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Circuit complexity of quantum access
models for encoding classical data
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How to efficiently encode classical data is a fundamental task in quantum computing. While many
existing works treat classical data encoding as a black box in oracle-based quantum algorithms, their
explicit constructions are crucial for the efficiency of practical algorithm implementations. Here, we
unveil the mystery of the classical data encoding black box and study the Clifford+ T complexity in
constructing several typical quantumaccessmodels. For generalmatrices (even includingsparseones),
we prove that sparse-access input models and block-encoding both require nearly linear circuit
complexities relative to the matrix dimension. We also give construction protocols achieving near-
optimal gate complexities. On the other hand, the construction becomes efficient with respect to the
data qubit when the matrix is a linear combination of polynomial terms of efficiently implementable
unitaries. As a typical example, we propose improved block-encoding when these unitaries are Pauli
strings. Our protocols are built upon improved quantum state preparation and a select oracle for Pauli
strings, which hold independent values. Our access model constructions provide considerable
flexibility, allowing for tunableancillaryqubit numbersandofferingcorrespondingspace-time trade-offs.

Quantum computing offers speedups over the classical counterpart in dif-
ferent tasks, including factoring, searching, simulation, etc1. However, the
speedups, in many cases, rely on the existence of efficient oracles or access
models to encode the related classical data2. In this context, a function f(x)
representing the classical data of interest is encoded using a unitary
operationUf, which acts as an oracle in the computation. To study quantum
advantages, the number of queries to Uf in a quantum algorithm is com-
pared to the number of queries to f(x) in classical algorithms. Quantum
computing provides substantial reduction in query complexity for many
problems of practical importance3–5.

There are various access models to encode classical data. One com-
monly used accessmodel is the sparse-access inputmodel (SAIM)4–12, which
encodes general sparse matrices and outputs the value or position of the
non-zero elementswhenprovidedwith appropriate inputs. SAIM is initially
introduced forHamiltonian simulationanddiscrete quantumwalks4,6–8, and
has then found broad applications in other fields such as machine
learning5,9,11 and classical oscillator simulations12. For example, the quantum
linear systemproblemcould be solvedwith ~OðκÞ queries to SAIM5,9,10, where
κ represents the condition number of the matrix to be inverted.

Another important access model is block-encoding, which serves as a
crucial subroutine for quantum signal processing13,14 and its generalization
—quantum singular-value transformations (QSVT)10,15. The success of
block-encoding enables the realization of Hamiltonian simulation with an
optimal query complexity13,14. Furthermore, many seminal quantum algo-
rithms, includingGrover’s algorithm,quantumFourier transformation, and
the HHL algorithm, could be viewed as special cases of QSVT, where the
problem of interest is encoded using block-encoding15.

Many existing works treat access models as black boxes for con-
venience. However, the actual circuit complexity of the algorithm also
depends on the cost of each query to these access models. While being
important, this problemonlydrawsmuchattention very recentlywithmany
basic problems still left open. In particular, ref. 16 presents a nearly time-
optimal protocol for block-encoding of general dense matrices of 2n × 2n

dimension. A circuit depth of ~OðnÞ can be achieved at the expense of
exponential ancillary qubits. ref. 17 examines matrices with D data each
appearing M times and considers examples including checkerboard
matrices and tridiagonal matrices with polynomial circuit complexities.
However, the cost of block-encoding of more general matrices remains
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unexplored.Moreover, it is still unclear if there is a fundamental limit to the
resource required by data encoding.

In this work, we provide a framework of constructing quantum access
models in the fault-tolerant setting using Clifford+ T gates. The protocol
works for general classical data and takes the underlying structure of the
data, such as sparsity and linear combintaion of unitaries (LCU), into
consideration. Our results represent a direct mapping from the query
complexity of quantum algorithms to their practical circuit complexity.Our
protocols allow tunable ancillary qubit numbers and offer space-time trade-
off. For general sparse matrices of dimension 2n =N, we investigate the
SAIM and block-encoding. For both access models, we first show that the
gate count lower bound increases about linearly with respect toN. We then
develop construction algorithms with varying ancillary qubit numbers
ranging from Ω(n) to O(N). Across the entire range of qubit numbers, we
achieve nearly optimal circuit complexity. We next study the block-
encoding of LCU. Efficient block-encoding is achievable when the matrix
can be represented as a linear combination of a polynomial number of
unitaries, which can be implemented using polynomial-size quantum
circuits.

Our access model construction relies on optimized realizations of
various subroutines that are independently valuable, including quantum
state preparation, selective oracles for Pauli strings, and sparse Boolean
functions. In all the listed operations, we achieve improved or at least
comparable circuit complexities compared to the best-known realizations.

We now introduce the definition of SAIM and block-encoding in
below. Let N = 2n, we consider a sparse matrix H 2 CN ×N with at most
s =O(1) nonzero elements at each row and column. LetHx,y be the value of
the element at the xth row and yth column, and eachHx,y is a d-digit integer
(d =O(1)). Let idx denote a 2n-qubit index register, and wrd denote an n-
qubit word register, the sparse-access input model (SAIM) corresponds to
two unitaries OH,OF, which satisfies

OH ∣x; yiidx∣ziwrd ¼ ∣x; yiidx∣z � Hx;yiwrd; ð1aÞ

OF ∣x; kiidx ¼ ∣x; Fðx; kÞiidx: ð1bÞ
Here,F(x, k) is the column indexof the kthnonzero element in rowx. Due to
its simplicity and generality, Eq. (1) becomes one of the standard access
models in quantum computing, which is usually assumed to be available in
processing classical data.

We call a unitary U the block encoding of H if we have

α 0nanch ∣� IN
� �

U ∣0nanci � IN
� � ¼ H;

where α > 0 is the normalization factor, nanc is the number of ancillary
qubits, and IN is the N-dimensional identity. In practice, we may consider
approximated construction of the block encoding.More specifically, we call
unitary ~U an (α, nanc, ε)− block-encoding of H if

H � α 0nanch ∣� IN
� �

~U ∣0nanc i � IN
� ��� ��⩽ ε ð2Þ

for error parameter ε ≥ 0. Throughout ourmanuscript, ∥⋅∥ represents either
the spectral norm for matrices or Euclidean norm for vectors. For a general
N-dimensional matrix H, the construction of its block-encoding requires
Ω(Poly(N)) gate count. This is true even for sparse H as we show in
Supplementary Discussion 2.

On the other hand, when H has some other structures, the resource
may be significantly reduced. In particular, we consider H in the form of a
linear combination of unitaries (LCU) as

H ¼ PP�1

p¼0
αpup; ð3Þ

where up are n-qubit unitaries that can be implemented with polynomial-
size quantum circuit, and P =O(poly(n)). The concept “LCU” appeared

firstly in18. The main purpose of ref. 18 and the follow-up work ref. 19 is to
realize non-unitary transformation on quantum computers. In the context
of Hamiltonian simulation, ref. 20 has shown that LCU-based method can
outperform product formula based methods. Many subsequent works with
different applications have then been inspired14,15,21–23.

Without loss of generality, wemay assume that log2P is an integer, andPP�1
p¼0 αp ¼ 1. This can always be satisfied by adding terms with zero

amplitude, and rescaling the Hamiltonian. In particular, the linear combi-
nation of Pauli strings

H ¼ PP�1

p¼0
αpHp ð4Þ

will be studied in details. Here, αp > 0; P⩾ 1;Hp¼
Nn

l¼1Hp;l , and
Hp,l∈ { ± I, ±X, ±Y, ± Z} are single-qubit Pauli operators. Eq. (4) is
important as it corresponds to the Hamiltonian of almost all physical
quantum systems, such as the spin and molecular systems.

