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Circuit complexity of quantum access

models for encoding classical data
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How to efficiently encode classical data is a fundamental task in quantum computing. While many
existing works treat classical data encoding as a black box in oracle-based quantum algorithms, their
explicit constructions are crucial for the efficiency of practical algorithm implementations. Here, we
unveil the mystery of the classical data encoding black box and study the Clifford + T complexity in
constructing several typical quantum access models. For general matrices (even including sparse ones),
we prove that sparse-access input models and block-encoding both require nearly linear circuit
complexities relative to the matrix dimension. We also give construction protocols achieving near-
optimal gate complexities. On the other hand, the construction becomes efficient with respect to the
data qubit when the matrix is a linear combination of polynomial terms of efficiently implementable
unitaries. As a typical example, we propose improved block-encoding when these unitaries are Pauli
strings. Our protocols are built upon improved quantum state preparation and a select oracle for Pauli
strings, which hold independent values. Our access model constructions provide considerable
flexibility, allowing for tunable ancillary qubit numbers and offering corresponding space-time trade-offs.

Quantum computing offers speedups over the classical counterpart in dif-
ferent tasks, including factoring, searching, simulation, etc'. However, the
speedups, in many cases, rely on the existence of efficient oracles or access
models to encode the related classical data’. In this context, a function f(x)
representing the classical data of interest is encoded using a unitary
operation Uz which acts as an oracle in the computation. To study quantum
advantages, the number of queries to Urin a quantum algorithm is com-
pared to the number of queries to f(x) in classical algorithms. Quantum
computing provides substantial reduction in query complexity for many
problems of practical importance’.

There are various access models to encode classical data. One com-
monly used access model is the sparse-access input model (SAIM)*~'?, which
encodes general sparse matrices and outputs the value or position of the
non-zero elements when provided with appropriate inputs. SAIM is initially
introduced for Hamiltonian simulation and discrete quantum walks"*® and
has then found broad applications in other fields such as machine
learning™”" and classical oscillator simulations'”. For example, the quantum
linear system problem could be solved with O(x) queries to SAIM**'°, where
« represents the condition number of the matrix to be inverted.

Another important access model is block-encoding, which serves as a
crucial subroutine for quantum signal processing*"* and its generalization
—quantum singular-value transformations (QSVT)'®". The success of
block-encoding enables the realization of Hamiltonian simulation with an
optimal query complexity'*'*. Furthermore, many seminal quantum algo-
rithms, including Grover’s algorithm, quantum Fourier transformation, and
the HHL algorithm, could be viewed as special cases of QSVT, where the
problem of interest is encoded using block-encoding"’.

Many existing works treat access models as black boxes for con-
venience. However, the actual circuit complexity of the algorithm also
depends on the cost of each query to these access models. While being
important, this problem only draws much attention very recently with many
basic problems still left open. In particular, ref. 16 presents a nearly time-
optimal protocol for block-encoding of general dense matrices of 2" x 2"
dimension. A circuit depth of O(n) can be achieved at the expense of
exponential ancillary qubits. ref. 17 examines matrices with D data each
appearing M times and considers examples including checkerboard
matrices and tridiagonal matrices with polynomial circuit complexities.
However, the cost of block-encoding of more general matrices remains
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unexplored. Moreover, it is still unclear if there is a fundamental limit to the
resource required by data encoding.

In this work, we provide a framework of constructing quantum access
models in the fault-tolerant setting using Clifford 4 T gates. The protocol
works for general classical data and takes the underlying structure of the
data, such as sparsity and linear combintaion of unitaries (LCU), into
consideration. Our results represent a direct mapping from the query
complexity of quantum algorithms to their practical circuit complexity. Our
protocols allow tunable ancillary qubit numbers and offer space-time trade-
off. For general sparse matrices of dimension 2"= N, we investigate the
SAIM and block-encoding. For both access models, we first show that the
gate count lower bound increases about linearly with respect to N. We then
develop construction algorithms with varying ancillary qubit numbers
ranging from Q(n) to O(N). Across the entire range of qubit numbers, we
achieve nearly optimal circuit complexity. We next study the block-
encoding of LCU. Efficient block-encoding is achievable when the matrix
can be represented as a linear combination of a polynomial number of
unitaries, which can be implemented using polynomial-size quantum
circuits.

Our access model construction relies on optimized realizations of
various subroutines that are independently valuable, including quantum
state preparation, selective oracles for Pauli strings, and sparse Boolean
functions. In all the listed operations, we achieve improved or at least
comparable circuit complexities compared to the best-known realizations.

We now introduce the definition of SAIM and block-encoding in
below. Let N=2", we consider a sparse matrix H € CN*N with at most
s = O(1) nonzero elements at each row and column. Let H,, be the value of
the element at the xth row and yth column, and each H,, is a d-digit integer
(d=0(1)). Let idx denote a 2n-qubit index register, and wrd denote an n-
qubit word register, the sparse-access input model (SAIM) corresponds to
two unitaries Op, Op, which satisfies

OH|x’y>idx|Z)wrd = |x7y)idxlz @ HxAy> (13.)

wrd’

OF|x7 k)ldx = |xa F(-x7 k))ldx (lb)

Here, F(x, k) is the column index of the kth nonzero element in row x. Due to
its simplicity and generality, Eq. (1) becomes one of the standard access
models in quantum computing, which is usually assumed to be available in
processing classical data.

