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Numerical investigation of gapped edge states in fractional
quantum Hall-superconductor heterostructures
Cécile Repellin1,2, Ashley M. Cook3, Titus Neupert3 and Nicolas Regnault4

Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond
Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical
setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry
a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a
system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal
symmetric) bilayer fractional quantum Hall system of Laughlin ν= 1/3 states. We show that the edge ground states are permuted
by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the
Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle
wider questions of edge phases and phase transitions in fractional quantum Hall systems.
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INTRODUCTION
The fractional quantum Hall1 (FQH) effect harbors a variety of
exotic topologically ordered quantum phases, from the well
understood Laughlin states all the way to states2,3 with non-
Abelian quasiparticles such as Majorana fermions and Fibonacci
anyons. The experimental exploration of these systems faces two
challenges: First, the desired more exotic topological orders, which
could be used, e.g., for universal quantum computation,4 can only
be accessed under extreme experimental conditions, as they are
protected by very small energy gaps. Thus, despite intense efforts,
definite experimental confirmation of the non-Abelian nature of a
FQH phase is still lacking. Second, the topological information is
encoded in degenerate ground states or the state of quasiparti-
cles, and is therefore intrinsically hard to measure and manipulate.
To overcome both of these obstacles, several recent studies

proposed focusing on more conventional FQH states, such as the
Laughlin ν= 1/3 state, and to add twist defects.5–8 Among the
various physical implementations of these twist defects, one
deliberately couples the edge states.9–14 In these proposals, the
topological excitations could be localized at domain walls of
differently gapped edge segments. Advantages of this approach
include the comparably large gap of the Laughlin ν= 1/3 state,
which protects the quantum state, and the localized nature of the
topological excitations, which facilitates their measurement and
manipulation. For example, refs.15,16 use parafermion excitations
at domain walls between magnetic and superconducting gapped
regions of FQH edges to build topological order akin to the Z3
Read-Rezayi state. Barkeshli subsequently pointed out that
topological information is also stored in a pair of counter-
propagating ν= 1/3 edge states that are fully gapped out by a
superconducting order parameter.17 The gapped edge, on which a
pairing between fractionalized quasiparticles is induced, has a well

defined quantized total charge that can take the values 0, 2e/3
and 4e/3 (modulo the Cooper pair charge 2e). This nonlocal
observable defined along the (closed) edge distinguishes three
topologically degenerate ground states of the edge. By appro-
priately coupling several gapped edges, one can in principle
manipulate their topological ground state.17 Another approach to
engineer parafermion excitations from Abelian topological order
relies on lattice defects and was recently implemented numeri-
cally in refs.18,19. The FQH edge states are also a convenient
system to study the bulk-boundary correspondence in topologi-
cally ordered systems. Unlike noninteracting symmetry protected
phases in two spatial dimensions, interacting integer and
fractional quantum Hall states can support several distinct edge
phases with different universal properties but the same
symmetries.20,21

While effective models (e.g., using a bosonized description of
the edge22,23) have permitted striking predictions at the edge of
topologically ordered systems, open questions remain which can
only be addressed by a microscopic approach. First, in the context
of the bulk-boundary correspondence, which boundary phase is
favored by certain microscopic interactions remains largely
unexplored (especially when non-abelian liquids are used as the
building blocks). As for localized edge modes, the braiding of non-
abelian excitations relies on the possibility to tunnel quasiparticles
through the bulk while keeping the edge gap open.10 This
hypothesis relies on the hierarchy of energy and length scales in
the system. Numerical simulations are necessary to achieve such
quantitative analysis, and have the potential to identify challenges
that could have been obscured by effective analytical models.
They seem indispensable as experiments are undertaking the first
steps to realize the ideas outlined above.24,25
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Here, for the first time, we undertake an extensive numerical
calculation of a FQH system coupled to a superconductor using
exact diagonalization. More explicitly, we consider a bilayer FQH
system, with magnetic field perpendicular to the layers, where the
orientation of the field for one layer is opposite to that for the
other layer. This is equivalent to a time-reversal symmetric
fractional topological insulator.26 This construction permits gap-
ping out of the edge states with singlet interlayer superconduct-
ing pairing. Our calculations are performed on a cylinder
geometry in which the bilayer-FQH droplet has two edges. To
make numerics feasible, we restrict our study to the subspace of
zero energy bulk and edge excitations of the Laughlin ν= 1/
3 state in each layer. These many-body quantum states being Jack
polynomials,27,28 we can perform an efficient evaluation of the
microscopic model matrix elements in the reduced basis. Our
setup can thus be straightforwardly generalized to study the
edges of other FQH model states with similar properties but richer
topological order (such as the Moore-Read state). It could also be
cast into the matrix product state framework,29–31 which should
provide access to larger system sizes.