In our constructions, we consider the fault-tolerant quantum com-
puting setting. More specifically, we only use two-qubit Clifford gate and
single-qubit T gate, which is equivalent to the elementary gate set
GclfþT � fH; S;T; CNOT g. All gates in GclfþT are error-correctable with
surface code24. We benchmark the circuit complexity of a given quantum
circuit with three quantities: total number of elementary gates, total qubit
number (including data qubits and ancillary qubits), and circuit depth. We
will also discuss the space-time trade-off of our algorithm, i.e. the circuit
depthunder a certain number of ancillary qubits.We also allow at leastO(n)
ancillary qubits, because this does not increase the total space complexity.

Results
Circuit complexity lower bound
Before discussing the access model construction, we first study the lower
bound of the circuit complexity. We will focus on the encoding of sparse
matrices. The methodology here is general and can be readily applied to
other related problems.

Our strategy is as follows. Firstly, we analyze the capacity of a quantum
circuit with bounded resource, i.e. how much unique unitaries can be
constructed, given fixed number of elementary gates or circuit depth. Sec-
ondly, we analyze the size of the access model, i.e. the number of unique
unitaries required to approximate the access model with arbitrary para-
meters. The circuit complexity can then be estimated by comparing the
capacity of a quantum circuit and the size of the access model. All proofs of
our lemma and theorems in this section are provided in Supplementary
Discussion 1.

Quantum circuit capacity. Assuming that we are given a finite two-
qubit elementary gate set Gele. We define g � jGelej ¼ Oð1Þ with ∣ ⋅ ∣ the
number of elements in the set. Our first result is that the capacity can be
lower bounded onlywith the number of elementary gates, independent of
the space and time resources.

Lemma 1. Let GC be the set containing all n-qubit unitaries that can be
constructed with C elementary gates in Gele. Then, we have
log jGCj ¼ O ðC logðC þ nÞÞ� �

, even with unlimited ancillary qubit
number.

Lemma 1 implies that the capacity does not always increase with
ancillary qubit number, which can be understood as follows. All ancillary
qubits should be uncomputed at the end of the circuit.WhenC is fixed, only
finite number of unitaries can satisfy this requirement, while constructable
by those elementary gates.We also note that the circuit depthD is bounded
byC, so Lemma 1 also implies a relation between capacity and circuit depth.

On the other hand, when the ancillary qubit number and circuit depth
are finite, the lower bound of capacity can be tighten as follows.
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Lemma 2. Let G0
nanc;D

be the set containing all unitaries that can be con-
structed with nanc ancillary qubits and D circuit depth. Then, we
have log∣G0

nanc ;D
∣ ¼ O Dðnþ nancÞ

� �
.

Lemma 1, 2 represent the ultimate representational power of quantum
circuits constructedwith local gates. Lemma 1 and 2 can be used to estimate
the circuit complexity lower boundwhenever the tasks have requirement on
jGCj or jG0

nanc ;D
j.Moreover, similar results can be obtained straightforwardly

for other type of elementary gate sets, such as k-local operations with k > 2.

Circuit complexity for encoding sparse matrices. With Lemma 1 and
2, we now estimate the circuit complexity lower bound for accessing
sparse matrices. For SAIM, it turns out that at least Ω(N!) unique uni-
taries are required to cover the set of all SAIM for 1-sparse matrices. So
according to Lemma 1, 2, we have the following result.

Theorem1.Givenan arbitraryfinite two-qubit elementary gate setGele. Let
nanc,D and C be the number of ancillary qubits, circuit depth and total
number of gates in Gele required to approximate SAIM in Eq. (1) with any
accuracy ε < 1. Then, we have (n+ nanc)D =Ω(2nn) and C =Ω(2n).

A similar result is also obtained for the block-encoding of sparsematrix
as follows.

Theorem2.Givenan arbitraryfinite two-qubit elementary gate setGele. Let
nanc,D and C be the number of ancillary qubits, circuit depth and total
number of gates in Gele required to construct the block-encoding ofH with
any accuracy ε < 2. Then, we have (n+ nanc)D =Ω(N) and C =Ω(Nα) for
arbitrary α∈ (0, 1).

Theorem 1, 2 imply that a general sparse matrix can not be encoded
with subexponential quantum gates, for both SAIM and block-encoding. It
is possible to trade ancillary qubit numbers for the circuit depth. However,
the space and time complexities can not achieve sub-exponential scaling
simultaneously. The hardness of SAIM can be interpreted as follows.
AlthoughH is assumed to be sparse (O(1) nonzero elements at each rowand
column), there are still totally 2n ×O(1) =O(2n) number of independent
variables in total. Therefore, the quantum circuit should be large enough to
contain exponential number of elementary gates.

We note that the quantum circuits capacity for ancillary-free case has
been studied in Section 4.5.4 of1.Moreover, a related result toTheorem1has
obtained in25, which gives a distinct quantum circuit number lower bound
with fixed qubit number, and show that there exists a table of size N
requiringΩ(N) gate count. ref. 1 allows approximated implementations, but
does not consider ancillary qubit usage. ref. 25 implicitly allows ancillary
qubits, but does not consider approximated implementations. On the
contrary, our results are more general, because both ancillary qubit usage
and approximated implementations are allowed. Our results can be gen-
eralized fromunitary to quantumchannels. In SupplementaryDiscussion 1,
we show that the circuit capacity and circuit lower bound are similar if we
consider two-qubit quantum channels as elementary quantum operations,
which can include measurement and feedback controls.

Quantum state preparation
Quantumstatepreparation is a critical step of our accessmodel construction
and of independent interest. We say that a (n+ nanc) qubit unitary G pre-
pares the n-qubit quantum state ∣ψi with accuracy ε if

Gð∣0ni � ∣0nanc iÞ ¼ ∣~ψi � ∣0nanc i ð5Þ

for some k∣ψi � ∣~ψik⩽ ε.
Such a problem has been studied extensively16,26–37. When given suffi-

ciently large among of ancillary qubits, the optimal Clifford+ T depth
Oðnþ logð1=εÞÞ can be achieved37. However, with restricted ancillary qubit
number, the optimal circuit depth has not been reached. For example, with
O(n) ancillary qubits, the best-known Clifford+ T construction has
achievedOððN=nÞ logðN=εÞÞ circuit depths32. Besides, for gate count scaling,
all existing algorithms have either O(Npoly(n)) or O(Npolylog(n))

Clifford+ T count. It remains an outstanding question if a linear gate count
scaling with respect to the data dimension N can be reached.

Here, we provide a family of improved quantum state preparation
protocols with tunable ancillary qubit number. The result is summarized in
below (follows directly from Theorem 8 in Methods).

Theorem 3. With nanc ancillary qubits where Ω(n)⩽ nanc⩽O(N), an

arbitrary n-qubit quantum state can be prepared to accuracy ε with

OðN logð1=εÞÞ count and ~O N logð1=εÞ logðnancÞnanc

� �
depth of Clifford+ T

gates, where ~O suppresses the doubly logarithmic factors of nanc.
Theorem3 achieves linear scaling of Clifford+ T countwith respect to

N, and this is applied for arbitrary space complexity. When nanc =O(n), the

circuit depth is lower than the best-known result of O N logðN=εÞ
n

� �
. More-

over, compared to32 which also study the space-time trade-off of state pre-

paration, our method improves the circuit depth scaling for a factor of
~Oðnanc= log nancÞ. Summary of some representative state preparation pro-
tocols are provided in Table 1 and Table 2.

