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Tuning topological phase and quantum anomalous Hall effect
by interaction in quadratic band touching systems
Tian-Sheng Zeng 1, Wei Zhu2,3 and Donna Sheng4

Interaction-driven topological phases significantly enrich the class of topological materials and thus are of great importance. Here,
we study the phase diagram of interacting spinless fermions filling the two-dimensional checkerboard lattice with a quadratic band
touching (QBT) point. By developing new diagnosis based on the state-of-the-art density-matrix renormalization group and exact
diagonalization, we determine accurate quantum phase diagram for such a system at half-filling with three distinct phases. For
weak nearest-neighboring interactions, we demonstrate the instability of the QBT towards an interaction-driven spontaneous
quantum anomalous Hall (QAH) effect. For strong interactions, the system breaks the rotational symmetry realizing a nematic
charge-density-wave (CDW) phase. Interestingly, for intermediate interactions we discover a symmetry-broken bond-ordered
critical phase sandwiched in between the QAH and CDW phases, which splits the QBT into two Dirac points driven by interaction.
Instead of the direct transition between QAH and CDW phases, our identification of an intermediate phase sheds new light on the
theoretical understanding of the interaction-driven phases in QBT systems.
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INTRODUCTION
Recently topological phases of matter in the band structure with
nontrivial topological Berry phase become an exciting research
area of modern physics, culminating in the experimental
observations of Haldane-honeycomb insulator1 and the quantum
anomalous Hall (QAH) effect in topological insulator.2 Generally
speaking, in such kind of systems with a nontrivial topological
invariant Chern number,3 exemplified by the integer quantum Hall
effect in the absence of magnetic field,4 time-reversal symmetry
(TRS) breaking of band structure is typically necessary. For
topologically trivial band structures with zero Chern number5–8,
it was proposed that the strong correlation between electrons can
also induce spontaneous TRS breaking at mean field level9,10 and
lead to QAH effect in Dirac semimetals. These interaction-induced
topological phases are interesting, since they can significantly
enrich the class of topological materials.11–13 However such
a mechanism is challenged by subsequent numerical simula-
tions,14–17 which do not support the interaction-driven QAH effect.
Alternatively, it has been identified that a quadratic band touching
(QBT) point has topological feature, and can be driven towards a
QAH phase with TRS breaking even under arbitrary weak
interactions, while strong interactions may lead to other compet-
ing phases.18,19

The theoretical prediction of such interaction-driven topological
phases,20–28 stimulates extensive studies by more rigorously
theoretical and numerical methods, including low energy
renormalization group approach in C4 symmetric checkerboard
lattice29–32 and bilayer graphene,33,34 first-principle calculations in
spin-dependent optical square lattice35 and halogenated hematite
nanosheets,36 and recently the unbiased numerical exact diag-
onalization (ED) diagnosis in both C4 symmetric checkerboard
lattice37 and C6 symmetric Kagome lattice.38 However, the stability

of the QAH effect in the presence of weak interaction has not
been settled. Based on the mean-field theory, the gap protecting
the QAH state is exponentially small for weak interaction, making
such a phase difficult to be identified. A recent density-matrix
renormalization group (DMRG) study finds a semimetal phase for
Kagome QBT systems with nearest-neighboring interactions,39

while adding further long-ranged interactions (V1 ~ V2 ~ V3) favors
a robust gapped QAH state.38 Thus, the weak interaction effect on
the QBT point remains elusive, because finite-size calculations are
incapable of detecting extremely small energy gap. Furthermore,
the issue of the quantum phase transition between the
interaction-driven topological phase and other phases is hardly
touched. While ED analysis points to a first-order phase transition
from the QAH phase to the charge density wave phase without
intermediate phase,37,38,40 the interesting scenario of intermediate
Dirac liquid phase in such QBT systems deserves to be explored by
applying controlled numerical methods.
In this work, we develop accurate numerical diagnosis for the