RESULTS
Hamiltonian and effective Hilbert space
In the Landau gauge, a single-particle basis that spans the lowest
Landau level on a cylinder of circumference Ly is given by

ϕmðx; yÞ ¼
1

Ly‘B
ffiffiffi
π4

p ei
2mπy
Ly e

� 1
2‘2
B

x�
2πm‘2

B
Ly
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where ‘B is the magnetic length which we will set to unity in the
rest of the manuscript. We truncate the single-particle Hilbert
space of the cylinder by allowing for m to take integer values in
the range −NΦ/2 ≤m ≤+ NΦ/2 for some integer NΦ. Note that m is
either an integer or half integer depending on the parity of NΦ.
Here, m plays the role of both the y-momentum of the wave
function and at the same time determines the location of the
wave function along the x direction. This coupling of momentum
and position is enforced by the lowest Landau level projection.
We now consider a bilayer system, where the two layers are

distinguished by a spin index ↑, ↓ and the Hall effect in one layer is
opposite in chirality to the Hall effect in the other layer. This is the
case in so-called fractional topological insulators, where the labels
↑, ↓ may correspond to the physical spin and the spin-dependent
magnetic field is akin to the spin-orbit coupling. An alternative
scenario more relevant to traditional FQH experiments is one in
which ↑, ↓ label the carriers in two adjacent quantum wells, one
being electron-like and the other hole-like. A homogeneous
magnetic field gives rise to edge states in both quantum wells and
the direction of propagation in one quantum well is opposite to
that in the other quantum well. Our numerical study applies
equally well to each of these physical realizations, but we choose
to describe our results using the terminology of the fractional
topological insulator realization. In either case the single particle
eigenstates are

ψ"
mðx; yÞ ¼ ϕmðx; yÞ

ψ#
mðx; yÞ ¼ ϕ�

mðx; yÞ ¼ ϕ�mð�x; yÞ;
(2)

with −NΦ/2 ≤m ≤+ NΦ/2. This ensures that the system is invariant
under time-reversal symmetry T ¼ K iσy for spinful fermions,
where K is complex conjugation and σy is the second Pauli matrix
acting in spin space. Note that none of the topological features we
are interested in are protected by T . In fact, in the electron-hole
bilayer realization of the system, T is not the physical symmetry of
the system, but an artificial symmetry of the model that may be
broken in a microscopic realization.

In the Fock space spanned by the single-particle states ψ"
m and

ψ#
m, we consider a Hamiltonian of the form

Ĥ ¼ Ĥ2�body;" þ Ĥ2�body;# þ
Ps
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;

(3)

where H2−body,σ is the two-body interaction for fermions with spin
σ= ↑, ↓ and ĉym;σ creates an electron in state ψσ

m. For H2−body,σ we
use the pseudo-potential Hamiltonian with V1 being the only non-
zero pseudo-potential coefficient. The coefficients μm describe a
confining potential that is rotationally symmetric around the
cylinder axis. The operator N̂ ¼ N̂" þ N̂# measures the total
number of particles. A schematic representation of this setup is
sketched in Fig. 1.
Due to the presence of mean-field superconductivity, the

particle number is not conserved. To tune the system into a
regime with finite particle number density, the charging energy of
strength 1/(2C) has been added to the Hamiltonian. The two
parameters C and N0 permit tuning of the average number of
particles in the system. Finally, Δ0 is the overall strength of the
superconducting coupling while fm is the (dimensionless) variation
of the superconducting order parameter along the cylinder,
assuming a superconducting pairing potential that is rotationally
symmetric along the cylinder axis. We will further assume a
superconducting pairing potential that is nonzero only at the edge
of the FQH droplet. In the electron-hole bilayer realization of the
system, the term proportional to Δ0 takes the role of a charge
conserving backscattering term between the layers.
The Laughlin state edge and bulk quasihole excitations are the

exact zero energy states of the model interaction Ĥ2�body;σ at
filling ν= 1/3. Their corresponding wavefunctions have an
analytical expression on the cylinder geometry.32 Being Jack
polynomials, they can be conveniently decomposed into the
occupation basis.33 In ref. 34, a careful and detailed numerical
study of this state and its edge excitations was performed on the
cylinder geometry using a confinement similar to the μm term of
Eq. (3). In particular, the low energy spectrum (i.e., below the bulk
energy gap) for a finite size quantum Hall droplet has the
characteristic shape shown in Fig. 2a.
To make progress in the numerical evaluation of Hamiltonian

(6), we send the gap of the FQH state to infinity, i.e., we set V1→∞,
by projecting the Hamiltonian to the zero-energy subspace of H2