The main idea of our construction is as follows (see also Fig. 1). For
nanc =O(n), we construct the quantum state with a set of uniformly con-
trolled rotations (UCR) with the method in28. Instead of decomposing each
UCR with identical accuracy, we distribute the decomposition error in an
optimized way. UCR withm controlled qubits, denoted asm-UCR, should
be decomposed into 2m number of m-qubit controlled rotations. When
performing Clifford+ T decomposition, to reduce the total circuit com-
plexity, we allow larger decomposition accuracy when m becomes larger.

For nanc =O(N), we improve the Clifford+ T decomposition of the
method in34 in a similar way. In both cases, the gate count scaling
OðN logð1=εÞÞ is achieved. For arbitrary ancillary qubit number between
two extreme cases, we provide a scheme combing two protocols together,
which allows space-time trade-off. Details of our state preparation scheme
and the corresponding complexity analysis are provided in Methods. We
also note that our protocol for few qubit case can be combined with the

Table 1 | Clifford+T complexities of n-qubit state preparation
protocols with fixed accuracy ε and total qubit (data qubit+
ancillary qubit) number O(n)

Protocols Count Depth

ref. 26–29 O Npoly ðnÞð Þ O Npoly ðnÞð Þ
ref. 38 O N logðnÞð Þ O Nð Þ
ref. 32 O Nnð Þ O Nð Þ
Theorem. 3 O Nð Þ O N log nðlog log nÞ

n

� �
Note: The ε scaling of Clifford+ T count and depth areOðlogð1=εÞÞ for all protocols. The ε scaling of
qubit number is Oðlogð1=εÞÞ for ref. 38 and O(1) for all other schemes. ref. 38 also minimize T
complexities.

Table 2 | Clifford+T complexities of n-qubit state preparation
protocols with fixed ε and exponential ancillary qubits

Protocols Count Depth

ref. 32,33 O(Nn) O(n2)

ref. 16,38 OðN log nÞ O(n2)

ref. 34* OðN log nÞ Oðn log nÞ
ref. 37 OðN log nÞ O(n)

Theorem. 3* O Nð Þ O n log nð Þ
Note: The ε scaling of Clifford+ T count and depth are Oðlogð1=εÞÞ for all schemes. Total qubit
numbers are O(Npoly(n)) for ref. 33,OðN logð1=εÞÞ for ref. 38, andO(N) for all other protocols. ref. 38
and ref. 16 also minimize T complexities. Protocols labeled * only require sparse connectivity, i.e.
each qubit connect to O(1) of other qubits.
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depth-optimal scheme in37. The circuit depth can then be improved to
OðN logð1=εÞnanc= logðnancÞÞ, at the cost of higher gate count.

We note that when the quantum state is sparse, the circuit com-
plexity will be significantly lower. The construction of sparse state pre-
paration is useful for sparse block-encoding. Details about sparse state
preparation and sparse matrix block-encoding are provided in Supple-
mentary Discussion 2.

Other useful subroutines
Before discussing the construction of accessmodels in Eq. (1) and Eq. (2), we
introduce someotheruseful subroutines, including select oracle andquantum
sparseBooleanmemory.Theseoperationsmayhaveapplications individually
in some other scenarios. For both operations, we obtain their space-time
trade-off constructions, which have improved or comparable Clifford+T
complexities compared to the best-known realizations (see also Table 3).

Select oracle for Pauli strings. We consider a function of Pauli strings
Hx¼

NL
l¼1Hx;l , where x∈ {0, 1,⋯ , 2m− 1} and

Hx,l∈ { ± I, ± X, ± Y, ± Z}. We introduce two registers, the index register
contains m qubits, and the word register contains L qubits. Select oracle
for Hx is defined as

Select ðHxÞ ¼
P2m�1

x¼0
∣xi xh ∣� Hx; ð6Þ

where ∣xi represents the computational basis of index register, and the
unitaryHx is applied at the word register. In other words, the state of index
register controls the operations applied at the word register.

Several proposals of implementing Eq. (6) has been introduced in the
literature. For example, with nanc =m ancillary qubits, ref. 38 (Appendix
G.4) proposed amethod achievingO(ML) circuit depth and gate countwith
M = 2m. With nanc =O(ML) ancillary qubits, Eq. (6) is a special form of the
“product unitary memory” in34, which can be constructed withOðlogðMLÞÞ
depthandO(ML) countofClifford+ Tgates.Weprovide analgorithmwith
tunable ancillary qubit number achieving the circuit complexity as follows.

Theorem 4. With nanc ancillary qubits where Ω(m+ L)⩽ nanc⩽O(ML),

Eq. (6) can be realized with O(ML) count and O ML log nanc
nanc

� �
depth of

Clifford+ T gates.
Compared to the result in ref. 38, our protocol reduces the circuit depth

for a factor ofO log nanc
nanc

� �
whilemaintaining the gate count scaling. Theproof

of Theorem 4 and details of circuit constructions are provided in Methods.

Sparse Boolean memory. We consider a sparse Boolean function
B : f0; 1gn ! f0; 1g~n, which has totally s input digits q satisfying
B(q) ≠ 0⋯ 0. Given an n-qubit index register (denoted as idx) and a
~n-qubit register (denoted as wrd), we define the sparse Boolean memory
Select(B) as a unitary satisfying

Select ðBÞ∣qiidx∣ziwrd ¼ ∣qiidx∣z � BðqÞiwrd: ð7Þ

We have the following result (see Methods for proof).

Theorem 5. With nanc ancillary qubits where ΩðnÞ⩽ nanc ⩽Oðns~nÞ,
Select(B) can be realized with Oðns~nÞ count and O ns~n log nanc

nanc

� �
depth of

Clifford+ T gates.
Different from SAIM, Eq. (7) contains constant number of nonzero

outputs. So its construction requires much less resource.

Construction of SAIM
With all necessary tools ready, we nowdiscuss the construction of the SAIM
in Eq. (1). We have the following result.

Theorem6. Given nanc ancillary qubits whereΩ(n)⩽ nanc⩽O(Nnds),OH

can be constructed with O(Nnds) count and O Nnds log nancnanc

� �
depth of

Clifford+ T gates.
Given nanc ancillary qubits whereΩðnÞ⩽nanc⩽OðNns log sÞ;OF can be

constructed with OðNns log sÞ count and O Nns log s log nancnanc

� �
depth of

Clifford+ T gates.

Proof. OH corresponds to a 2n-index, d-word and Ns-sparse Boolean
function. So the construction of OH follows directly from Theorem 5.

The construction ofOF can be realized in three steps.We introduce an
n-qubit ancillary register (denoted as anc). In the first step, we perform the
following transformation

∣x; kiidx∣0ianc ! ∣x; kiidx∣Fðx; kÞianc: ð8Þ

According to Theorem 4, this step can be constructed with O(2nns) count
and Oð2nns log nancnanc

Þ depth with nanc ancillary qubits. In the second step, we
apply swap gates between the ancillary register and half of the index register
which encodes k, i.e.

∣x; kiidx∣Fðx; kÞ
�
anc ! ∣x; Fðx; kÞ�idx∣kianc ð9Þ

This step can be realized with O(n) count and O(1) depth of Clifford+ T
gates. In the final step, we perform the transformation

∣x; Fðx; kÞiidx∣kianc ! ∣x; Fðx; kÞiidx∣0ianc ð10Þ

Fig. 1 | State preparation achieving O(N) Clifford+ T count for few qubit case.
The operation is decomposed into uniformly controlled Z- and Y-rotations, whose
control and rotation parts are denotedwith red and blue colors respectively. Eachm-
UCR is decomposed into 2m multi-qubit controlled single-qubit rotations, and m
increases with the opacity of the control part (red). Each Z- or Y-rotation is
decomposed into Clifford+ T gates, and the decomposition accuracy increases with
the opacity of the rotation part (blue).

