, we consider the case of
antiferromagnetic intra-icosahedron Ising interaction. Based on the
self-similarity of the icosahedral quasicrystal, we have an enlarged

icosahedral structure composed of 12 icosahedron clusters. Taking
into account the nearest neighboring sites between the clusters, the
interacting sites between the clusters form triangles. These are
shown in Fig. 6a, b drawn as orange lines. Since these triangles are
not shared, the energy for inter-clusters interaction should be
minimized for each triangle. We also note that only 5 sites out of
12 sites in an icosahedron cluster interact with neighboring sites that
belong to other icosahedron clusters. Hence, for each icosahedron,
there are 7 sites which do not interact with other clusters. The
configurations of these 7 sites are only determined by the local intra-
cluster interactions. Let us consider the inter-clusters Ising interaction,

Hinter ¼
X
hi;ji

JinterΣ
z
i Σ

z
j : (9)

For both Jinter > 0 and Jinter < 0, the inter-cluster interactions
reduce the whole degeneracy of the enlarged icosahedron
structure from 7212, that is composed of 12 icosahedrons. Figure
6a, b show the examples of the ground state configurations of
ferromagnetic and antiferromagnetic inter-cluster Ising interac-
tion, respectively. For instance, when Jinter < 0, every octupole
connected by the orange lines should point either outside or
inside of their icosahedron clusters (See the middle and right
panels of Fig. 6a). On the other hand, for Jinter > 0, additional
frustration effect exists on each orange triangle. Figure 6c shows
an example of such geometrical frustration due to Jinter > 0. In this
case, there are more number of frustrated configurations. We
emphasize that such geometrical frustration emerges in the
enlarged self-similar icosahedral structures in the quasicrystal.
Remarkably, even for the ferromagnetic inter-cluster interaction,

the degeneracy of each icosahedron shell is reduced due to the
inter-cluster interaction. Once the configuration of a single
icosahedron shell is fixed, the configurations of the nearest
neighboring icosahedron shells (five of them) are also partially
determined due to the ferromagnetic inter-cluster interaction. For

Fig. 5 Quantum fluctuation effect of nonzero J±. a For nonzero J±, the entanglement negativity of the ground state, N E, becomes finite. The
blue shaded region of the icosahedron, as depicted in the inset, defines the sub-Hilbert space. Red arrows accentuate the local z axes. When
J±= 0 (represented by the triangle), the state is separable. For J± > 0 (square, (b)), the ground state is composed of the states in A and B subsets
without 5-fold symmetry, with equal probability but opposite sign. When J± < 0 (circle, (c)), all 72 degenerate states are combined in the
ground state, as shown in (c).
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instance, if the icosahedron shell has the configuration belong to
C group whose inter-cluster interacting sites are all pointing out of
the icosahedron (red circles in Fig. 7), then at least two inter-
cluster interacting octupoles in each neighboring icosahedron also
points out of the icosahedron. This reduces the allowed manifold
of the antiferromagnetic ground states on the neighboring
icosahedron clusters. Refer to Fig. 7 for a specific example of this
reduction.

One may ask the influence of the quantum fluctuation under
the inter-icosahedron interaction. To address it, we consider
∣Jinter∣ > Δwhere Δ is the gap of the first excited state of an isolated
icosahedron shell with intra-shell J±. See Supplementary Fig. 4 for
detailed information of the gap. First of all, for both cases of the
sign of Jinter, it selects particularly degenerate manifold among 72
states. This is because the inter-shell interaction (partially) selects
the configurations of the sites in neighboring icosahedrons. For

Fig. 7 An example of the frustration on an icosahedron due to the ferromagnetic inter-cluster interactions. a For simplicity, we slice an
icosahedron into 4 layers, each layer contains 1, 5, 5 and 1 octupoles, respectively. Red (silver) circles represent the octupoles pointing outside
(inside) of the icosahedron shell. Half circles emphasize two-fold degrees of freedom. Here, we assume that due to the inter-cluster
interactions, two neighboring octupoles are fixed as pointing outside of the icosahedron shell. Then, the octupole located at the bottom in
the figure should be pointing inside of the icosahedron. There are three kinds of the configurations on the 5 sites that are interacting with the
other icosahedrons. Configuration (b) which has all pointing outside configuration belongs to the C group, and hence it determiines a
configuration in other sites. On the other hand, other two kinds of configurations have further frustrated degrees of freedom. In detail, the
configuration (c) admits 3 × 2= 6-fold degeneracy, while the configuration (d) admits 3+ 2= 5-fold degeneracy. In total, only 12 fold
degeneracy is survived under the inter-cluster interactions.