−body,↑+ H2−body,↓. This is the space of Laughlin quasiholes in each
layer. The densest state(s) in this subspace are the Laughlin FQH
states with a filling fraction of 1/3 per layer and spin. With this
projection to the Laughlin quasihole space in place, the Hilbert
space dimension is dramatically reduced. In a second step, we
diagonalize the chemical potential, superconducting, and char-
ging energy terms in this quasihole space.
The parameters 1/2C and N0 of the charging energy term are

used to control (i) the average number of particles in the droplet
and (ii) the energy difference to sectors with nearby particle
numbers. We choose these parameters by diagonalizing the
system in the absence of superconductivity. Note that N0 is not
equal to the particle number in the non-superconducting ground
state, because the μm term also contributes an energy cost that
depends on the particle number. We choose 1/2C and N0 such
that the ground state has a desired particle number ~N and the
lowest energy state in the sector with ~N þ 2 particles is
degenerate with the lowest energy state in the sector with ~N �
2 particles. The energy difference between the ~N and the ~N ± 2
sectors is chosen to be small enough that a moderate super-
conducting term can couple these sectors (as detailed in
Supplementary Note 2).
The problem defined by Hamiltonian (6) has two good quantum

numbers: these are the total spin measured by Ŝz ¼ 1
2 N̂" � N̂#� �
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(which also encodes the fermion parity) and the relative (angular)
momentum Ky ¼

P
i2" mi �

P
j2# mj , where mi and mj are the

quantum numbers of the occupied ↑ -spin and ↓ -spin states,
respectively, as defined in Eq. (2). In the electron-hole bilayer
realization of the system, Ŝz is the particle number operator.

Spectral evidence for the topological edge states
We present the spectral features associated with the model
defined by Hamiltonian (6) and sketched in Fig. 1: three low-
energy states protected by an energy gap. We choose a symmetric

confining potential μm ¼ mj j that is linear in the orbital space
index with a slope of 1 (which will serve as the unit of energy
throughout this paper), as shown in Fig. 1b.

Decoupled layers. We first study the spectrum of two decoupled
layers, i.e., in the absence of superconductivity when Δ0= 0, which
is shown in Fig. 2b. It can be understood as a combination of two
independent spectra of a confined Laughlin ν= 1/3 state on a
cylinder with a full edge structure as displayed in Fig. 2a. In the
presence of the linear confining potential μm ¼ mj j, the Laughlin
state on the cylinder has a characteristic spectral feature as a
function of Ky: focusing on a single layer with N/2 particles
(assuming N even), the ground state has Ky= 0. The lowest lying
excitations appear in the momentum sector Ky= ±N/2. δE denotes
the energy difference between these states and the ground state.
Further low-lying states are located in the sectors Ky= nN/2, n 2 Z.
The lowest lying states in the other momentum sectors are higher
in energy, giving rise to an arc-like structure in the spectrum, as
observed in Fig. 2a. These arcs are highlighted by the shaded
region in Fig. 2. The lowest states at momenta Ky= nN/2, n 2 Z are

Fig. 2 Spectra of Hamiltonian Eq. (3) on a cylinder with circumfer-
ence Ly=‘B ¼ 15:0, NΦ= 21 flux quanta, 1/(2C)= 0.256271, N0= 30,
and a linear symmetric chemical potential μm as shown in Fig. 1b. a
Spectrum of a single layer of the cylinder with 6 fermions. Energies
are shifted such that the ground state energy is zero. Shaded areas
are a guide for the eye showing the ‘arcs’ in the relative momentum
Ky arising from the edge states of the Hall droplet. The inset is a
zoom on the low lying state within the gray box, showing the
energy difference δE between the first excited state and the ground
state. b and c are spectra for the full double layer with (b) Δ0= 0
while in (c) Δ0= 2.1 with Norb,sc= 16 superconducting orbitals. Blue
figures give the number of states in the circle. In (c), the
superconducting gap in the edge states is apparent from the three
topological “ground states” moving below the bottom of the next
arc. Orange states have total spin Sz= 0, gray states Sz= 1, and
states with higher spin only appear above this energy window. Both
spectra symmetrically extend to Ky→−Ky

Fig. 1 Schematics of the physical geometry and the one used for
the numerical investigation. a Fractional topological insulator
heterostructure in which carriers with spin up and down (red and
blue) form a fractional quantum Hall state with opposite chirality.
Proximity to superconducting reservoirs (yellow) induces a super-
conducting gap in their edge channels. To study the Josephson
effect, relative phase φ between the left and right superconducting
order parameter is included. b When imposing periodic boundary
conditions along the edges, resulting in a cylinder geometry, each
edge carries a topological degree of freedom. The boundary
conditions can be twisted by inserting a flux ϕ into the cylinder
for spin up electrons and −ϕ for spin down electrons. In the Landau
gauge orbitals are localized along the cylinder, where we consider
Norb,n and Norb,sc normal and superconducting orbitals, respectively.