Table3 | Summaryof theClifford+ Tcircuit complexitiesof the
operations serving as subroutines in this work

Operations Count Depth

SP (Theorem. 3) OðN logð1=εÞÞ
~~O N logðnÞ logð1=εÞ

n

� �
~~Oðn logð1=εÞÞ

SOPS (Theorem. 4) O(ML)
O ML logðmþLÞ

mþL

� �
O mþ log Lð Þ

SBM (Theorem. 5) Oðns~nÞ OðlogðnÞs~nÞ
O logðns~nÞð Þ

SSP (Theorem. 9) Oðsðn log sþ logð1=εÞÞÞ
~~Oðs logðsÞ logðn=εÞÞ
~~O logðsÞ logð1=εÞ þ log n
� �

Note: Suppose the subroutinehasndat data qubit, in the last column, the first rowcorresponds to the
circuit depth when there are nanc =O(ndat) ancillary qubit; the second row corresponds to the circuit
depthwithout qubit number restriction. ~~O suppresses the doubly logarithmic factors with respect to
n and s. SP, SOPS, SBM and SSP correspond to state preparation, select oracle for Pauli strings,
sparse Boolean memory and sparse state preparation (Supplementary Discussion 2), respectively.
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which can be realized by a 2n-index, dlog2se-word and Ns-sparse Boolean

memory. According to Theorem 5, this step can be constructed with

OðNns log sÞ count andO Nns log s log nancnanc

� �
depth ofClifford+ T gates. The

total gate complexity is therefore the combination of three steps above.□
Compared to the circuit complexity lower bound obtained inTheorem

1, our protocol has nearly optimal circuit complexities with respect to the
matrix dimension up to a factor of n. As mentioned before, SAIM is a
standard access model in many quantum algorithms, and the query com-
plexity to SAIM has been studied extensively for various tasks. With The-
orem 6, one can directly obtain the natural circuit complexity of those
algorithms. Further discussions are provided in the DISCUSSION section.

Construction of LCU-based block-encoding
The construction of LCU-based block-encoding can be realized with
quantum state preparation and select oracle13. We define α = [α1,⋯ , αP]
and ∣αi ¼PP

p¼1
ffiffiffiffiffiαpp ∣p

�
. Let G∣αi be the state preparation unitary for ∣αi,

and we define G � G∣αi � I2n . We then define a Select oracle corre-
sponding to Eq. (3) as Select ðupÞ ¼

PP�1
p¼0 ∣pihp∣� up. It can be verified

that Gy Select ðupÞG is a block-encoding of H with normalization factor
α = 114. The constructions of LCU-based block-encoding is then reduced to
the quantum state preparation and Select(up), both of which can be con-
structed with polynomial-size quantum circuits.

The exact circuit complexity of block-encoding depends on the specific
form of up.We take the LCU for Pauli strings (Eq. (4)) as an example. Based
on our improved quantum state preparation (Theorem 3) and Select oracle
for Pauli strings (Theorem 4), we have the following result, where (nanc, ε)-
block-encoding is the abbreviation of (1, nanc, ε)-block-encoding (see
Methods section for proof).

Theorem 7. With nanc ancillary qubits where Ωðlog2PÞ⩽ nanc ⩽OðNPÞ,
the (nanc, ε)-block-encoding ofH defined in Eq. (4) can be constructed with

O Pðnþ logð1=εÞÞ� �
count and ~O Pn logð1=εÞ log nancnanc

� �
depth of Clifford+

T gates, where ~O suppresses the doubly logarithmic factors of nanc.
The block-encoding of LCU can be constructed with polylogarithmic

circuit complexity with respect to the data dimension, as oppose to the
SAIM requiring polynomial gate count. Therefore, for structured classical
data in the formof Eq. (3) exponential quantum advantage can be expected.
In below, we provide further discussions about by our results.

Discussion
As demonstrated in Theorem 1, a general SAIM can not be implemented
with O(Poly(n)) size quantum circuit. In the language of complexity class,
this implies that BQPSAIM ≠ BQP, where SAIM represent the quantum
oracles in the form of Eq. (1). In other words, if problemA can be solve with
polynomial number of queries to the SAIM, A is not necessarily solvable
with polynomial-size quantum circuits. In fact, it is reasonable to conjecture
that BQPSAIM≠ PSPACEwhen considering the scaling with n. The reason is
that for a general matrix with 2n dimension, storing all its element requires
exponentially large space, and this is true even for sparse matrix. The same
argument applies to the block-encoding of sparse matrices as well.

This argument is consistent with the results about classical dequanti-
zationalgorithms39,40,whichdemonstrate that sub-linear classical runtimecan
be achieved for tasks such as recommendation systems and solving linear
systems.Note that thesealgorithmsassumesaclassicaloracle similar toSAIM.

On the other hand, our study on sparse matrix encoding still has its
great value. First of all, it is rare to have structured classical data that can be
encoded with logarithmic complexity. In many cases, sparse matrix is the
most compact representation for classical data of interest. Second, with
SAIM or block-encoding, polynomial quantum speedupwith respect to the
matrix dimension N is still possible. Our constructions are nearly optimal,
and can be used to estimate the concrete Clifford+ T complexities of many
quantumalgorithmsof practical interest. Finally, techniques developedhere
may serve as a subroutine for encoding a larger matrix with special

structures, with which the with which exponential quantum advantagemay
be possible.

An open question is how to determine whether a given matrix is
efficiently block-encodable. This problem can be considere as a general-
ization of the unitary complexity problem41–44, which is important due to the
broad applications of block-encoding15. According to Theorem 7, LCU for
efficient unitaries [Eq. (3)] is a sufficient condition of efficient block-
encoding. Due to the generality and simplicity of LCU, it is reasonable to
conjecture that thedecompositionof amatrix in the formofEq. (3) has close
relation to the efficiency of its block-encoding. The block encoding of H is
challenging when it can not be well approximated by Eq. (3) with
P =O(Poly(n)).

In conclusion, we have studied the circuit complexities of typical
quantum access models, such as SAIM and block-encoding. We show that
the circuit complexity lower bound for encoding sparse matrix is poly-
nomial with respect to the matrix dimension. We provide nearly-optimal
construction protocols to achieve the lower bound. For LCU-based block-
encoding, we develop a construction protocol based on the improved
implementation of quantum state preparation and select oracle for Pauli
strings. Our protocols are based on Clifford+ T gates and allow tunable
ancillary qubit number.We expect that our results are useful for processing
classical datawithquantumdevices45–47. Futureworksmay include the study
of the circuit complexity lower bound for block-encoding, and how to
further improve our protocols to achieve the lower bounds. Another
interesting topic is about the power of quantum circuits with global quan-
tum channels. For example, if the feedback controls are dependent on the
measurementoutcomesofmanymeasurements. In this case, the elementary
operations may no longer be described by local operations, and the com-
putation power of the circuit is expected to be enhanced. In the direction of
applications, it is interesting to find practical classical problems, whose data
structure are able to be represented in the form LCU. In those scenarios,
exponential quantum advantage can be expected.

Methods
Quantum state preparation
We first consider the preparation with n ancillary qubits. There are some
state preparation protocol with optimal single- and two-qubit gate count,
such as ref. 28. However, with direct Clifford+ T decomposition, the gate
complexity becomes suboptimal. We achieve gate count and circuit depth
linear to the statedimensionwith anoptimizedClifford+ Tdecomposition.
The result is as follows.