topological phases to address these challenge issues through the
state-of-the-art DMRG and ED simulations. A schematic diagram of
our main results is shown in Fig. 1 for interacting spinless fermions
occupying the topologically trivial checkerboard lattice with a
QBT. For weak interactions V < V1, by applying the Hellmann-
Feynman theorem, we demonstrate the emergence of interaction-
driven QAH phase whose topological properties are featured by
two degenerate TRS breaking ground states arising from a pair of
Kramers degenerate states with opposite chiralities and integer
quantized topological Hall conductances. Remarkably, for inter-
mediate interactions V1 < V < V2 we establish the existence of a
new gapless critical phase as a sublattice bond-ordered nematic
phase, while the nematic CDW phase appears in the strongly
interacting regime. Our comprehensive DMRG and ED studies can
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access large system sizes to establish the stability of the QAH state
with weak interaction at the thermodynamic limit, and illustrate
the interaction controlling of the anomalous dissipationless Hall
transport properties of the QBT systems through opening and
closing of the energy excitation gap.

RESULTS
Hamiltonian
We consider the spinless fermions in the topologically trivial
checkerboard lattice model,

H¼ �t
P
r;r0h i

ayr br0 �
P
r;r0h ih i

tar;r0a
y
r ar0 þ tbr;r0b

y
r br0

� �

þh:c:þ V
P
r;r0h i

nar n
b
r0 þm

P
r

nar � nbr
� �

:
(1)

Here ar, br′ are the particle annihilation operators for sublattices A,
B respectively, and nar ¼ ayr ar ; nbr ¼ byr br the particle number
operators at site r. 〈…〉 and 〈〈…〉〉 denote the nearest-neighbor
and the next-nearest-neighbor pairs of sites on a checkerboard
lattice, respectively. As shown in Fig. 1, the hopping amplitudes
tar;r0 ¼ t0 for solid lines and tar;r0 ¼ �t0 for dashed lines in sublattice
A, while tbr;r0 ¼ t0 for solid lines and tbr;r0 ¼ �t0 for dashed lines in
sublattice B. The single-particle dispersion hosts a QBT at (kx, ky)=
(π, π) with Berry flux ±2π, protected by TRS and C4 rotational
symmetry. Note that by adding a nonzero opposite shift δ ≠ 0 to

the hopping taðbÞr;r0 ¼ taðbÞr;r0 þ ð�Þδ of both sublattices, the system H

breaks C4 symmetry down to C2 symmetry, and the QBT splits into
two Dirac points with gapless particle-hole symmetric dispersions.

QAH phase
We first address the critical issue if a robust QAH effect can be
stabilized with the presence of weak and nearest interaction. We
begin with studying the ground state properties up to a maximum
system sizes Ns= 32 based on ED. The geometry hosts both C4
point-group symmetry and TRS, and we find an exact twofold
ground state degeneracy ψ±j i at momentum K= (0, 0) below
excitation continuum for systems with finite interaction V. This pair
of degenerate eigenstates are also eigenstates of C4 rotation with
eigenvalues ±i, respectively, which serves as important evidence
of TRS breaking as long as the energy excitation gap remains open
for large systems. In order to illustrate two TRS spontaneously
breaking states with opposite chiralities, we consider the system
response to the TRS breaking perturbation hopping phase
eiϕayr br0 þ h:c: to the nearest-neighbor A and B sites (the phase
ϕ is a tiny detecting flux per plaquette for detecting QAH order).
From the Hellmann–Feynman theorem,41,42 we can derive the TRS

breaking chiral bond current Jr ¼ i ayr br0 � byr0ar
� �

between

nearest-neighboring sites from the linear response of the ground
state energy, as