The typical separation between orbitals is
2π‘2B
Ly
, where Ly is the

cylinder perimeter. The droplet is confined by a linear potential μm. c
With the counter-propagating edges gapped out, the bilayer FQH
state on the cylinder is topologically equivalent to a single layer FQH
state on a torus, where the fluxes ϕ and φ run through its two
noncontractible cycles and can be used to explore its topological
ground state degeneracy. It is thus topologically equivalent to the
ground state degeneracy of the gapped edge modes

Numerical investigation of gapped edge states in FQH-SC
C Repellin et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2018)  14 



those where the droplet has been rigidly moved by n orbitals,
giving rise to an extra energy cost of about nν due to the higher
chemical potential of the now occupied orbitals in comparison to
the emptied ones. Since the center of mass of the wave function is
moved by n orbitals, the change in center of mass momentum is
Ky= nN/2. The lowest excitations in other momentum sectors are
local edge excitations or combinations thereof. Since they increase
the size of the Hall droplet, they cost more energy than the rigidly
moved Laughlin state.
Within these considerations, we can understand the spectrum

of Fig. 2b as a finite-size representation of a collection of gapless
FQH edge states. In particular we can understand the low-energy
structure as superpositions of the states in the two layers ↑, ↓. We
denote by σ; 0j i, σ; ±N=2j i the three lowest states in each of the
σ= ↑, ↓ sectors which occur at momenta 0 and ±N/2. The state
"; 0j i � #; 0j i is then the nondegenerate ground state labelled by
a blue “1” in Fig. 2b. The states "; ±N=2j i � #; 0j i and "; 0j i �
#; ±N=2j i are four degenerate states at momenta Ky= ±N/2
found at the bottom of the first arc in Fig. 2b at energy δE above
the ground state. The states ";N=2j i � #;N=2j i and ";�N=2j i �
#;�N=2j i are degenerate at Ky= 0 and labelled by a blue “2” in
Fig. 2b. They occur at exactly 2δE above the ground state.

Gapping the three-fold ground state. We now compare the low-
energy structure of the system with zero (Fig. 2b) and non-zero
superconducting pairing in the outer orbitals (Fig. 2c). The states
that were at 2δE in the former system moved substantially below
the ones formerly at δE. Thus, the spectrum cannot be
decomposed into that of two independent layers anymore.
Superconductivity coupled the layers. Closer inspection also
reveals a tiny but nonvanishing lifting of the degeneracy between
the two lowest-lying excited states at Ky= 0. We interpret the
three lowest states in the Ky= 0 sector as the quasi-degenerate
topological states of the edges and the gap above them as the
superconducting gap induced in the counter-propagating FQH
edge modes.
The three-fold ground state degeneracy of the gapped edge

states can be understood as follows. By introducing a gap, the
superconducting coupling turns the bilayer quantum Hall state
with edges into a single-layer quantum Hall state on a manifold
without boundary. As sketched in Fig. 1c, this manifold is
topologically equivalent to a torus, where the space between
the two layers becomes the interior of the torus. This is in line with
the opposite sign of the Hall conductivity in the two layers,
because the normal to the torus surface is also reversed. On the
torus, a Laughlin state at filling ν= 1/3 has a three-fold ground

state degeneracy. This degenerate ground state is thus topologi-
cally equivalent to the three ground states we observe in the
superconducting bilayer system. Fractional quantum Hall ground
states on the torus can be manipulated by inserting flux through
the holes of the torus, see Fig. 1c. This will be demonstrated later
via manipulating the flux ϕ and the Josephson phase φ,
respectively.
More relevant to the physics of the bilayer heterostructure is an

interpretation of the ground state degeneracy in terms of Cooper-
paired Laughlin quasiparticles. Due to the mean-field super-
conducting order parameter, the particle number is only defined
modulo 2. Assuming that the low-energy Laughlin quasiparticles
(of charge e/3) that comprise the edge mode are Cooper-paired,
this leaves three nonequivalent configurations for the charge of
one edge: 0, 2e/3, and 4e/3—each modulo 2. Since the total
number of particles of the system is quantized to integers, the two
superconducting edge states cannot independently support any
of these charge configurations. Rather, they either both have
charge 0, or the left edge has charge 2e/3 and the right edge 4e/3,
or vice versa. We thus expect a total of three nearly degenerate
topological ground states from this consideration as well, in line
with our numerical observation.
Beyond the two special cases shown in Fig. 2b, c, we have

performed an extensive study of the spectral properties when
varying the system parameters. Some results are given in Fig. 3 for
the largest system size that can be reached. Another system size is
discussed in Supplementary Note 1. We fix the total number of
superconducting orbitals Norb,sc, equally split between the two
ends of the cylinder. The selected value is a compromise between
fully covering the edge modes and a large enough non-
superconducting region of Norb,n consecutive orbitals where an
incompressible liquid can develop (as depicted in Fig. 1b). For
each perimeter Ly the charging energy parameter 1/2C is
optimized as discussed in Supplementary Note 2 (N0 being fixed
for the full diagram to N0= 30). Instead of using Ly for the vertical
axis, we have plotted the data as a function of the approximate
width of the normal region, i.e., 2π‘