Lemma 3. With n ancillary qubits, an arbitrary quantum state can be
prepared to precision εwithOðN logð1=εÞÞ depth andOðN logð1=εÞÞ count
of Clifford+ T gates.

Proof. According to28, with single- and two-qubit gates, an arbitrary
quantum state ∣ψtargi can be expressed as

∣ψtargi ¼
Qn
j¼1

Fy
j

 ! Qn
j¼1

Fz
j

 !
∣0 � � � 0i; ð11Þ

where Fz
j and Fy

j are uniformly controlled Z- and Y-rotations

Fz
j ¼

X2j�1�1

k¼0

∣ki kh ∣� Rzðαzj;kÞ � I2n�j ; ð12aÞ

Fy
j ¼

X2j�1�1

k¼0

∣kihk∣� Ryðαyj;kÞ � I2n�j ; ð12bÞ

with single qubit rotation gates RyðθÞ ¼ e�iθσy=2;RzðθÞ ¼ e�iθσz=2. Here
αyj;k 2 R and αzj;k 2 R are some rotation angles, the exact values of which
are not important for our analysis.
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Single-qubit rotations can be approximated with Clifford+T gates.
According to ref. 48, unitary euz satisfying keuz � Rzðαzj;k=2Þk⩽ εj=2 can be
constructedwithOðlogð1=εjÞÞ single-qubitClifford+T gateswithout ancilla.
Accordingly,wecan implement single-qubit-controlled-Rzðαzj;k; εjÞ, such that

Rz αzj;k; εj

� �
� Rz αzj;k

� ���� ���⩽ εj ð13Þ

with the following circuit.

Note that euyz can be realized by the inverse conjugation of the Clif-
ford+ T gate sequence of euz . Similar argument is also applied for Ryðαyj;kÞ.
Then, according to Lemma 6 as will be introduced in the next section, one
can construct the following unitaries

eFj
y ¼

X2j�1�1

k¼0

∣ki kh ∣� eRy αyj;k; εj

� �
� I2n�j ð14Þ

eFj
z ¼

X2j�1�1

k¼0

∣ki kh ∣� eRz αzj;k; εj

� �
� I2n�j ð15Þ

with j ancillary qubits, Oð2j logð1=εjÞÞ depth and Oð2j logð1=εjÞÞ count of
Clifford+ T gates. We therefore approximate the target state with the fol-
lowing

∣eψtargi ¼
Qn
j¼1

eFz
j

 ! Qn
j¼1

eFy
j

 !
∣0 � � � 0i: ð16Þ

In below, we first bound the distance between ∣ψtarg

E
and ∣eψtargi. It can be

verified that keFy
j ∣ψi � Fy

j ∣ψik⩽ εj and keFz
j ∣ψi � Fz

j ∣ψik⩽ εj for any
quantum state ∣ψ

�
. In other words, we have keFy

j � Fy
j k⩽ εj and

keFz
j � Fz

j k⩽ εj. Therefore,

Qn
j¼1

eFy
j �

Qn
j¼1

Fy
j

 !�����
�����

⩽ eFy
n

Qn�1

j¼1

eFy
j �

Qn�1

j¼1
Fy
j

 !�����
�����þ eFy

n � Fy
n

� � Qn�1

j¼1
Fy
j

�����
�����

⩽
Qn�1

j¼1

eFy
j �

Qn�1

j¼1
Fy
j

 !�����
�����þ εn

� � �
⩽
Pn
j¼1

εj:

ð17Þ

In a similar way, we can obtain
Qn

j¼1
eFz
j �

Qn
j¼1 F

z
j

� ���� ���⩽ Pn
j¼1 εj. So we

have

k∣ψtargi � ∣eψtargik

⩽
Qn
j¼1

eFy
j

Qn
j¼1

eFz
j �

Qn
j¼1

Fy
j

Qn
j¼1

Fz
j

 !�����
�����

⩽
Qn
j¼1

eFz
j �

Qn
j¼1

Fz
j

 !�����
�����þ Qn

j¼1

eFy
j �

Qn
j¼1

Fy
j

 !�����
�����

⩽2
Pn
j¼1

εj:

ð18Þ

According to Eq. (18), to control the total error rate to a constant value i.e.
k ∣ψtargi � ∣eψtargi k ⩽ ε, it suffice to set εj = ε/2n−j+1. Because each eFy

j or eFz
j

require Oð2j logð1=εjÞÞ gate count and circuit depth, the total gate count is

C ¼ Pn�1

j¼0
Oð2j logð1=εjÞÞ

¼ Pn�1

j¼0
Oð2j logð2n�j=εÞÞ

¼ OðN logð1=εÞÞ:

ð19Þ

Similarly, the total circuit depth is

D ¼ Pn�1

j¼0
Oð2j logð1=εjÞÞ ¼ OðN logð1=εÞÞ: ð20Þ

□
We then consider the quantum state preparation with exponential

ancillary qubits. Our protocol follows the same idea in34 with improvement.

Lemma 4. Arbitrary n-qubit quantum state can be prepared with O(N)
ancillary qubits, Oðn logðn=εÞÞ depth and OðN logð1=εÞÞ count of
Clifford+ T gates.

Proof. Our construction is based on the protocol in34 with revision and
improved Clifford+T decomposition.

General procedure. The hardware layout of our method contains a
binary tree of qubits with n+ 1 layers, which is denoted asH. The lth (with
0⩽ l⩽ n) layer of H is denoted as Hl. For 1⩽ l⩽ n,Hl connects to another
binary tree of qubits, denoted as Vl. The root of the tree Vl serves as the lth
data qubit, and we denote it as dl here.

Our protocol for preparing target state ∣ψtargi ¼
P2n�1

k¼0 αk∣kid works
as follows. We initialize the root of H as ∣1iH1

while all other qubits are at
state ∣0i. In the first stage,H is prepared at the quantum state (qubits at state
∣0i are not shown)

∣1iH1
! P2n�1

k¼0
αk∣φk

�
H : ð21Þ

Here, ∣φk

�
is one of the computational basis ofH to be defined later. In the

second stage, the data qubits are transferred to the n-qubit computational
basis ∣kid conditioned on ∣φk

�
, i.e.

P2n�1

k¼0
αk∣φk

�
H ! P2n�1

k¼0
αk∣φk

�
H ∣kid: ð22Þ

Finally, the binary tree H is uncomputed

P2n�1

k¼0
αk∣φk

�
H ∣kid !

P2n�1

k¼0
αk∣0iH ∣kid: ð23Þ

The target state is then obtained after tracing outH. The readers are refereed
to34 formore details. Transformations in Eq. (22) and Eq. (23) can be ideally
realized using Clifford circuit withO(n) depth andO(2n) gate count. On the
other hand, thefirst stage for obtaining Eq. (21) contains rotation that has to
be approximated with T gates and hencemore complicated. So we focus on
Eq. (21) in below.
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Realization of Eq. (21).We will first show how Eq. (21) can be realized
with single-qubit and CNOT gates with a method slightly different from34,
and then introduce its Clifford+ T decomposition.

We define αn,k≡ ak and αL;k ¼ arg ðαLþ1;2kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαLþ1;2kj2 þ jαLþ1;2kþ1j2

q
for all 0⩽ l⩽ n− 1. Note that we can assume arg(α0) = 0 without loss of
generality. For 0⩽ L⩽ n, we define

∣ΨL

� ¼ X2L�1

k¼0

αL;k
OL
l¼0

∣ðk; lÞ�0Hl
: ð24Þ

The realization of Eq. (21) contains n steps, with the Lth step corresponds
to ∣ΨL�1

�! ∣ΨL

�
.