Fig. 6 Examples of the classical octupolar configurations when the intra Ising interaction is antiferromagnetic, Jzz > 0. a Jinter < 0 and (b)
Jinter > 0. The orange lines are drawn for emphasizing the inter-cluster interactions. a For each orange triangles, three octupoles should point
either all-outside or all-inside of their icosahedron. c An example of the degenerate ground state due to the frustration of the
antiferromagnetic inter-cluster interactions. For Jinter > 0, three octupoles for each orange triangles should satisfy 2-in-1-out or 1-in-2-out,
which leads to the geometrical frustration on the enlarged spatial scale.
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instance, for Jinter < 0, each separated orange triangles in the right
panel of Fig. 6a should admit either all-in- or all-out octupole
configurations. This reduces the ground state manifold of the
enlarged icosahedral structure from 7212 dimensions, which is
realized in the absence of inter-shell interaction. Note that without
quantum fluctuations on each icosahedron shell, the allowed
ground states could be written as the product state i.e.

GSj i ¼ �12
i¼1 ψ

ðiÞ
ki

���
E
. Here, 1 ≤ ki ≤ 72 is the index of 72 kinds of

allowed antiferromagnetic frustrated ground configurations on an
isolated icosahedron shell. However, importantly, only certain set
of ki is selected if we take into account Jinter.
To address quantum fluctuations, let us consider the intra-shell,

J± term. We neglect the inter-shell interaction J±, because it would
be much smaller than both inter-shell Ising interactions and intra-
shell quantum fluctuations. Since intra-shell J± term only flips two
neighboring octupoles in the same icosahedron shell, two ground
states, say GSaj i and GSbj i such that 〈GSa∣H±∣GSb〉 ≠ 0 have to be
obtained by flipping two neighboring octupoles in an icosahedron
shell, keeping all other octupoles unchanged. However, for
Jinter < 0, if we flip an octupole on an icosahedron shell that is
interacting with neighboring icosahedron shells, then the octu-
poles in different icosahedron shells also should be flipped due to
the inter-shell interaction. Thus, GSaj i and GSbj i should share the
same configuration of the 60 inter-shell interacting sites. Hence,
one can classify the state that are mixed due to J± in terms of the
configurations of the 60 inter-shell interacting sites.
Figure 8 explains how the ground states are chosen in the

presence of both the inter-shell interactions and intra-shell

quantum fluctuations. Although we assume Jinter < 0, here, the
similar argument would be applicable for Jinter > 0 along with
additional frustration effects on the orange triangle. Note that Jinter
restricts the possible octupole configurations on each separated
triangles as shown in Fig. 8a. Here, blue and red triangles
represent all-in-, and all-out-pointing octupoles configurations, as
exemplified in the right panel of Fig. 8a. Thus, the classical ground
states are classified in terms of the configurations of these 20
triangles, red or blue colored. Based on the duality of the
icosahedron, the configurations of 20 triangles are mapped onto
the sites in the dodecahedrons as shown in Fig. 8b. In detail, the
red and blue dots in Fig. 8b correspond to the red and blue
triangles in Fig. 8a. The dashed lines are drawn if there are the
sites connected by the intra-shell interactions in neighboring
triangles. The Hilbert space is factorized into many sub-Hilbert
spaces classified in terms of the configurations of the dodecahe-
dron i.e. inter-shell interacting 60 sites, and hence the Hamilto-
nian, H is now block diagonalized as shown in Fig. 8c. The ground
state is originated from the largest dimensional sub-Hilbert space.
In Fig. 7a–c, we see that the maximal dimension of a sub-Hilbert
space is 520 when all the icosahedron shells correspond to the
case of Fig. 7c. Indeed, Fig. 8b shows two examples of the
doedcahedrons correspond to the 520-dimensional sub-Hilbert
spaces. Figure 8c represents these maximal dimensional sub-
Hilbert space as the green squares. Furthermore, since the
quantum fluctuation is intra-shell interaction, the ground state
of the sub-Hilbert space is given by the product state of the
ground state of each icosahedron shell. The intra-shell J±
Hamiltonian on an icosahedron shell is given by 5 × 5 matrix