2
BNorb;n

Ly
. Such a quantity is more

natural when comparing different system sizes.
In Fig. 3a, we show the energy gap above the three lowest

energy states. We set the gap to zero if these three states do not
have Ky= 0. We also provide s, the ratio between the energy
spread of the three lowest energy states and the gap as previously
defined. We cap s to one or set it to one if the gap is zero or the
three lowest energy states do not have the expected quantum
numbers. To be able to claim that we have a low energy manifold
made of these three states separated by a gap from the higher

Fig. 3 Characterization of the low-energy spectrum of Hamiltonian Eq. (3) as a function of 2πNorb;n‘
2
B=Ly and the strength of the pairing

potential Δ0. 2πNorb;n‘
2
B=Ly approximates the physical distance between the superconducting regions and can be tuned by varying Ly. The

charging energy is optimized for each Ly using the procedure defined in Supplementary Note 2. Other parameters are identical to those of Fig.
2. a Gap between the three lowest states in the Ky= 0 sector and the next excited states. Gray color indicates that the three lowest states do
not have Ky= 0. b Spread of the three lowest states in the Ky= 0 sector as indicated in Fig. 2c divided by the gap. Gray color indicates the
region in which the ratio exceeds 1 or where the three lowest states do not have Ky= 0. c The largest eigenvalue q of the charge imbalance
operator defined in Eq. (3) in the space of the tree lowest states (at Ky= 0). Gray color is used if the three lowest states do not have Ky= 0. d
The difference r between the energy of the second lowest eigenstate at Josephson phases φ= 0 and φ= π, normalized by the spread and
each time measured with respect to the ground state energy, as defined in Eq. (6). The closer r gets to 1, the better can the 6π Josephson effect
be observed. The gray color has the same meaning as in (c)
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energy excitations, we need s < 1. The smaller s is, the closer to an
exact degenerate manifold we are. As can be observed in Fig. 3b,
we have a large region where s is small, beyond a critical value of
Δ0 depending on Ly.

Charge distribution
In this section we study the charge distribution between the left
and right halves of the system. In a physical realization of the
system, two scenarios should be distinguished. If the two edges
are coupled to the same superconductor, which implies that they
are phase coherent, no quantized charge can be associated with
one edge alone. In contrast, if the two edges are gapped by
independent superconducting reservoirs, they carry independent
fractionally quantized charges. However, in this latter case the
charging energy is expected to lift the ground state degeneracy
and the states are not topological.
The observable that measures the charge disproportionation

between the two superconducting edges is given by

Q̂R � Q̂L ¼
X
σ¼";#

X
m

Z
dx

Z Ly

0
dy sgnðxÞ ´ ψσ

mðx; yÞ
�� ��2ĉym;σ ĉm;σ;

(4)

where the origin of the x axis coincides with the center of them=
0 orbital. It measures the charge difference between the left (x < 0)
and right (x > 0) half of the system. We compute the expectation
value of Q̂R � Q̂L in the manifold formed by the three lowest states
in the Ky= 0 sector, yielding a 3 × 3 matrix. Since the product of
left-right mirror and time-reversal symmetry leaves the system
invariant, the eigenvalues of this matrix are constrained to ±q and
0, where q is an a priori unspecified real number.
Figure 4 shows the evolution of q with the strength of the

superconducting pairing Δ0. For Δ0= 0, we can understand the
nearly quantized value q ≈ 4/3 by recalling that the three lowest
Ky= 0 states are comprised of one state for which both up- and
down-spin droplets are centered around m= 0 and a pair of states
in which they are both centered around m= ±1. The center of
charge of the former is located exactly at x= 0, while the latter
two states have an excess of charge ± q/4 right of x= 0 (i.e., x > 0)
in each layer, and the opposite deficit left of x= 0 (i.e., x < 0). The
operator Q̂R � Q̂L is thus diagonal in this basis, with respective
eigenvalues 0, ±q. In the thermodynamic limit, the x > 0 excess
charge in the latter single layer states is equal to the quasiparticle-
excitation charge ± 1/3, summing up to an expectation value q=
4/3 of Q̂R � Q̂L. In the absence of superconductivity, the relevant
length scales are the perimeter Ly and the width of the droplet
2πNorb‘