We call a unitary U the block encoding of H if we have

a((0"<| @ I)U(|0™<) @ Iy) = H,

where a >0 is the normalization factor, #,,. is the number of ancillary
qubits, and I is the N-dimensional identity. In practice, we may consider
approximated construction of the block encoding. More specifically, we call
unitary U an (&, M0 €) — block-encoding of H if

[H = a((0%=] @ 1y) U(lo™) ® Iy)|| <e )

for error parameter ¢ > 0. Throughout our manuscript, ||-|| represents either
the spectral norm for matrices or Euclidean norm for vectors. For a general
N-dimensional matrix H, the construction of its block-encoding requires
Q(Poly(N)) gate count. This is true even for sparse H as we show in
Supplementary Discussion 2.

On the other hand, when H has some other structures, the resource
may be significantly reduced. In particular, we consider H in the form of a
linear combination of unitaries (LCU) as

P-1

H= Z Aplhp, (3)
p=0

where u,, are n-qubit unitaries that can be implemented with polynomial-
size quantum circuit, and P = O(poly(n)). The concept “LCU” appeared

firstly in'®. The main purpose of ref. 18 and the follow-up work ref. 19 is to
realize non-unitary transformation on quantum computers. In the context
of Hamiltonian simulation, ref. 20 has shown that LCU-based method can
outperform product formula based methods. Many subsequent works with
different applications have then been inspired"*'>*'~*".

Without loss of generality, we may assume that log, P is an integer, and
P-1
p=0 %
amplitude, and rescaling the Hamiltonian. In particular, the linear combi-
nation of Pauli strings

= 1. This can always be satisfied by adding terms with zero

P—1
H= P;O a,H, (4)

will be studied in details. Here, a,> 0,P>1, HP: ®ln:1Hp,l’ and
Hye{+xL+X,+Y,£7} are single-qubit Pauli operators. Eq. (4) is
important as it corresponds to the Hamiltonian of almost all physical
quantum systems, such as the spin and molecular systems.

In our constructions, we consider the fault-tolerant quantum com-
puting setting. More specifically, we only use two-qubit Clifford gate and
single-qubit T gate, which is equivalent to the elementary gate set
Gaspr = {H,S, T, CNOT}. All gates in G, - are error-correctable with
surface code™. We benchmark the circuit complexity of a given quantum
circuit with three quantities: total number of elementary gates, total qubit
number (including data qubits and ancillary qubits), and circuit depth. We
will also discuss the space-time trade-off of our algorithm, i.e. the circuit
depth under a certain number of ancillary qubits. We also allow at least O(n)
ancillary qubits, because this does not increase the total space complexity.

Results

Circuit complexity lower bound

Before discussing the access model construction, we first study the lower
bound of the circuit complexity. We will focus on the encoding of sparse
matrices. The methodology here is general and can be readily applied to
other related problems.

Our strategy is as follows. Firstly, we analyze the capacity of a quantum
circuit with bounded resource, i.e. how much unique unitaries can be
constructed, given fixed number of elementary gates or circuit depth. Sec-
ondly, we analyze the size of the access model, i.e. the number of unique
unitaries required to approximate the access model with arbitrary para-
meters. The circuit complexity can then be estimated by comparing the
capacity of a quantum circuit and the size of the access model. All proofs of
our lemma and theorems in this section are provided in Supplementary
Discussion 1.

Quantum circuit capacity. Assuming that we are given a finite two-
qubit elementary gate set G.. We define g = |G,.| = O(1) with | - | the
number of elements in the set. Our first result is that the capacity can be
lower bounded only with the number of elementary gates, independent of
the space and time resources.

Lemma 1. Let G be the set containing all n-qubit unitaries that can be
constructed with C elementary gates in Gg.. Then, we have
log|Gc| = O((Clog(C + n))), even with unlimited ancillary qubit
number.

Lemma 1 implies that the capacity does not always increase with
ancillary qubit number, which can be understood as follows. All ancillary
qubits should be uncomputed at the end of the circuit. When Cis fixed, only
finite number of unitaries can satisfy this requirement, while constructable
by those elementary gates. We also note that the circuit depth D is bounded
by C, so Lemma 1 also implies a relation between capacity and circuit depth.

On the other hand, when the ancillary qubit number and circuit depth
are finite, the lower bound of capacity can be tighten as follows.
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Lemma 2. Let G, |, be the set containing all unitaries that can be con-
structed with nanacm ancillary qubits and D circuit depth. Then, we
havelog|G, ol = O(D(n + ny,)).

Lemma 1, 2 represent the ultimate representational power of quantum
circuits constructed with local gates. Lemma 1 and 2 can be used to estimate
the circuit complexity lower bound whenever the tasks have requirement on
IGclor|G, | Moreover, similar results can be obtained straightforwardly
for other type of elementary gate sets, such as k-local operations with k > 2.

Circuit complexity for encoding sparse matrices. With Lemma 1 and
2, we now estimate the circuit complexity lower bound for accessing
sparse matrices. For SAIM, it turns out that at least Q(N!) unique uni-
taries are required to cover the set of all SAIM for 1-sparse matrices. So
according to Lemma 1, 2, we have the following result.

Theorem 1. Given an arbitrary finite two-qubit elementary gate set G .. Let
Nano D and C be the number of ancillary qubits, circuit depth and total
number of gates in G, required to approximate SAIM in Eq. (1) with any
accuracy ¢ < 1. Then, we have (1 + 1,,.)D = Q(2"n) and C= Q(2").