Fig. 8 Selection of the ground state in the presence of both Jinter and intra-shell quantum fluctuation. a Geometrical structure of the inter-
shell interactions (orange lines). For Jinter < 0, ferromagnetic Ising inter-shell interactions, each separated triangles of orange lines should admit
either all-in- or all-out octupole configurations as exemplified in the right panel. In the left panel, we assign red and blue colors on some
triangles as the all-in-, and all-out-pointing configurations, respectively. b 60 inter-shell interacting sites and their interactions mapped onto a
dodecahedron, which is a dual of the icosahedron. Here, red and blue dots correspond to the red and blue triangles including three octupoles
in (a). Dashed black lines connect two dots if these two dots (originally red or blue triangles) contain the sites belonging to original single
icosahedron shell. c Block diagonalized Hamiltonian including intra-shell Jzz, J± and inter-shell Ising interaction, Jinter. The blocks of the
Hamiltonian are classified in terms of the configurations of the 60 inter-shell i.e. the configurations on the dodecahedrons in (b). The maximal
dimension of the sub-Hilbert space is 512 which is much smaller than the total dimension, 7212 (the case for Jinter= 0). d Effective Hamiltonian
for the quantum fluctuation on μ-th icosahedron for ν-th 512-dimensional sub-Hilbert space, written as Hμ;ν

± . The basis are chosen as the

5-types of configurations on a shell (See Fig. 6(c)). e The ground state of Hμ;ν
± for J± > 0 for μ-th icosahedron, gsðνÞμ

���
E
. Here, ϕ ¼ ð1þ

ffiffiffi
5

p
Þ=2 is the

golden ratio. The ground state defined in the enlarged icosahedral structure is classified by the configurations of 60 inter-shell interacting

octupoles as GSðνÞ
�� �

¼ �12
μ¼1 gsðνÞμ

���
E
.
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which is much smaller than the case of the isolated icosahedron
shell, 72 × 72 matrix. Explicit forms of the H± matrix and the
ground state (assuming J± > 0) is shown in Fig. 8d, e, respectively.
Here, ν and μ are the indices of the sub-Hilbert space and
icosahedron shells, respectively. ϕ ¼ ð1þ

ffiffiffi
5

p
Þ=2 is the

golden ratio. As a result, we have a ground state given

GSðνÞ
�� �

¼ �μ¼12
μ¼1 gsðνÞμ

���
E
for each ν-th sub-Hilbert spaces. Thus, we

have large degeneracy of the ground states. Note that such
degeneracy would be lifted by the inter-shell J± that is small
compared to other parameters in general. We emphasize that the
inter-shell interactions reduce the ground state manifold, and
hence the ground state on each icosahedron shell is changed.
Lastly, let us briefly explain the potential influence of the further

neighbor interactions. First, further inter-cluster interactions
between neighbors affect the sites that do not interact with
neighboring icosahedrons. This further reduces the degeneracy.
Second, isolated icosahedron clusters also begin to interact via
further neighbor interactions and should be considered. Never-
theless, we suspect that our discussion of the nearest neighbor
inter-cluster interaction can be applied analogously to investigate
the configurations of the more extended icosahedral structures
based on the repetitive self-similar structure of the quasicrystal.