2
B=Ly (where Norb ¼ 3~N=2� 2). The charge quantization will

not be clearly observed unless both these length scales are large
compared to the correlation length of the ground state (around
1:4‘B for the ν= 1/3 Laughlin state35). In the inset of Fig. 4, we
indeed observed a nearly quantized q≈4/3 when tuning the value
of Ly to respect this criterion (obtained for Ly=‘B ¼ 10:5 and
2πNorb‘B=Ly ’ 9:6).
Upon introducing the superconducting term Δ0 ≠ 0, we observe

a rapid decrease in q, reaching (and passing) zero near the value
of Δ0 that leads to an optimal spread-to-gap ratio of the nearly
degenerate ground states. This can be observed by comparing Fig.
3b, c. In the latter, we present q as a function of Δ0 and the
physical distance between the superconducting edges. Two
trends can be observed: (i) In the lower right corner of this
parameter space, where the edges are in closest spatial proximity,
q is the smallest. (ii) In contrast, the largest values of q are found in
the upper left corner of this parameter space. However, in this
limit of small Ly, corresponding to a thin cylinder, the charge
distribution strongly varies with x even in the center of the
droplet. This yields contributions to the expectation value of

Q̂R � Q̂L from the center of the droplet x= 0, such that the
operator does not allow for measurement of edge properties only.
Given the limited system sizes we can study numerically, it is

hard to infer the behavior of the system in the thermodynamic
limit from this computation. We do, however, present data for one
other system size in Supplementary Note 1 which shares the
qualitative features discussed above with Fig. 3. In summary, we
observed that the charge imbalance of the three lowest states in
the Ky= 0 sector evolves from being nearly quantized to 4e/3 in
the limit of two decoupled layers to very small values when the
states are nearly degenerate and separated by a gap from other
excited states.

Spin-dependent flux insertion
To confirm the topological nature of the observed degenerate
ground states, we perform a numerical charge pumping experi-
ment. The adiabatic insertion of a magnetic flux ϕ along the
cylinder axis is equivalent to changing the boundary conditions of
the electronic wave functions from periodic to twisted by an angle
2πϕ/ϕ0, where ϕ0 is the flux quantum. In a Landau level, as ϕ is
increased from 0 to ϕ0, all single-particle orbitals are shifted by
one unit of the quantum number m→m+ 1. To see this, notice
that changing the boundary conditions from periodic to twisted
amounts to replacing m by m+ ϕ/ϕ0 in Eq. (1). In a Laughlin 1/
3 state, every orbital has an average occupation 1/3, so that, in the
thermodynamic limit, a fractional charge e/3 is pumped from one
end of the cylinder to the opposite end in the process of the flux
insertion.
We would like to utilize a flux insertion to transform the

topological ground states, labeled as Ψ0j i, Ψþj i, Ψ�j i by their
charge imbalance 0 and ±q, into one another. As we will
demonstrate, we can use charge pumping to permute these
ground states. Since the two layers of our system are time-
reversed partners with opposite Hall conductivities, we have to
insert flux with opposite orientation for the ↑ -spin and ↓ -spin
particles. Only then is a net charge pumped from one edge of the
system to the other. We will refer to this as spin-dependent flux
insertion (see Fig. 1b).

Fig. 4 Largest eigenvalue q of the operator Q̂L � Q̂R, defined in Eq.
(3), which measures the charge imbalance between the left half and
the right half of the cylinder depicted in Fig. 1b in real space,
computed in the manifold of the three lowest energy states with
momentum Ky= 0. The data was obtained with Hamiltonian Eq. (3)
using the same parameters as in Fig. 2, except for Ly=‘B ¼ 7:0 (red,
2πNorb;n‘B=Ly ’ 5:4), Ly=‘B ¼ 10:5 (orange, 2πNorb;n‘B=Ly ’ 3:6) and
Ly=‘B ¼ 15:0 (green, 2πNorb;n‘B=Ly ’ 2:5) as indicated. Right of the
respective dashed lines, the spread-to-gap ratio shown in Fig. 3b is
less than one. Moreover the charge imbalance nearly vanishes in the
parameter regime of optimal spread-to-spread ratio. The inset
shows q as a function of Ly for Δ0= 0
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Suppose we start with a state Ψ0j i that has charge 0 on both
edges. As unit ϕ0 spin-dependent flux is adiabatically inserted,
charge is transferred from the left to the right edge, so that the
resulting state is Ψþj i. The other ground states are expected to
transform into one another analogously: Ψþj i ! Ψ�j i,
Ψ�j i ! Ψ0j i. Thus, after insertion of a quantum of spin-
dependent flux, we expect to obtain a permutation of the three
ground states. This expectation is independent of the presence of
a quantization of q, because the spectrum has to be invariant
under ϕ→ ϕ+ ϕ0. The observation of the state permutation under
spin-dependent flux insertion could, however, be obstructed by
large avoided crossings in the evolution of the energy levels. It is
important to stress that the spectrum remains gapped (above the
three ground states) during the entire process of spin-dependent
flux insertion. This gap is provided by the superconducting order
parameter that couples states of different particle number on each
edge. Without the superconductivity, charge pumping would still
occur between the gapless edges, but the adiabatic process would
simply accumulate charge at one edge and deplete the other,
mapping the eigenstates to others with ever higher energy with
each quantum of spin-dependent flux inserted.
To implement the spin-dependent flux insertion, we observe