ψ±h jJr ψ±j i ¼ 1
2Ns

∂E± ðϕÞ
∂ϕ

����
ϕ¼0

; (2)

where E± ðϕÞ ¼ ψ±h jHðϕÞ ψ±j i. As indicated in Fig. 2a, we can see
ψþ
� ��Jr ψþ

�� �
=� ψ�h jJr ψ�j i≃ 0.067, implying the opposite chiral-

ities of TRS breaking for weak interactions. To extract the
topological invariants of the doublet ground states for any value
ϕ, we utilize the twisted boundary conditions ψðϕ; r þ NαêαÞ= ψ
(ϕ;r) exp(iθα) where θα is the twisted angle in the α (x or y)-
direction. The system is periodic when one flux quantum θα= 0→
2π is inserted. Meanwhile, the many-body Chern number of the
ground state wavefunction ψ±(ϕ) is defined as43,44

C± ðϕÞ ¼
Z

dθxdθy
2πi

∂ψ±

∂θx
j ∂ψ±

∂θy

	 

� ∂ψ±

∂θy
j ∂ψ±

∂θx

	 
� �
:

We identify the topological invariants C±(ϕ)= ±1 for the twofold
ground states ψ± ðϕÞj i under an infinitesimal TRS breaking phase
ϕ � 1. Due to the adiabatic connection between the ψ±(ϕ) and
ψ±(0) as shown in Fig. 2a, we can obtain the topological invariants
for these doublet states C±= C±(ϕ→ 0)= ±1. On the contrary, for
strong interactions, we find that the expectation value of Jr in the

Fig. 1 Phase diagram of spinless fermion at half-filling in the
topologically trivial checkerboard lattice with a QBT point, as the
nearest-neighboring interaction V increases. The two sublattice sites
A, B are labeled by blue and red colors, respectively. Please see the
main text for the definition of order parameters

Fig. 2 Numerical diagnosis of QAH phase. a The doublet ground state energies E±(ϕ), in response to the vanishingly small TRS breaking
perturbation term, as a function of the phase ϕ. The inset depicts the TRS breaking hopping phase in the anti-clockwise direction per
plaquette between nearest-neighboring pairs. b Infinite DMRG results for current-current correlations versus distance for different cylindrical
widths Ly= 2Ny. c The adiabatic charge pumping under the insertion of flux quantum θy. The parameters t′= 0.8t, δ=m= 0, and the
maximally kept number of states 3000
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ground state vanishes precisely, and the topological invariants
C±(ϕ)= 0, signalling a topologically trivial nematic CDW phase.
Indeed, the density structure factor S=
1
Ns

P
α;β

P
r;r0 ð�1Þαð�1Þβ nαr n

β
r0

D E
shows a strong peak (where α,

β∈ {A, B} denote sublattice indices, (−1)α= 1(−1) for α= A(B)) for
such a CDW phase.
To access larger system sizes to establish the stability of the

QAH, we exploit an unbiased DMRG approach using a cylindrical
geometry up to a maximum width Ly= 16 (Ny= 8). By randomly
choosing different initial states in DMRG simulations, we can
obtain two different ground states ψ±j i with degenerate energies
E+≃ E− and opposite chiral circulating loop currents per plaquette
ψ±h jJr ψ±j i, from a DMRG algorithm allowing complex wavefunc-
tions. In Fig. 2b, we measure the current-current correlation
functions ψþ

� ��JrJr0 ψþ
�� �

between nearest-neighboring bonds r; r0h i
and r0; r00

� �
, with the distance r� r0j j. For different system sizes,

the bond current long-range order parameter ψþ
� ��Jr ψþ

�� �
=

lim
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψþ
� ��JrJr0 ψþ

�� �q
for weak interactions persists to a finite value

at the large distance r � r0j j limit. Meanwhile in Fig. 2b, we also
characterize the topological nature of the ground state from its
topological charge pumping by inserting one U(1) charge flux
quantum θy= θ from θ= 0 to θ= 2π in the periodic y-direction of
the cylinder system based on the adiabatic DMRG45 in connection
to the quantized Hall conductance. Here we partition the lattice
system on the cylinder along the x-direction into two halves with
equal lattice sites. The transverse transfer of the total charge from
the right side to the left side in the x-direction is encoded by the
expectation value QðθÞ ¼ tr ρ̂LðθÞN̂L