A similar result is also obtained for the block-encoding of sparse matrix

as follows.
Theorem 2. Given an arbitrary finite two-qubit elementary gate set G, Let
#ano D and C be the number of ancillary qubits, circuit depth and total
number of gates in G, required to construct the block-encoding of H with
any accuracy ¢ < 2. Then, we have (n + 1,,.)D = Q(N) and C = Q(N") for
arbitrary a € (0, 1).

Theorem 1, 2 imply that a general sparse matrix can not be encoded
with subexponential quantum gates, for both SAIM and block-encoding. It
is possible to trade ancillary qubit numbers for the circuit depth. However,
the space and time complexities can not achieve sub-exponential scaling
simultaneously. The hardness of SAIM can be interpreted as follows.
Although H is assumed to be sparse (O(1) nonzero elements at each row and
column), there are still totally 2" x O(1) = O(2") number of independent
variables in total. Therefore, the quantum circuit should be large enough to
contain exponential number of elementary gates.

We note that the quantum circuits capacity for ancillary-free case has
been studied in Section 4.5.4 of . Moreover, a related result to Theorem 1 has
obtained in**, which gives a distinct quantum circuit number lower bound
with fixed qubit number, and show that there exists a table of size N
requiring Q(N) gate count. ref. 1 allows approximated implementations, but
does not consider ancillary qubit usage. ref. 25 implicitly allows ancillary
qubits, but does not consider approximated implementations. On the
contrary, our results are more general, because both ancillary qubit usage
and approximated implementations are allowed. Our results can be gen-
eralized from unitary to quantum channels. In Supplementary Discussion 1,
we show that the circuit capacity and circuit lower bound are similar if we
consider two-qubit quantum channels as elementary quantum operations,
which can include measurement and feedback controls.

Quantum state preparation

Quantum state preparation is a critical step of our access model construction
and of independent interest. We say that a (n + n,,.) qubit unitary G pre-
pares the n-qubit quantum state |y) with accuracy ¢ if

G(10") ® [0"<)) = |g) @ |0"rc) ©)

for some [||y) — 9]l <. ]

Such a problem has been studied extensively' . When given suffi-
ciently large among of ancillary qubits, the optimal Clifford + T depth
O(n + log(1/¢)) can be achieved”. However, with restricted ancillary qubit
number, the optimal circuit depth has not been reached. For example, with
O(n) ancillary qubits, the best-known Clifford + T construction has
achieved O((N/n) log(N /¢)) circuit depths™. Besides, for gate count scaling,
all existing algorithms have either O(Npoly(n)) or O(Npolylog(n))

16,26-3

Table 1 | Clifford+T complexities of n-qubit state preparation
protocols with fixed accuracy € and total qubit (data qubit +
ancillary qubit) number O(n)

Protocols Count Depth

ref. 26-29 O(N poly (n)) O(N poly (n))

ref. 38 O(Nlog(n)) O(N)

ref. 32 O(Nn) O(N)

Theorem. 3 O(N) O(('eantogloan)

Note: The ¢ scaling of Clifford -+ T count and depth are O(log(1/¢)) for all protocols. The & scaling of
qubit number is O(log(1/¢)) for ref. 38 and O(1) for all other schemes. ref. 38 also minimize T
complexities.

Table 2 | Clifford+T complexities of n-qubit state preparation
protocols with fixed € and exponential ancillary qubits

Protocols Count Depth
ref. 32,33 O(Nn) om’)

ref. 16,38 O(Nlogn) ond

ref. 34" O(Nlogn) O(nlogn)
ref. 37 O(Nlogn) O(n)
Theorem. 3 O(N) O(nlogn)

Note: The ¢ scaling of Clifford -+ T count and depth are O(log(1/¢)) for all schemes. Total qubit
numbers are O(Npoly(n)) for ref. 33, O(Nlog(1/¢)) for ref. 38, and O(N) for all other protocols. ref. 38
and ref. 16 also minimize T complexities. Protocols labeled " only require sparse connectivity, i.e.
each qubit connect to O(1) of other qubits.

Clifford + T count. It remains an outstanding question if a linear gate count
scaling with respect to the data dimension N can be reached.

Here, we provide a family of improved quantum state preparation
protocols with tunable ancillary qubit number. The result is summarized in
below (follows directly from Theorem 8 in Methods).

Theorem 3. With n,,. ancillary qubits where Q(n) < 1y, < O(N), an
arbitrary n-qubit quantum state can be prepared to accuracy ¢ with
O(Nlog(1/e)) count and O(N log(1 /s)%) depth of Clifford + T

gates, where O suppresses the doubly logarithmic factors of 7z,
Theorem 3 achieves linear scaling of Clifford + T count with respect to
N, and this is applied for arbitrary space complexity. When #,,. = O(n), the

circuit depth is lower than the best-known result of O<N M) More-
over, compared to”> which also study the space-time trade-off of state pre-

paration, our method improves the circuit depth scaling for a factor of
O(n,,./log n,,.). Summary of some representative state preparation pro-
tocols are provided in Table 1 and Table 2.

The main idea of our construction is as follows (see also Fig. 1). For
Hanc = O(n), we construct the quantum state with a set of uniformly con-
trolled rotations (UCR) with the method in**. Instead of decomposing each
UCR with identical accuracy, we distribute the decomposition error in an
optimized way. UCR with m controlled qubits, denoted as m-UCR, should
be decomposed into 2" number of m-qubit controlled rotations. When
performing Clifford + T' decomposition, to reduce the total circuit com-
plexity, we allow larger decomposition accuracy when m becomes larger.