that the substitution m to m+ ϕ/ϕ0 in Eq. (1) is equivalent to
substituting m by m+ ϕ/ϕ0 in μm and fm for an infinitely long
cylinder. In a finite cylinder, such an approach is still valid for the
low-energy subspace as long as the number of orbitals is larger
than the number of orbitals typically covered by the incompres-
sible liquid. In our case, this is roughly given by the number of
orbitals needed by a single Laughlin state with ~N=2, i.e., 3~N=2� 2.
To simulate spin-dependent flux insertion in a system with

NΦ+ 1 orbitals, m=−NΦ/2, …, NΦ/2, we consider a system
enlarged by one orbital, m=−NΦ/2, …, NΦ/2+ 1 and use a linear
interpolation of the functions μm and fm, which allows their
argument to take real values and substitute in the Hamiltonian (6)

μm ! μmþϕ=ϕ0
and fm ! fmþϕ=ϕ0

: (5)

When tuning ϕ, the potential experiences a kink around m= 0
which would result in a kink in the energy spectrum. We have thus
replaced the absolute value around 0 by a quartic polynomial
interpolation that ensures the potential and its derivative are
continuous. Similarly for f, we use a linear interpolation for any
orbital at the boundary between a superconducting (f= 1) and a
normal (f= 0) region.
The low-energy spectrum of the resulting φ-dependent

Hamiltonian is plotted in Fig. 5. Up to a small avoidance, the
three ground states permute as anticipated, while the spectral gap
above them stays intact in the process. The overall evolution of all
energy levels with a minimum at ϕ= ϕ0/2 is a result of the specific
interpolation (8). Indeed, leaving unoccupied the orbitals near the
system ends (where the confining potential is more important)
results in a lower total energy. This demonstrates that the
superconducting coupling has indeed joined up the two layers
into a topological equivalent of the torus geometry sketched in
Fig. 1c. In Supplementary Note 1, we present a full phase diagram
for the spin-dependent flux insertion (similar to Fig. 3) for both this
system size and a slightly smaller one.

6π Josephson effect
As a second piece of evidence that the heterostructure realizes the
topological superconducting edges, we calculate the evolution of
the energy levels that corresponds to the 6π Josephson effect. In
order to do so, the relative complex phase between the mean-
field superconducting order parameters on the left and the right
edge, φ, is varied. The Josephson effect requires quasiparticle
tunneling processes between the superconducting edges. Neces-
sarily, the spectrum of the heterostructure displays a 2π periodicity
in φ. However, in the thermodynamic limit, in which the three

states are degenerate, the ground state of the system does not
return to itself when φ is advanced by 2π. Rather, it evolves into
another degenerate ground state and only after φ is advanced by
6π does the system return to its initial state. The reason for this
behavior is that the elementary excitations of the superconduct-
ing edge are Cooper paired quasiparticles of charge 2e/3,
delocalized along the cylinder perimeter, which tunnel across
the bulk gap.
To observe the 6π Josephson effect numerically in our finite-size

setup, the energy scale associated with the tunneling must be
larger than the finite size splitting between the ground states. For
the system sizes accessible to exact diagonalization calculations,
this is not generically the case, even when the spread-to-gap ratio
shown in Fig. 3b is large. Since the tunneling amplitude is
exponentially small in the distance between the edges, we expect
a favorable regime for large cylinder circumference Ly (at fixed
number of non-superconducting orbitals), so that the physical
distance / L�1

y between the edges is small. Figure 6 shows the
spectral evolution as a function of φ in this regime. We observe
that the three low-lying states are indeed permuted as φ advances
by 2π up to a residual small avoidance of the crossings between
the states.
To investigate in which region of phase space this type of

spectral evolution can be found, we plot the ratio r of largest
avoided crossing over energy spread of the ground state
manifold, i.e., the quantity

r :¼ max E2ð0Þ � E0ð0Þð Þ; E1ðπÞ � E0ðπÞð Þ½ �
E2ðπÞ � E0ð0Þ

; (6)

where E0(φ), E1(φ), E2(φ) are the energies of the three lowest states
as a function of flux φ. When the avoidance in the evolution of the
energy levels vanishes, such that E1(0)= E2(0) and E0(π)= E1(π),
then r→ 0 and the 6π Josephson effect becomes clearly
observable. In the opposite limit where the low-energy spectrum
is essentially independent of φ Ei(0)= Ei(π), i= 0, 1, 2, we have r→
1 and the tunneling matrix elements are too small to overcome
the finite-size induced energy splitting between the three low-
lying states. Figure 3d shows r as a function of the strength of the
superconducting pairing potential and the physical distance