� �
. NL is the particle number in

the left cylinder part, and ρ̂L the reduced density matrix of the
corresponding left part. Under the inserting of the flux θy= θ in
the y-direction, the change of Q(θ) indicates the transverse charge
transfer from the right side to the left side in the x-direction,
induced by the topological Hall conductances of the state ψ±j i.
From Fig. 2c, we obtain a nearly quantized transverse Hall
conductance C±= ΔQ=Q(2π)−Q(0)= ±1 for these two degen-
erate ground states ψ±j i. Again, for strong interactions, the
current-current correlation functions are vanishingly small, and
the charge pumping disappears, signaling the absence of a QAH
phase. Significantly, our results establish that any weak interaction
would drive the system into the QAH phase.

Intermediate phase
We turn to analyze the emergent intermediate phase between the
QAH phase and the nematic CDW phase. Figure 3a1 depicts the
evolution of the interacting many-body low energy spectrum.
Near the point V= V1, the doublet ground states of the QAH
phase undergo a level crossing with the twofold degenerate
excited levels. When the interaction V increases further, there
appears another level crossing near the transition around V= V2.
For V1 < V < V2, the doublet ground states host nonzero bond
orders Δr ≠ 0, which is calculated from the symmetry-breaking

perturbation response Δr= 1
2Ns

∂EðδÞ
∂δ

���
δ¼0

= ayr arþêx

���
���� ayr arþêy

���
���=

byr brþêx

���
���� byr brþêy

���
��� (The bonds ayr arþêx and ayr arþêy have opposite

signs and different magnitudes. Also, ayr arþêx =�byr brþêx and
ayr arþêy =�byr brþêy ). For example, we have Δr ~ 0.08 at V= 2.15,
as shown in Fig. 3a2. The nonzero bond order indicates the bond
nematic nature of the intermediate phase.
Meanwhile, we plot the evolutions of the current order

parameter Jrh i, sublattice bond order parameter Δrh i, nematic
CDW density structure factor S/Ns and the charge-hole gap Δc=
(E0(N+ 1)+ E0(N− 1)− 2E0(N))/2 as a function of V in Fig. 3b. For
weak interactions V < V1, Jrh i has a finite expectation value, and Δc

increases with the increase of the interaction strength, manifest-
ing the robustness of a gapped QAH phase. On the other hand,
both Δrh i and S/Ns take small values consistent with the properties
of a gapped QAH phase. When interaction V goes across V1, Jrh i,
Δrh i, and S/Ns experience a sudden jump, where Jrh i drops down
to a vanishingly small value of the order 10−4, and Δc begins to
decrease quickly, signaling the collapsing of a topological phase
(finite size scaling results for the Δc will be discussed below).
Simultaneously, Δrh i, and S/Ns jump to a finite large value. When
interaction further increases beyond the critical value V2, Δrh i
drops down to a vanishingly small value of the order 10−5, while
S/Ns undergoes another step jump to a larger value, where the
system becomes an insulating nematic CDW phase with a large
excitation gap as shown in Fig. 3a1.
As presented above, based on a given system size calculation,

we see the intermediate phase between V1 and V2 is associated
with a finite bond order Δrh i. To inspect properties of the phase in
the thermodynamic limit, we carry out a finite size scaling of bond
order Δr and nematic order δCDW = nar � nbr0

� �
= 2

Ns

∂EðmÞ
∂m . In Fig. 4, it

is found that Δr extrapolates to a finite value, but δCDW gradually

Fig. 3 Numerical ED results for spinless fermions at half-filling Ns= 2 × 4 × 4= 32, N= 16 in the checkerboard lattice with V= t, t′= 0.8t, δ=m
= 0. a1 The evolutions of the low energy spectrum as a function of V. Only the lowest five energy levels are shown. a2 The perturbation
response induced by δ. b The evolutions of Jrh i; Δrh i, S/Ns, Δc/4 as a function of V
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decreases down to a negligibly small value in the limit 1=N2
y ! 0.