For n,,. = O(N), we improve the Clifford + T decomposition of the
method in™ in a similar way. In both cases, the gate count scaling
O(N log(1/¢)) is achieved. For arbitrary ancillary qubit number between
two extreme cases, we provide a scheme combing two protocols together,
which allows space-time trade-off. Details of our state preparation scheme
and the corresponding complexity analysis are provided in Methods. We
also note that our protocol for few qubit case can be combined with the
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Fig. 1 | State preparation achieving O(N) Clifford + T count for few qubit case.
The operation is decomposed into uniformly controlled Z- and Y-rotations, whose
control and rotation parts are denoted with red and blue colors respectively. Each m-
UCR is decomposed into 2" multi-qubit controlled single-qubit rotations, and m
increases with the opacity of the control part (red). Each Z- or Y-rotation is
decomposed into Clifford + T gates, and the decomposition accuracy increases with
the opacity of the rotation part (blue).

Table 3| Summary of the Clifford + T circuit complexities of the
operations serving as subroutines in this work

Operations Count Depth

A (1 log(n log(1/¢)
?(N log(n. ,?g s)
O(nlog(1/e))

o (ML %)

SP (Theorem. 3) O(Nlog(1/¢))

SOPS (Theorem. 4)  O(ML) o(m + logL)
N O(log(m)sn)
SBM (Theorem. 5) Onsn) O(log(ns))

Ots log(s) log(n/e))
5(Iog(s) log(1/¢) + logn)

Note: Suppose the subroutine has nq. data qubit, in the last column, the first row corresponds to the
circuit depth when there are nan. = O(n4a) ancillary qubit; the second row corresponds to the circuit
depth without qubit number restriction. 0 suppresses the doubly logarithmic factors with respect to
nands. SP, SOPS, SBM and SSP correspond to state preparation, select oracle for Pauli strings,
sparse Boolean memory and sparse state preparation (Supplementary Discussion 2), respectively.

SSP (Theorem. 9) O(s(nlogs + log(1/e)))

depth-optimal scheme in”. The circuit depth can then be improved to
O(N log(1/e)n,,./ log(n,,.)), at the cost of higher gate count.

We note that when the quantum state is sparse, the circuit com-
plexity will be significantly lower. The construction of sparse state pre-
paration is useful for sparse block-encoding. Details about sparse state
preparation and sparse matrix block-encoding are provided in Supple-
mentary Discussion 2.

Other useful subroutines

Before discussing the construction of access models in Eq. (1) and Eq. (2), we
introduce some other useful subroutines, including select oracle and quantum
sparse Boolean memory. These operations may have applications individually
in some other scenarios. For both operations, we obtain their space-time
trade-off constructions, which have improved or comparable Clifford + T
complexities compared to the best-known realizations (see also Table 3).

Select oracle for Pauli strings. We consider a function of Pauli strings
H.,= ®ZL:1Hx.l, where x€{0,1,--,2" -1} and
H, e{+[£X,+Y,+Z} We introduce two registers, the index register
contains m qubits, and the word register contains L qubits. Select oracle
for H, is defined as

21
Select (H,) = Y |x)(x| ® H,, (6)
x=0
where |x) represents the computational basis of index register, and the

unitary H, is applied at the word register. In other words, the state of index
register controls the operations applied at the word register.

Several proposals of implementing Eq. (6) has been introduced in the
literature. For example, with 7,,. = m ancillary qubits, ref. 38 (Appendix
G.4) proposed a method achieving O(ML) circuit depth and gate count with
M =2". With n,,. = O(ML) ancillary qubits, Eq. (6) is a special form of the
“product unitary memory” in*, which can be constructed with O(log(ML))
depth and O(ML) count of Clifford + T gates. We provide an algorithm with
tunable ancillary qubit number achieving the circuit complexity as follows.

Theorem 4. With n,,, ancillary qubits where Q(m + L) < napc < O(ML),

Eq. (6) can be realized with O(ML) count and O (ML log "a"c) depth of
Clifford + T gates. -
Compared to the result in ref. 38, our protocol reduces the circuit depth

for a factor of O ( = ""“‘) while maintaining the gate count scaling. The proof

anc

of Theorem 4 and details of circuit constructions are provided in Methods.

Sparse Boolean memory. We consider a sparse Boolean function
B:{0,1}" — {0,1}", which has totally s input digits g satisfying
B(g) #0 -+ 0. Given an n-qubit index register (denoted as idx) and a
#-qubit register (denoted as wrd), we define the sparse Boolean memory
Select(B) as a unitary satisfying

Select (B)|Q)idx|z)wrd = |9)i4x12 ® B(q»wr(y (7)
We have the following result (see Methods for proof).

Theorem 5. With n,,. ancillary qubits where Q(n)<n,, < O(nsh),
Select(B) can be realized with O(ns#) count and O(nsn %) depth of

Clifford + T gates.
Different from SAIM, Eq. (7) contains constant number of nonzero
outputs. So its construction requires much less resource.

Construction of SAIM
With all necessary tools ready, we now discuss the construction of the SAIM
in Eq. (1). We have the following result.