In Eq. (24), we have defined (0, 0)≡ 0, and (k, l)≡ knkn−1⋯ kn−l+1 for
l⩾ 1; ∣ðk; lÞi0 � ∣0i�ðk;lÞ∣1i∣0i�2l�ðk;lÞ�1;Hl represents the lth layer ofH. Eq.
(21) and Eq. (24) have the correspondence ∣φki¼

NL
l¼0∣ðk; lÞi0Hl

andP2n�1
k¼0 αk∣φk

�
H ¼ ∣ψn

�
. So ∣Ψn

�
is the target state of the stage 1 introduced

in Eq. (21).
We then introduce the realizationof ∣ΨL�1

�! ∣ΨL

�
.Wedefine single

qubit rotation ryðθÞ ¼
cos θ sin θ
� sin θ cos θ

	 

and rzðϕÞ ¼ e�iϕ 0

0 eiϕ

	 

, and

a three-qubit controlled operation as follows.

a, b, c are labels of the corresponding qubits. Let θl;j �
arccosðbl;2j=bl�1;jÞ and ϕl,j = ϕl,2j+1− ϕl,2j, at the Lth step (1⩽ L⩽ n), we
implement the parallel rotation

WL ¼
Q2L�1�1

j¼0
wðθL;j; ϕL;j;HL�1;j;HL;2j;HL;2jþ1Þ ð25Þ

which costsO(1) depth andO(2L) count of single-qubit and CNOTgates. It
can be verified that

WL∣ΨL�1

� ¼ ∣ΨL

�
: ð26Þ

The total single-qubit+CNOT depth and gate count are O(n) and O(2n)
respectively.

Clifford+ Tdecomposition. WL are assumed to be constructed with
single- and two-qubit gates. In below, we discuss how to decompose it with
Clifford+T gates with high accuracy. According to ref. 48, one can always
construct a unitaries ~ryðθ; εÞ;~rzðϕ; εÞ, with Oðlogð1=εÞÞ depth of gates in
{H, S, T}, which satisfies

k ~ryðθ; εÞ � ryðθÞ k ⩽ ε; k ~rzðϕ; εÞ � rzðϕÞ k ⩽ ε: ð27Þ

Accordingly, we define ewðθ; ϕ; ε; a; b; cÞ as the following transformation

We have ewðθ; ϕ; ε; a; b; cÞða∣0ia∣0ib∣0ic þ b∣1ia∣0ib∣0icÞ
¼ a∣0ia∣0ib∣0ic þ b1ðεÞ∣1i∣10i þ b2ðεÞ∣01i;

ð28Þ

for some
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb1ðεÞ � b1ð0Þj2 þ jb2ðεÞ � b2ð0Þj2

p
⩽ jbjε. We then define

eWLðεÞ ¼
Q2L�1�1

j¼0
ewðθL;j; ϕL;j; ε;HL�1;j;HL;2j;HL;2jþ1Þ; ð29Þ

which is used to approximate WL. From Eq. (28), it can be verified thateWLðεÞ∣ΨL�1

��WL∣ΨL�1

��� ��⩽ ε. We set the accuracy at the Lth layer as
εL, and define

∣eΨ0i ¼ ∣Ψ0i; ∣eΨLi ¼ eWLðεLÞ∣eΨL�1i: ð30Þ
We have

k∣eΨLi � ∣ΨLik
¼ k eWLðεLÞ∣eΨL�1i �WL∣ΨL�1ik
⩽k eWLðεLÞ∣eΨL�1i � eWLðεLÞ∣ΨL�1ik
þ k eWLðεLÞ∣ΨL�1i �WL∣ΨL�1ik

⩽k eWLðεLÞ∣eΨL�1i � eWLðεLÞ∣ΨL�1ik þ εL
¼ k∣eΨL�1i � ∣ΨL�1ik þ εL:

ð31Þ

By applying the inequality above iteratively from L = 1 to L = n, we have

k∣eΨni � ∣Ψnik⩽
Pn
L¼1

εL: ð32Þ

According to Eq. (32), to control the total error rate to a constant value, it
suffices to set εL =Kε/(n−L+1)2 for some constantK. This is the key step of
our improved construction.

Circuit complexity. Each eWL can be realized with Oð2L logð1=εLÞÞ
count andOðlogð1=εLÞÞdepthofClifford+ T gates. Therefore, the total gate
count at stage 1 (Eq. (21)) is

C ¼ O
Pn
L¼1

2L logð1=εLÞ
	 


¼ O
Pn
L¼1

2L logððn� Lþ 1Þ2=εÞ
	 


¼ O 2nþ1 Pn
m¼1

logðmÞ
2m

	 

þ O 2n logð1=εÞ� �

¼ O 2nð Þ þ O 2n logð1=εÞ� �
¼ O N logð1=εÞ� �

:

ð33Þ
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The total circuit depth at stage 1 is

D ¼ O
Pn
L¼1

logð1=εLÞ
	 


¼ O
Pn
L¼1

logððn� Lþ 1Þ2=εÞ
	 


¼ O
Pn
m¼1

logðm2Þ
	 


þ O n logð1=εÞ� �
¼ O logðn!Þ� �þ O n logð1=εÞ� �
¼ O n logðn=εÞ� �

:

ð34Þ

Recall that Eqs. (22), (23) has O(N) count and O(n) depth of Clifford+ T
gates. So the total gate count and circuit depth are O N logð1=εÞ� �

and
O n logðn=εÞ� �

respectively.□
We also cares about the controlled quantum state preparation. In our

preparation scheme, the initial state is ∣1iH1
, i.e. the root ofH is set as ∣1i. If

we setH1 as ∣0iH1
instead, it can be verified that the output state is ∣0 � � � 0id.

Therefore, to implement controlled state preparation, one can simply
replace the root qubitH1 by the controlled qubit, and the circuit complexity
remains unchanged. In other words, we have the following result.

Lemma 5. Arbitrary single-qubit-controlled n-qubit state preparation
unitary can be constructed withO(N) ancillary qubits,Oðn logðn=εÞÞ depth
and OðN logð1=εÞÞ count of Clifford+ T gates.

Based on Lemma 3, Lemma 4 and Lemma 5, We have the following
result for intermediate number of ancillary qubits. Note that Theorem 3 in
the main text follows directly from Theorem 8.

Theorem 8. (space-time tradeoff QSP). With nanc ancillary qubits where
Ω(n)⩽ nanc⩽O(2n), state preparation and controlled state preparation of
an arbitrary n-qubit quantum state can be realized with precision ε with

OðN logð1=εÞÞ count and O N logðnancÞ logðlogðnancÞ=εÞ
nanc

� �
depth of

Clifford+ T gates.