Thus, our ED and DMRG methods provide a very strong evidence
for the existence of the intermediate topologically trivial bond-
ordered phase. Physically, the doublet states of the QAH phase
host opposite eigenvalues ±1 angular momentum in the presence
of C4 rotation symmetry and TRS, while both bond-ordered and
nematic CDW phase breaks C4 symmetry down to C2 symmetry. In
ref. 37, such an argument is used to claim a first-order phase
transition between C4 symmetric phases and C2 symmetric phases.
Our ED and DMRG study access much larger systems, which lead
to the discovery of a time-reversal symmetric intermediate bond-
ordered phase sandwiched in between QAH and CDW phases
(The maximal system size in our ED calculations is 2 × 4 × 4= 32,
which goes beyond the limit in ref. 37. The 2 × 4 × 4 system
respects both C4 symmetry and C2 symmetry, and hosts the QBT
point (π, π), which is unique and reduces finite-size effect. Our
DMRG study on larger system sizes also confirms the intermediate
phase and the two-step phase transitions, in agreement with our
ED study of 2 × 4 × 4 system size). At the mean-field level,18 one
can show that this phase is gapless with the QBT splitting into two
Dirac points (see Fig. 1). Moreover, we further provide strong
numerical evidences to support the gapless nature of the
intermediate phase, which point to the existence of Dirac cone
structure. First, we find that the finite-size scaling of the charge-
hole gap Δc in Fig. 5a gives a nearly zero value in the
thermodynamic limit, which implies the gapless single-particle

excitation nature. Second, the entropy dependence on the
cylinder length approaches an arch structure as indicated in Fig.
5b, and it can be fitted to the universal scaling function (up to an
additive constant depending on the cylinder width)46–48 SðxÞ=
c
3log

Lx
π sin

πx
Lx

� �
with the central charge c ≈ 2, as plotted in Fig. 5c.

The only deviation from the straight line fitting shown in Fig. 5c
appears at larger x values due to the convergence difficulty in
capturing the entanglement of a gapless system. The finite gap for
finite size systems shown in Fig. 5a can be understood as the
following. On the finite size systems, the available momentum
points in the Brillouin zone are discrete, such that the Dirac points
are not guaranteed to be exactly covered in our calculations and a
finite-size gap appears. Similarly, when experienced a small energy
gap, the central charge obtained from entropy behavior would
deviate from the ideal value c= 2 of free Dirac fermions.
Nevertheless, the finite-size scaling of the gap, and the entropy
scaling approaches the Dirac liquid behavior in the thermody-
namic limit, as indicated in Fig. 5a, c. These numerical results
indeed support that both the charge-hole gap Δc→ 0 and the
central charge c→ 2 as the cylinder width Ly= 2Ny increases.

Phase transition
To further study phase transitions, we exploit the finite DMRG
calculation on a cylindrical geometry up to a maximum width Ly=
16 (Ny= 8) and length Lx= Nx= 20. We measure five different

Fig. 4 Finite-size scaling of DMRG results for a nematic CDW order (the error bar ±0.04), b sublattice bond order (the error bar ±0.01) and c
transition point (the error bar ±0.05). All the parameters are the same as those in Fig. 6a–c

Fig. 5 DMRG results in the intermediate region V1 < V < V2 for a finite-size scaling of the charge-hole gap Δc (the error bar ±0.04); b the von
Neumann entanglement entropy S(x) for a given system size; c finite-size logarithmic scaling of entanglement entropy S(x) with different

cylinder widths Ny and lengths Lx, in comparison with the theoretical prediction SðxÞ= c
3log