Theorem 6. Given n,,,. ancillary qubits where Q(n) < #1,,. < O(Nnds), Oy
can be constructed with O(Nnds) count and O(Nnds 8 ”“‘“‘) depth of

Clifford + T gates.
Given n,, ancillary qubits where Q(n)<n,, . <O(Nnslog ), Op can be

constructed with O(Nnslogs) count and O(anlogsk’g" ) depth of
Clifford + T gates.

Proof. Oy corresponds to a 2u-index, d-word and Ns-sparse Boolean
function. So the construction of Oy, follows directly from Theorem 5.

The construction of Or can be realized in three steps. We introduce an
n-qubit ancillary register (denoted as anc). In the first step, we perform the
following transformation

1%, k)iaxlO)ane = 1%, k)i | F(x, K))

anc* (8)
According to Theorem 4, this step can be constructed with O(2"ns) count
and O(2"ns % ”‘"‘) depth with 7,y ancillary qubits. In the second step, we
apply swap gates between the ancillary register and half of the index register
which encodes k, i.e.

|X, k>1dx|F(x> k)> e |X, F(X, k)>idx|k)anc (9)

anc

This step can be realized with O(n) count and O(1) depth of Clifford + T
gates. In the final step, we perform the transformation

I, FCx, ©))igel k) ane = 1% FCx, 6)) g |0)ane (10)
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which can be realized by a 2n-index, [log,s]-word and Ns-sparse Boolean
memory. According to Theorem 5, this step can be constructed with
O(Nnslog s) countand O (an log s %) depth of Clifford + T gates. The

total gate complexity is therefore the combination of three steps above. []

Compared to the circuit complexity lower bound obtained in Theorem
1, our protocol has nearly optimal circuit complexities with respect to the
matrix dimension up to a factor of n. As mentioned before, SAIM is a
standard access model in many quantum algorithms, and the query com-
plexity to SAIM has been studied extensively for various tasks. With The-
orem 6, one can directly obtain the natural circuit complexity of those
algorithms. Further discussions are provided in the DISCUSSION section.

Construction of LCU-based block-encoding
The construction of LCU-based block-encoding can be realized with
quantum state preparation and select oracle”’. We define a = [ay, -+, ap]
and |a) = Z§ 1 /%] p). Let Gy be the state preparation unitary for |a),
and we define G = Gy ® I,n. We then define a Select oracle corre-
spondlng to Eq. (3) as Select (u,) = ZP o 1P} (Pl ® u,. It can be verified
that G Select (4,)G is a block-encoding of H with normahzatlon factor
= 1". The constructions of LCU-based block-encoding is then reduced to
the quantum state preparation and Select(u,), both of which can be con-
structed with polynomial-size quantum circuits.

The exact circuit complexity of block-encoding depends on the specific
form of u,. We take the LCU for Pauli strings (Eq. (4)) as an example. Based
on our improved quantum state preparation (Theorem 3) and Select oracle
for Pauli strings (Theorem 4), we have the following result, where (#1,,, €)-
block-encoding is the abbreviation of (1, #,,. €)-block-encoding (see
Methods section for proof).

Theorem 7. With n,, ancillary qubits where Q(log,P) < n,,. < O(NP),
the (11,0 €)-block-encoding of H defined in Eq. (4) can be constructed with
O(P(n + log(1/¢))) count and é(Pn log(1/¢) %) depth of Clifford +
T gates, where O suppresses the doubly logarithmic factors of #,n.

The block-encoding of LCU can be constructed with polylogarithmic
circuit complexity with respect to the data dimension, as oppose to the
SAIM requiring polynomial gate count. Therefore, for structured classical

data in the form of Eq. (3) exponential quantum advantage can be expected.
In below, we provide further discussions about by our results.

Discussion

As demonstrated in Theorem 1, a general SAIM can not be implemented
with O(Poly(n)) size quantum circuit. In the language of complexity class,
this implies that BQP**™  BQP, where SAIM represent the quantum
oracles in the form of Eq. (1). In other words, if problem A can be solve with
polynomial number of queries to the SAIM, A is not necessarily solvable
with polynomial-size quantum circuits. In fact, it is reasonable to conjecture
that BQP**™ = PSPACE when considering the scaling with 7. The reason is
that for a general matrix with 2" dimension, storing all its element requires
exponentially large space, and this is true even for sparse matrix. The same
argument applies to the block-encoding of sparse matrices as well.

This argument is consistent with the results about classical dequanti-
zation algorithms™*’, which demonstrate that sub-linear classical runtime can
be achieved for tasks such as recommendation systems and solving linear
systems. Note that these algorithms assumes a classical oracle similar to SAIM.

On the other hand, our study on sparse matrix encoding still has its
great value. First of all, it is rare to have structured classical data that can be
encoded with logarithmic complexity. In many cases, sparse matrix is the
most compact representation for classical data of interest. Second, with
SAIM or block-encoding, polynomial quantum speedup with respect to the
matrix dimension N is still possible. Our constructions are nearly optimal,
and can be used to estimate the concrete Clifford + T complexities of many
quantum algorithms of practical interest. Finally, techniques developed here
may serve as a subroutine for encoding a larger matrix with special

structures, with which the with which exponential quantum advantage may
be possible.

An open question is how to determine whether a given matrix is
efficiently block-encodable. This problem can be considere as a general-
ization of the unitary complexity problem*'~*, which is important due to the
broad applications of block-encoding'. According to Theorem 7, LCU for
efficient unitaries [Eq. (3)] is a sufficient condition of efficient block-
encoding. Due to the generality and simplicity of LCU, it is reasonable to
conjecture that the decomposition of a matrix in the form of Eq. (3) has close
relation to the efficiency of its block-encoding. The block encoding of H is
challenging when it can not be well approximated by Eq. (3) with
P =0O(Poly(n)).