Proof.We separate all data qubits into two registers. RegisterA contains the
last na ¼ n� blog2mc data qubits, and register B contains the first nb ¼
blog2mc qubits for some n⩽m⩽ 2n. We define Na ¼ 2na and Nb ¼ 2nb .
The target state can be rewritten as

∣ψtargi ¼
PNa�1

k¼0
βk∣kiA∣ϕk

�
B

ð35Þ

for some normalized βk, and normalized quantum states ∣ϕk
�
. We

define ∣ψa

�
A ¼PNa�1

k¼0 βk∣kiA.
In the first step, we prepare register A to a quantum state

∣eψa

�
A ¼ PNa�1

k¼0

~βk∣kiA ð36Þ

which satisfies ∣ψa

�� ∣eψa

��� ��⩽ ε=2. According to Lemma 3, this step can
be realized with OðNa logð1=εÞÞ ¼ O N

m logð1=εÞ� �
count and depth of

Clifford+ T circuit.
In the second step, we implement

Select ðeGkÞ
PNa�1

k¼0

eβk∣kiA∣0nbiB ¼ PNa�1

k¼0

eβk∣kiA∣eϕkiB
� ∣eψtargi

ð37Þ

where eGk is a state preparation unitary satisfying eGk∣0i ¼ ∣eϕki for some
k∣ϕki � ∣eϕkik⩽ ε=2. It can be then verified that k∣ψtargi � ∣eψtargik⩽ ε.
According to Lemma 4, controlled-eGk such that eGk∣0nbi ¼ ∣eϕki can be
constructed with O(m) ancillary qubits, OðNb logð1=εÞÞ count and

Oðnb logðnb=εÞÞ ¼ OðlogðmÞ logðlogðmÞ=εÞÞ depth of Clifford+ T gates.
Then, according to Lemma 6, withO(m) ancillary qubits, SelectðeGkÞ can be
constructed with

C ¼ OðNa ×Nb logð1=εÞÞ ¼ OðN logð1=εÞÞ ð38Þ
gate count, and

D ¼ O Na × logðmÞ logðlogðmÞ=εÞ� �
¼ O N logðmÞ logðlogðmÞ=εÞ

m

� � ð39Þ

depth of Clifford+ T gates. By setting nanc =O(m) for some nanc⩾ n, we
complete the proof.□

Select oracle for general unitary functions. Suppose x is an m-bit
bitstring, and Ux are general unitaries. We consider the unitary

Select ðUxÞ ¼
PM�1

x¼0
∣xi xh ∣� Ux; ð40Þ

whereM = 2m. In below,wediscuss how to construct Select(Ux) basedon the
implementation of single-qubit-controlled-Ux, and the corresponding cir-
cuit complexity upper bound. We define Cctrl(Ux, r) and Dctrl(Ux, r) as the
count and depth of Clifford+ T gates required to construct the controlled-
Ux, given r ancillary qubits. The following result corresponds to the casewith
m+ r ancillary qubits.

Lemma6. (AppendixG.4 of38).Withm+ r ancillary qubits, Select(Ux) can
be constructed with O(MCctrl(Ux, r)) count and O(MDctrl(Ux, r)) depth of
Clifford+ T gates.

Proof. We introduce an ancillary register withm qubits.We denote the jth
qubit at the index register (encoding ∣xi) and ancillary registers as Cj,Aj

respectively. We also denote C = [C1,C2,⋯ ,Cm] and
A = [A0,A1,A2,⋯ ,Am]. A0 is initialized as ∣1i while all other ancillary
qubits are initialized as ∣0i.□

Eq. (40) can be realized by querying Select(C,A,m, 0), which is defined
recursively by Algorithm 1. In Algorithm 1, Toffoli(a, b; c) is the Toffoli
gate with qubit a and b as the controlled qubits and c as the target qubit;
C-Ux(a) is the controlled-Ux with qubit a as controlled qubit and the cor-
respondingword register as target qubits; dim(v) represent thedimensionof
the vector (for example, dim(C) = n); vj represents the jth element of v and
vj: = [vj, vj+1,⋯ , vdim(v)].

Algorithm 1. Select(y, q, l, x)
1: if l ≠ 0:
2: Toffoli(y1; q1; q2)
3: Select(y2:, q2:, l− 1, x)
4: Toffoli(y1; q1; q2)
5: Toffoli(y1, q1; q2)
6: Select(y2:, q2:, l− 1, x+ 2l−1)
7: Toffoli(y1, q1; q2)
8: elseif l = 0:
9: C-Ux(q1)
10: end if

In our implementation, the controlled-Ux are queried for totally M
timeswith x∈ {0,⋯ ,m− 1} sequentially.Moreover, there are totallyO(M)
Toffoli gates acting sequentially. Therefore, the total gate count and circuit
depth are O(MCctrl(Ux, r)) and O(MDctrl(Ux, r)) respectively.

Wenote thatAlgorithm1canbe further simplifiedby combining some
concatenated gates38. But the asymptotic scaling here is optimal.

We then consider the construction of expoential ancillary qubits. In
Algorithm 4,5 of34, based on the bucket-brigade architecture for quantum
random access memory49–51, it has been shown that any Select(Ux) can be

https://doi.org/10.1038/s41534-024-00835-8 Article

npj Quantum Information |           (2024) 10:42 8



constructed by 4M− 1 ancillary qubits, O(M) Clifford+ T gates arranged
in O(m) circuit depth, and queries to all single-qubit-controlled-Ux for
x∈ {0,⋯ ,M− 1} in parallel. If each controlled-Ux uses r ancillary qubits,
we require totally M(4+ r)− 1 ancillary qubits, because they are imple-
mented in parallel. To sum up, we have the following result.

Lemma 7. (many qubit Select oracle). WithM(4+ r)− 1 ancillary qubits,
Select(Ux) can be constructed with O(MCctrl(Ux, r)) count and
O(m+Dctrl(Ux, r)) depth of Clifford+ T gates.

Select oracle for general unitary functions. In below, we give the proof
of Theorem 4 about the construction of select oracles for Pauli strings
defined in Eq. (6). Note that Eq. (6) is a special case of Eq. (40) with
Ux∈ {±I, ±X, ±Y, ±Z}⊗L.

proof of Theorem4. Recall that Select oracle for Pauli strings corresponds to
Eq. (40)withUx =Hx, whereHx¼

NL
l¼1Hx;l andHx,l∈ { ± I, ±X, ±Y, ± Z}.

Given L ancillary qubits, controlled-Hx can be constructed with the
following circuit.

where control qubit is denoted as c, ancillary qubits, all initialized as ∣0i, are
denoted as a1, a2,⋯ , aL and target qubits are denoted as t1, t2,⋯ , tL
respectively. Two of the L-Toffoli gates can be effectively constructed with
O(L) count and Oðlog LÞ depth of Clifford+ T gates. All controlled Pauli
gates can be constructed with totally O(L) count and O(1) depth of Clif-
ford+ T gates. In other words, we have Cctrl(Hx, L) =O(L)
and DctrlðHx; LÞ ¼ Oðlog LÞ.

Our protocol of constructing Select(Hx) uses at least Ω(m+ L) ancil-
lary qubits. We divide the m-qubit index registers into two subregisters A
and B with ma ⩾ log2ðmþ LÞ and mb =m−ma qubits respectively. Let
Ma ¼ 2ma ;Mb ¼ 2mb ; Select ðHxÞ can be rewritten as

Select ðHxÞ ¼
XMa�1

xa¼0

∣xa
�
xa
�

∣� Vxa
ð41Þ

Vxa
¼
XMb�1

xb¼0

∣xb
�
xb
�

∣� Hxa�xb
: ð42Þ

xa and xb are bit strings with ma and mb bits respectively, and x≡ xa⊕ xb.
According to Lemma 7, Vxa

can be constructed with Ma(4+ L)− 1
ancillary qubits, O(MaL) count and Oðma þ log LÞ depth of Clifford+ T
gates. According to Lemma 6, with totally nanc =Ma(4+ L)− 1+mb

ancillary qubits, the Clifford+ T gate count of Select(Hx) is

C ¼ OðMbMaLÞ ¼ OðMLÞ: ð43Þ

The Coifford+ T depth is

D ¼ OðMbðma þ log LÞÞ
¼ O M logðMaLÞ

Ma

� �
¼ O M logððnancþ1Þ=4Þ

ðnancþ1Þ=4L
� �

¼ O ML log nanc
nanc

� �
;

ð44Þ

which completes the proof.□

Details about LCU-based Block-encoding
Without loss of generality, we assume thatm ¼ log2P is an integer. We let
~G∣αi be a state preparation unitary satisfying k~G∣αi∣0mianc � G∣αi∣0mianck
⩽ ε=3. Let ~up be unitaries satisfying k ~up � up k ⩽ ε=3. We then define