DISCUSSION
In summary, our findings indicate that magnetic quasicrystalline
systems contain multipolar degrees of freedom, which arise from
the interplay between spin-orbit coupling and CEF splitting of the
icosahedral point group symmetry. Despite extensive prior
research on magnetic properties in quasicrystals, the presence
and significance of multipolar degrees of freedom have yet to be
identified. In our study, we demonstrate for the first time that
noncrystallographic point group symmetry can accommodate
unconventional degrees of freedom and we examine their
characteristics. The multipole degrees of freedom are clarified
for different values of J, depending on whether there is perfect
icosahedral symmetry Ih or five-fold symmetry C5v. Strikingly, it has
been demonstrated that pure octupolar degrees of freedom
emerge for J= 7/2 under Ih symmetry. In this case, the Kramers
doublet has zero expectation values for both magnetic dipoles
and quadrupoles, but the rank 3 tensors describing the octupole
degrees of freedom have nonzero expectation values. Based on
the symmetry transformation, we further clarify each component
of the pseudospin-1/2 in terms of magnetic octupoles as
discussed in Eq. (4). On symmetry grounds, we also derive the
spin Hamiltonian with four independent parameters. For anti-
ferromagnetic Ising model, magnetic frustration leads to 72
degenerate states for a single icosahedron. For a small but finite
J±, quantum fluctuations make a particular mixture of these
degenerate states. It makes different but non-degenerate ground
state for (anti-) ferromagnetic J±, producing a finite entanglement
even for arbitrary small J±. In addition, we show that the inter-
icosahedron interaction prefers a particularly degenerate manifold
among the 72 states in each icosahedron shell, and thus selects a
different mixture of the Ising states under the intra-shell
interaction J±. Depending on the inter-shell distances, possible
macroscopic degeneracy and entanglement of octupoles would
be an interesting future work. The self-similarity of the quasicrys-
tals would allow the real-space renormalization group approach to
explore potential quantum phase transitions. Note that such self-
similar structures are absent in the periodic approximants. Also,
the studies in the presence of J±± and J±z, which do not preserve
the total Σz, can be explored which we leave as a future work.
Such octupolar degrees of freedom can be found in rare-earth

based magnetic quasicrystals and approximants such as Au-Al
alloys, Cd-Mg alloys including rare earth ions and
etc6,49,62–64,68,71,79–85. However, many of the currently known

magnetic quasicrystals have problems with intermediate valences
and some mixed sites between non-rare earth atoms79,80,82,85–92. It
makes imperfect symmetries, allowing small deviations from
perfect non-crystallographic point group symmetries. Neverthe-
less, it is expected that advances in chemical synthesis techniques
could make the successful synthesis of finely controlled icosahe-
dral quasicrystals possible80,83,87,93, and it may give us a chance to
discover pure magnetic octupoles or even higher order multipolar
degrees of freedom and their intriguing physics.
To detect the pure octupolar orders, one can use the symmetry

allowed higher order time-reversal odd fields. For instance, one
can detect the z component of the octupoles by coupling to the
magnetic field tensor which has the same symmetry as
5B3z � 3BzðB � BÞ, where B is the external magnetic field and Bz is
its z component. Also, one can use the magnetostriction effect as
discussed in refs. 59,94,95.
Our work shows that the multipolar degrees of freedom arise

naturally in icosahedral quasicrystals. It breaks the ground in the
magnetism of quasicrystals and raises several interesting ques-
tions. One could explore magnetic quasicrystals looking for
hidden phases, magnetic frustration induced long-range entan-
glement such as spin liquids and non-Fermi liquids due to the
exotic Kondo effect6,96–99,99–101. Our study motivates to experi-
mentally find rare-earth icosahedral quasicrystals beyond conven-
tional magnetism in periodic crystals. The field of magnetic
quasicrystals is an interesting research area, and continuous
progress in both experimental and theoretical studies is leading us
to discover anomalous magnetic phenomena in quasicrystals.

METHODS
Exploration of the multipoles
To construct the crystal electric field (CEF) Hamiltonian, we utilized
the simplified point charge model. In this model, point charge
ligands are positioned on each of the 12 vertices of the
icosahedron that surrounds the rare earth atom. For the charge
impurity model, where the icosahedral point group symmetry
breaks down to the C5v, we place the charge impurity at the ligand
site on the local z-axis. The Stevens parameter is calculated using
numerical values of the Stevens factors and radial integrals of rare-
earth ions, as presented in102. Our method involves block
diagonalizing the CEF Hamiltonians and searching for possible
doublet eigenspaces and their corresponding multipolar degrees
of freedom. We determine the presence of higher-order multipolar
degrees of freedom by examining the vanishing of lower
magnetic or electric multipole operators. To construct the spin
Hamiltonian that is allowed by symmetry on the icosahedral
quasicrystal, we apply both the icosahedral point group symmetry
and time-reversal symmetry to the octupolar pseudospin opera-
tors. Further details are described in the Supplementary Methods.

Construction of the icosahedral quasicrystal
The icosahedral quasicrystal is constructed using the standard cut-
and-project scheme explained in detail in the Supplementary
Methods. To find the ground states of the Ising model under open
boundary conditions, we utilized the exact diagonalization
method and symmetry ground. Using quantum fluctuation, we
have conducted an analytical study on the entangled pure ground
state and computed its entanglement negativity on the single
icosahedron shell through the exact diagonalization method.
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