In conclusion, we have studied the circuit complexities of typical
quantum access models, such as SAIM and block-encoding. We show that
the circuit complexity lower bound for encoding sparse matrix is poly-
nomial with respect to the matrix dimension. We provide nearly-optimal
construction protocols to achieve the lower bound. For LCU-based block-
encoding, we develop a construction protocol based on the improved
implementation of quantum state preparation and select oracle for Pauli
strings. Our protocols are based on Clifford + T gates and allow tunable
ancillary qubit number. We expect that our results are useful for processing
classical data with quantum devices” ™. Future works may include the study
of the circuit complexity lower bound for block-encoding, and how to
further improve our protocols to achieve the lower bounds. Another
interesting topic is about the power of quantum circuits with global quan-
tum channels. For example, if the feedback controls are dependent on the
measurement outcomes of many measurements. In this case, the elementary
operations may no longer be described by local operations, and the com-
putation power of the circuit is expected to be enhanced. In the direction of
applications, it is interesting to find practical classical problems, whose data
structure are able to be represented in the form LCU. In those scenarios,
exponential quantum advantage can be expected.

Methods

Quantum state preparation

We first consider the preparation with n ancillary qubits. There are some
state preparation protocol with optimal single- and two-qubit gate count,
such as ref. 28. However, with direct Clifford 4+ T decomposition, the gate
complexity becomes suboptimal. We achieve gate count and circuit depth
linear to the state dimension with an optimized Clifford + T decomposition.
The result is as follows.

Lemma 3. With »n ancillary qubits, an arbitrary quantum state can be
prepared to precision & with O(N log(1/¢)) depth and O(N log(1/¢)) count
of Clifford + T gates.

Proof. According to™, with single- and two-qubit gates, an arbitrary
quantum state |y,.) can be expressed as

W/targ <HF)/> (H FJZ>|OO) (11)
j=1
where F; and FJY are uniformly controlled Z- and Y-rotations

271
2 Ik} (k| © R () ® [0, (12a)
21

F =" Kkl ®R(«)) ® L, (12b)
k=0

with single qubit rotation gates R (9) = ¢ 09/2 R (6) = ¢~ /2. Here
(xy e R and o&? (€ R are some rotatlon angles, the exact values of which
are not unportant for our analysis.
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Single-qubit rotations can be approximated with Clifford + T' gates.
According to ref. 48, unitary 1, satisfying ||, — R (OC /2N <e / 2 can be
constructed with O(log(1/¢;)) single-qubsit Clifford + Tgates w1thout ancilla.
Accordingly, we can unplement single-qubit-controlled-R, (a7, , €;), such that

v4 ¥4
CADEEACAIEE

with the following circuit.

%k &

(13)

7 D ~ D
Uz \u u \u

Note that % can be realized by the inverse conjugation of the Clif-
ford 4 T gate sequence of 1,. Similar argument is also applied for R),((x]{ o
Then, according to Lemma 6 as will be introduced in the next section, one
can construct the following unitaries

. 271-1 _
F=3 WEek, () ® L (14)
2 _
Fo= Y kR (a,g)® e (15)

k=0

with j ancillary qubits, O(2/ log(1/¢;)) depth and O(2/ log(1/¢;)) count of
Clifford + T gates. We therefore approximate the target state with the fol-

lowing
Vi) = (H F ) <][[1 ?,*) 0

In below, we first bound the distance between |‘//m
verified that |F}|y) — F/ly)| <g and [|Fj|y) ~
quantum state |1//> In other words, we have ||
||F —FZ||<£ Therefore,

(115 - 1i#)

(16)

> and [y,,,,). It can be
FZ|14/) I <g for any
Fy|| <¢g and

(17)

n—1__ n—1
< (HF?—HF*) +e,
j=1 j=1

n
<>

j=1

In a similar way, we can obtain H (H] 1 Fj - 11, >
have

n
< Dl & Sowe

W rarg) — g

B

z

< F ]1=£[FJ ﬁF;ﬁFf)

\

|
_
_

j= Jj=

no__, n no__ n (18)
(ri-p1m)| (11 - fie)]
j=1 j=1 j=1 j=1
SZiej.
j=1

According to Eq. (18), to control the total error rate to a constant value i. Le.
I |14/mg) |1//mg) | <e, it suffice to set &; = £/2"7*'. Because each F]y or F
require O(2’ log(1/¢;)) gate count and circuit depth, the total gate count 1s

C= Z 02 log(1/¢;)

j=0

= 5 0 log2 /) )
=0
= O(Nlog(1/¢)).
Similarly, the total circuit depth is
n—1 i
D= 0(2log(1/¢)) = O(N log(1/¢)). (20)
j=0

O
We then consider the quantum state preparation with exponential
ancillary qubits. Our protocol follows the same idea in** with improvement.

Lemma 4. Arbitrary n-qubit quantum state can be prepared with O(N)
ancillary qubits, O(nlog(n/e)) depth and O(Nlog(1/¢)) count of
Clifford + T gates.

Proof. Our construction is based on the protocol in* with revision and
improved Clifford+T decomposition.