~G � ~G∣αi � IN ; ð45Þ

U � Gy Select ðupÞG; ð46Þ

~U � ~G
y
Select ðupÞ ~G; ð47Þ

andW � ~U � U . With a similar argument to Eq. (31), we have

W∣Ψik k⩽ ε; ð48Þ

where ∣Ψi ¼ ∣0mi � ∣ψ
�
and ∣ψ

�
is an arbitrary N-dimensional quantum

state. We may rewriteW as

W ¼ δH W1;2

W2;1 W2;2

 !
ð49Þ

where δH 2 CP × P;W1;2 2 CN × P;W2;1 2 CP ×N and W2;2 2 CN ×N .
Note that if k δH k ⩽ ε; ~U is a (m, ε)-block-encoding of H. We have

W∣Ψi ¼ δH W1;2

W2;1 W2;2

 !
∣ψ
�
0

 !
¼ δH∣ψ

�
W2;1∣ψ

� !
ð50Þ

Combining Eq. (48) with Eq. (50), we have

k δH∣ψi k ⩽ k W∣Ψi k ⩽ ε: ð51Þ

BecauseEq. (51) is applied for arbitrary ∣ψ
�
, wehave∥δH∥⩽ ε. Therefore, ~U

is a (m, ε)-block-encoding toH. We can now study the efficiency of block-
encoding.

The actual circuit complexitydepends on the formofup.Wenowproof
Theorem 7 which corresponds to up∈ {±I, ±X, ±Y, ±Z}⊗n.

Proof of Theorem 7. With nanc ancillary qubits where

log2P⩽ nanc ⩽OðPÞ; ~G can be constructed with OðP logð1=εÞÞ count and
O P logðnancÞ logðlogðnancÞ=εÞ

nanc

� �
depth of Clifford+ T gates. With

Ωðlog2PÞ⩽ nanc ⩽OðPnÞ, Select(Hx) can be constructed with O(nP) count

and O nP log nanc
nanc

� �
depth of Clifford+ T gates. Therefore, the total gate

count of Select(Hx) isOðPðnþ logð1=εÞÞÞ. ForΩðlog2PÞ⩽ nanc ⩽OðPÞ, the
circuit depth is

O P
log nanc
nanc

nþ log logðnancÞ=ε
� �� �	 


ð52Þ
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¼ O P nþ logð1=εÞ� � log nanc
nanc

	 

: ð53Þ

For Ω(P)⩽ nanc⩽O(Pn), the circuit depth for ~G is
Oðlog P logðlogðPÞ=εÞÞ ¼ Oðlog n logðlog n=εÞÞ, where we have used the
assumptionP =O(Poly(n)). Combiningwith circuit depth of Select(Hx), the
total circuit depth for block-encoding is

O nanc logðnÞ logðlogðnÞ=εÞ
log nanc

þ nP
� �

log nanc
nanc

� �
¼ O nP logðnÞ logðlogðnÞ=εÞ

logðnPÞ þ nP
� �

log nanc
nanc

� �
¼ O nP logðlogðnÞÞ þ nP logð1=εÞ� � log nanc

nanc

� �
¼ ~O nP logð1=εÞ log nancnanc

� �
;

ð54Þ

which completes the proof.□

Sparse Boolean memory
Recall that sparse Boolean memory performs the transformation
Select ðBÞ∣qiidx∣ziwrd ¼ ∣qiidx∣z � BðqÞiwrd, idx represents ann-qubit index
register, wrd represents a ~n-qubit register, and there aremost s input digits q
satisfying B(q) ≠ 0⋯ 0. We define qk as the kth input digit with nonzero
output, and QB � fq1; q2; � � � ; qsg. In34, we have developed a construction
of SBM with Oðns~nÞ ancillary qubits. The result is as follows.

Lemma8. (Sec. III B in SupplementalMaterial of34).WithOðns~nÞ ancillary
qubits, Select(B) canbe realizedwithOðns~nÞ count andOðlogðns~nÞÞdepthof
Clifford+ T gates.

Based on Lemma 8, we can obtain the gate complexity with inter-
mediate number of ancillary qubits. The proof of Lemma 5 is given as
follows.

Proof of Lemma5. Let wrdl be the lth qubit of the word register, and zl be
the lth digit of z. So ∣ziwrd ¼

Q~n
l¼1 ∣zliwrdl

. Select(B) can be separated into
multiple Boolean functions applied at different words. Let Bl(q) be the lth
digit of B(q), and Blmin :lmax

ðqÞ � Blmax
ðqÞ � � �Blminþ1ðqÞBlmin

ðqÞ. We define
Select ðBlmin:lmax

Þ as a unitary satisfying

Select ðBlmin :lmax
Þ∣q�idx Ylmax

l¼lmin

∣zl
�
wrdl

ð55Þ

¼ ∣q
�
idx

Ylmax

l¼lmin

∣zl � BlðqÞ
�
wrdl

: ð56Þ

For any 1 ¼ l0 < l1 < � � � < ln0 ¼ ~nþ 1, it can be verified that

SelectðBÞ ¼ Qn0
r¼1

Select ðBlr�1 :lr�1Þ: ð57Þ

WealsodefineSelect(Bl) = Select(Bl:l). For eachBl, we further defineBoolean
functions Bl;kmin:kmax

ðqÞ ¼ BlðqÞ ^ ðkmin ⩽ k⩽ kmaxÞ for kmin⩽kmax. For any

0 ¼ k0 < k1 < � � � < ks0 ¼ s, it can be verified that

SelectðBlÞ ¼
Ys0
j¼1

Select ðBl;kj�1 :kj�1Þ: ð58Þ

We first consider the construction with ancillary qubit number
OðnsÞ⩽ nanc ⩽OðnsenÞ. In this case, we decompose Select(B(q)) with Eq.
(57). We let d = ⌊nanc/(ns)⌋ and n0 ¼ d~n=de, and

lr ¼
rd þ 1 r < n0

~nþ 1 r ¼ n0

�
: ð59Þ

According toLemma8,withnanc ancillary qubits, each Select ðBlr�1 :lr�1Þ can
be constructed with O(nsd) count and OðlogðnsdÞÞ ¼ Oðlog nancÞ depth of
Clifford+ T circuit. So the total gate count isOðnsdÞ× n0 ¼ Oðns~nÞ, and the
total circuit depth is OðlogðnsnancÞÞ× n0 ¼ O ns~n log nanc

nanc

� �
.

We then consider the construction with ancillary qubit number
O(n)⩽ nanc⩽O(ns). In this case, we first perform the decomposition
Select ðBÞ ¼Q~n

r¼1 Select ðBlÞ. Then, we decompose each Select(Bl) with
Eq. (58). We let w = ⌊m/n⌋ and s0 ¼ ds=we, and

kj ¼
jw j < s0

s j ¼ n0

�
: ð60Þ

According to Lemma 8, with nanc ancillary qubits, each Select ðBl;kj�1 :kj�1Þ
can be constructed withO(nw) count andOðlogðnwÞÞ ¼ Oðlog nancÞ depth
of Clifford+ T circuit. So each Select(Bl) requires gate count

OðnwÞ× s0 ¼ OðnsÞ, and circuit depthOðlogðnancÞÞ× s0 ¼ O ns log nancnanc

� �
. In

this case,wehaven0 ¼ ~n in Eq. (57), so the total gate count and circuit depth

of Select(B(q)) is Oðns~nÞ and O ns~n log nanc
nanc

� �
respectively.□
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