Fig. 5 Evolution of the energy levels under spin-dependent flux
insertion for Hamiltonian Eq. (3) with the same parameters as in Fig.
2 except for Ly ¼ 7:0=‘B and Δ0= 1.2. The spin-dependent flux
insertion moves particles in the background of the linear onsite
potential, giving rise to the overall ϕ-dependent energy shift of the
eigenstates. a Evolution of the low energy spectrum. Red are the
four lowest states in the Ky= 0 sector, black are the lowest states in
each of the other Ky= 0 sectors. Thus, not all states in the gray
region are shown. b Close-up of the evolution of the three lowest
states corresponding to the topological edge degrees of freedom,
showing how the three states are permuted (up to small antic-
rossings) as ϕ is changed by 2π
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between the edges. Indeed, we find that the 6π Josephson effect
is best observed when both the spread-to-gap ratio and the
distance between the edges is smallest.

DISCUSSION
We numerically studied a heterostructure of a bilayer system of
FQH Laughlin states with counter-propagating edge modes that
are gapped out by a mean-field superconducting order parameter.
The system in the cylinder geometry with two gapped edges
realizes a nonlocal topological qutrit.
Our calculations were performed using exact diagonalization

and by restricting the computation to the quasihole subspace of
the Laughlin state in each layer. Despite this simplification, the
system size is still limited. Nevertheless, we have been able to
demonstrate four key features: (i) the edges develop a spectral
gap induced by the superconducting coupling, (ii) the expected
number of three nearly degenerate ground states without any
charge imbalance between the two halves of the system, (iii) that
charge pumping can permute the ground states, and (iv) that the
system exhibits a 6π-periodic Josephson effect. For each signature,
we discussed the suitable parameter regime.
While the details of the phase diagram are affected by

important finite-size effects, similar features can be identified in
all studied systems for Δ0≳ 1.5 Extrapolating from these features,
we propose a physical summary and a highlight of our
quantitative results on the 6π Josephson effect in Fig. 7. We focus
on a given value of the pairing parameter Δ0= 2.0 and we explore
the different regimes as a function of the size of the normal region
or equivalently the distance between the two superconducting
leads. This distance Lx,n is deduced from the number of orbitals
without superconducting coupling as discussed previously. As
seen in Fig. 7, the value of Lx,n determines the behavior of the
system among three regimes. When Lx,n≳ 3.4‘B , there is a large
gap and an approximate threefold degeneracy, leading to well
defined gapped edge modes. But the tunneling required for the
6π Josephson effect is exponentially suppressed. In the inter-
mediate regime 2.4‘B ≲ 3.4‘B ≲ Lx,n, the 6π Josephson effect is
clear and a robust gap remains. Note that the optimal value of Lx,n
is roughly twice the correlation length35 ξ ’ 1:4‘B of the Laughlin
ν= 1/3 phase which allows tunneling without destroying the
underlying quantum liquid. Finally, when Lx,n is small, i.e., a

distance lower than the correlation length ξ, the induced gap
at the edges collapses. Thus our results validate the hypothesis
of the previous effective approaches and provide an estimate
of the characteristic dimensions for future experimental
implementations.
Our work provides the first quantitative study of fractional edge

modes coupled to superconducting leads in a fully microscopic
model. Future works, most probably relying on the density matrix
renormalization group calculations, should be able to rely on our
setup and results to provide new insights. In particular, it could
overcome the size limitation and address the potential new
emerging phases when substituting the Laughlin state with any
richer topological order.

Data availability
The data have been generated using the software “DiagHam”
(under the GPL license).
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Fig. 6 Evolution of the energy levels of the 6π Josephson effect for
Hamiltonian Eq. (3) with the same parameters as in Fig. 2 and Δ0=
2.13, varying the phase difference φ between the left and the right
superconducting edge. a Evolution of the low energy spectrum. Red
are the four lowest states in the Ky= 0 sector, black are the lowest
states in each of the other Ky= 0 sectors. Thus, not all states in the
gray region are shown. b Close-up of the evolution of the three
lowest states corresponding to the topological edge degrees of
freedom, showing a 6π periodicity with a small avoidance of the
crossings between the states

Fig. 7 Phase diagram along the Δ0= 2.0 line. The horizontal axis is

the width of the normal region Lx;n ¼ 2π‘2BNorb;n

Ly
. The vertical axis is

either the energy gap (red), the spread over gap ratio (dashed
black), or the avoidance-to-spread ratio for the Josephson effect
(dashed blue). We clearly discriminate three different regimes: I for
small Lx,n, the backscatteting dominated regime with the breakdown
of the gapped edge modes; II the intermediate region correspond-
ing to the 6π Josephson regime; III at large Lx,n, the separated
gapped edge modes
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