Lx
π sin

πx
Lx

� �
. All the parameters are the same as those

in Fig. 4
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physical quantities of the ground state as a function of V: the
wavefunction overlap F(V)= ψðVÞjψðV þ δVÞh ij j (δV is as small as
0.1t), the entanglement entropy SL in the middle of the cylinder, in
addition to order parameters Δr, δCDW and Jr. The first-order
transition is characterized by the discontinuous behavior of these
physical quantities.
As shown in Fig. 6a–c, for V < V1, F(V) has a large value close to 1,

both SL and δCDW exhibit featureless properties, but Jr grows
slightly with the increase of V, implying the robustness of the QAH
phase. When V approaches a transition point V1, F(V) suddenly
drops down to a very small value close to zero, and both order
parameters Δr, Jr exhibit a sharp discontinuous jump near the
transition point. Similarly, SL starts to drop at V≃ V1, with a
discontinuous derivative ∂SL/∂V. These results are consistent with
a first order transition between the QAH and intermediate
phases.49,50 When the interaction V increases further close to V2,
δCDW undergoes a jump to a large saturated value close to 1, while
Δr gradually drops down to zero in the strongly interacting regime.
F(V) exhibits a minimum, sharpening as the cylinder width
increases from Ny= 4 to Ny= 8, while entanglement entropy SL
also drops down to a smaller value consistent with an insulating
phase at V > V2. These results are consistent with a first-order
transition into a CDW phase at V= V2.

DISCUSSION AND SUMMARY
In summary, we have numerically presented a solid diagnosis of
an interaction-driven spontaneous QAH phase in the checker-
board lattice with a QBT by turning on any weak interaction. Such
a diagnosis relies on finite size scaling up to wide systems (Ly= 20
lattice spacing) and uses detecting flux for the QAH. The QAH
phase hosts twofold ground state degeneracies with opposite
spontaneous TRS breaking behaviors, and a quantized Hall

conductance measured by Laughlin argument of charge pumping.
In particular, we demonstrate the existence of a bond-ordered
phase sandwiched between the QAH phase and the nematic CDW
phase, characterized by the sublattice bond order. The inter-
mediate bond-ordered phase points to the long-sought Dirac
liquid phase in the QBT systems.18,34 We believe that this work
would open a new route for the study of the possible competing
intermediate phases under the interplay of interaction and
frustration, and excite a more extensive investigation of the fate
of the QAH phases in many other systems, such as bilayer
graphene,33,34 and C6 symmetric Kagome lattice20 where an
intermediate gapless CDW phase was also proposed. Other future
directions include a study of the interplay of nearest-neighboring
and next-nearest-neighboring interactions, which may lead to rich
possibility and other competing phases driven by interactions.51

At experimental side, our work also suggests a practical way of
opening and closing the QBT gap, inducing quantized dissipation-
less transport currents by interactions.
In the preparation of this work, we become aware of a parallel

work, ref. 51.

METHODS
Exact diagonalization
We perform ED calculations on the model Eq. (1) with parameters as
indicated in the corresponding text and figure captions. In the ED
calculations, we study the many-body ground state of H at half-filling in a
finite system of Nx × Ny unit cells (the total number of sites Ns= 2 × Nx ×
Ny). The energy eigenstates are labeled by a total momentum K= (Kx, Ky) in
units of (2π/Nx, 2π/Ny) in the Brillouin zone.

Fig. 6 Numerical finite DMRG results in a cylinder checkerboard lattice with width length Lx= Nx= 20 at half-filling. The evolutions of F(V)=
ψðVÞjψðV þ δVÞh ij j, SL, δCDW, Δr and 〈Jr〉 as a function of V for different cylinder widths. (a1-a2) Ny= 4, Ly= 8, (b1-b2) Ny= 6,Ly= 12, and (c1-c2)

Ny= 8, Ly= 16. The dashed lines indicate the transition points. The parameters t′= 0.8t, δ=m= 0, and the maximally kept number of states
3620
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Density-matrix renormalization group
For larger systems we exploit both finite and infinite DMRG on the
cylindrical geometry. We keep the dimension of DMRG kept states up to
5600 to obtain accurate results (the truncation error is of the order 10−6).
This leads to excellent convergence for the results that we report here. The
geometry of cylinders is open boundary condition in the x-direction and
periodic boundary condition in the y-direction.
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