General procedure. The hardware layout of our method contains a
binary tree of qubits with n + 1 layers, which is denoted as H. The Ith (with
0 <1< n) layer of H is denoted as H;. For 1 <1< n, H; connects to another
binary tree of qubits, denoted as V. The root of the tree V; serves as the /th
data qubit, and we denote it as d; here.

Our protocol for preparing target state |y,,,) = i:ol oy |k)q works
as follows. We initialize the root of H as |1);; while all other qubits are at
state |0). In the first stage, H is prepared at the quantum state (qubits at state
|0) are not shown)

2"—1

Dy, — kgo Al Pe) - @1

Here, |¢, ) is one of the computational basis of H to be defined later. In the
second stage, the data qubits are transferred to the n-qubit computational
basis |k)4 conditioned on |<pk>, ie.

-1 21
> “k|(Pk>H - kZO “k|‘Pk>H|k)d (22)
Finally, the binary tree H is uncomputed
2'—1 2'-1
(23)

Z “k|‘Pk>H|k)d - kX: ‘xkl())Hlk)d-
=0

The target state is then obtained after tracing out H. The readers are refereed
to™ for more details. Transformations in Eq. (22) and Eq. (23) can be ideally
realized using Clifford circuit with O(n) depth and O(2") gate count. On the
other hand, the first stage for obtaining Eq. (21) contains rotation that has to
be approximated with T gates and hence more complicated. So we focus on
Eq. (21) in below.
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Realization of Eq. (21). We will first show how Eq. (21) can be realized
with single-qubit and CNOT gates with a method slightly different from™,
and then introduce its Clifford + T decomposition,

We define a,,x = axand oy = arg (o 41 20/ 1@ 41 261 + 1041 2411
for all 0 << n — 1. Note that we can assume arg(a,) = 0 without loss of
generality. For 0 < L < n, we define

L

I¥,) = (24)

1 L
a1k, D),
1=0

k=0

We have
w(0; ¢; &; a; b; €)(al0),0),|0), + b]1),]0),|0),)
= 4a|0),10);10). + b, (e)|1)[10) + b,()|01),

for some \/lbl(s) — b, (0)]* + [b,(e) — by(0)* <

(28)

|ble. We then define

2k -1

Wi(e) = H W(HLJ;(PL]';E;HL—IJ;HL‘Zj;HL,2j+1)7

(29)

which is used to approximate W;. From Eq. (28), it can be verified that
|| Wi @NY,_,)— WY, ) || < &. We set the accuracy at the Lth layer as
&1, and define

The realization of Eq. (21) contains 7 steps, with the Lth step corresponds Vo) = I¥,),  |¥,) = W(e)¥, ). (30)
to|[¥,_,) — [¥,). We have
In Eq. (24), we have defined (0, 0) =0, and (k, ]) = k,.k,,_; -+ k1., for
Iz Lk, D)) =10 ®(kl)|1)|0)®2 —(kD-1, leepresentsthelthlayerofH Eq. 1%} — %))
(21) and Eq. (24) have the correspondence |¢;)= ®Z:0|(k D) )y, and L L
Zk—o ocklgok> = |y, ). S0 |¥,,) is the target state of the stage 1 introduced = ”}VL(EL)L\PL—l) _yLle—l)I|
in Eq. (21). . o . SIWLEDIY—1) — WYl 31)
We then introduce the reaglzatu?n (;f ¥,_,) — I‘I’L>.\N§ deﬁ(;le single F W, (eI, ) — W, )l
. . cos sin e’ o7 7 o
qubit rotation r,,(6) = (_ §nf  cos 9> andr,(¢) = ( 0 o >,and <”WE(5L)|\PL—1) = W)Y )il + ¢
a three-qubit controlled operation as follows. =) = o)l e
a .
w(@¢saibie) = b —p—ry(0/2) —D—ry(6/2)" - r.(¢/2)" —D i r:(¢/2) I—E
¢ \N%
a,b,c are labels of the corresponding qubits. Let 0,;= By applying the inequality above iteratively from L =1 to L = n, we have

arccos(b, 2]/b, 1) and ¢y = dioi1 — Praj at the Lth step (1 <KL <n), we
implement the parallel rotation

21

W, = l_!) W(GL,j;¢L,j;HL—1,j;HL,2j;HL,2j+1)
j=

(25)

which costs O(1) depth and O(2") count of single-qubit and CNOT gates. It
can be verified that

WL|\YL—1> = |‘PL>-
The total single-qubit + CNOT depth and gate count are O(n) and O(2")
respectively.

Clifford 4+ Tdecomposition. W, are assumed to be constructed with
single- and two-qubit gates. In below, we discuss how to decompose it with
Clifford 4T gates with high accuracy. According to ref. 48, one can always
construct a unitaries ?Y(Q; €),7,(¢; €), with O(log(1/¢)) depth of gates in

(26)

- n
¥, — ¥ < >0 e
L=1

(32)

According to Eq. (32), to control the total error rate to a constant value, it
suffices to set &; = Ke/(n—L+1)* for some constant K. This is the key step of
our improved construction.

Circuit complexity. Each W, can be realized with O(2"log(1/¢;))
countand O(log(1 /¢, )) depth of Clifford + T gates. Therefore, the total gate
count at stage 1 (Eq. (21)) is

c:o(i

:O(,

log(l/ 5L)>

‘M‘

2Llog((n—L+1) /s))

{H, S, T}, which satisfies ) (33)
= O(Z”Jrl > @) + O(2"log(1/¢))
m=1
7.(0;¢) —r (0) | <e, 7.(¢;€) — Le
176 —r,0) | <& [ Fge)—r() | <e.  (27) _ o0+ 0(2"log(1/0)
Accordingly, we define w(6; ¢; €; a; b; ¢) as the following transformation = O<N log(1/ 5))~
a .
w(:graibie) = b —D—7y(0/2;8) —D—7y(0/2:8)" | F(¢/2;6)" —D—]72(8/2:¢) I—é
¢ \v
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The total circuit depth at stage 1 is

D

O(i 1og(1/eL))
L=1

O( 3" log((n — L+ 1)%))

le (34)

= O(Z log(m2)> + O(nlog(1/¢))
m=1

O(log(n!)) + O(nlog(1/e))
O(nlog(n/e)).

Recall that Egs. (22), (23) has O(N) count and O(n) depth of Clifford + T
gates. So the total gate count and circuit depth are O(Nlog(1/¢)) and
O(nlog(n/e)) respectively. []

We also cares about the controlled quantum state preparation. In our
preparation scheme, the initial state is |1); , i.e. the root of H is setas |1). If
we set H, as |0) H, instead, it can be verified that the output stateis [0 - - - 0) 4.
Therefore, to implement controlled state preparation, one can simply
replace the root qubit H; by the controlled qubit, and the circuit complexity
remains unchanged. In other words, we have the following result.

Lemma 5. Arbitrary single-qubit-controlled n-qubit state preparation
unitary can be constructed with O(N) ancillary qubits, O(n log(n/¢)) depth
and O(N log(1/¢)) count of Clifford + T gates.

Based on Lemma 3, Lemma 4 and Lemma 5, We have the following
result for intermediate number of ancillary qubits. Note that Theorem 3 in
the main text follows directly from Theorem 8.

Theorem 8. (space-time tradeoft QSP). With n,,,. ancillary qubits where
Q(n) < nne < O(2"), state preparation and controlled state preparation of
an arbitrary n-qubit quantum state can be realized with precision & with

O(Nlog(1/e)) count and O(N Wﬁ”w) depth  of
Clifford 4 T gates.

Proof. We separate all data qubits into two registers. Register A contains the
last n, = n — |log,m| data qubits, and register B contains the first n;, =
|log,m] qubits for some n < m < 2". We define N, = 2™ and N;, = 2".
The target state can be rewritten as

N,—1
W/targ) = 1;) ﬁk'k)A|¢k>B (35)

for some normahzed B and normalized quantum states |¢). We

eﬁneIt//u>A Zk —0 ﬂklk

In the first step, we prepare register A to a quantum state

[.), = Z Bylk) 4 (36)

which satisfies || |1//a> — |%> || < &/2. According to Lemma 3, this step can
be realized with O(N,log(1/¢)) = O(Xlog(1/¢)) count and depth of

Clifford + T circuit.
In the second step, we implement

~ Na_l ~ Nﬂ_l ~ ~
Select (Gp) >- Pilk)alo™)p = >° Bilk)aldy)g
k=0 k=0 (37)
= |¢targ)
where akvis a state preparation unitary satisfying G,|0) = |$k for some
l1¢x) — |d) Il <&/2. Tt can be then verified that |||1//tar ) — |1//targ)|| <e

According to Lemma 4, controlled-G; such that GkIO”b) = |¢,) can be
constructed with O(m) ancillary qubits, O(N,log(1/¢)) count and

O(n,, log(n,,/€)) = O(log(m) log(log(m)/¢)) depth of Clifford + T gates.
Then, according to Lemma 6, with O(m) ancillary qubits, Select(G, ) can be
constructed with

C = O(N, XN, log(1/¢)) = O(N log(1/)) (38)

gate count, and

o)
Il

O(N, % log(m)log(log(m)/¢))

39)
— log(m) log(log(m) /¢) (
O(Nogm log(log(m s)

depth of Clifford 4 T gates. By setting #,,. = O(m) for some #,,. > 1, we
complete the proof. []

Select oracle for general unitary functions. Suppose x is an m-bit
bitstring, and U, are general unitaries. We consider the unitary

M—1
Select (U,) = Y |x) (x| ® U,,

x=0

(40)

where M = 2", In below, we discuss how to construct Select(U,) based on the
implementation of single-qubit-controlled-U,, and the corresponding cir-
cuit complexity upper bound. We define C.y(U,, r) and D.y(U,, 7) as the
count and depth of Clifford + T gates required to construct the controlled-
U, given rancillary qubits. The following result corresponds to the case with
m + r ancillary qubits.

Lemma 6. (Appendix G.4 of *). With m + r ancillary qubits, Select(U,) can
be constructed with O(MC_ (U, r)) count and O(MD (U, r)) depth of
Clifford + T gates.

Proof. We introduce an ancillary register with m qubits. We denote the jth
qubit at the index register (encoding |x)) and ancillary registers as C;, A;
respectively. We also denote C=[C,C,-+,Cpl and
A=[Ap AL Ay -, Ayl Ag s initialized as [1) while all other ancillary
qubits are initialized as |0). (]

Eq. (40) can be realized by querying Select(C, A, m, 0), which is defined
recursively by Algorithm 1. In Algorithm 1, Toffoli(a, b; ¢) is the Toffoli
gate with qubit a and b as the controlled qubits and ¢ as the target qubit;
C-U,(a) is the controlled-U, with qubit a as controlled qubit and the cor-
responding word register as target qubits; dim(v) represent the dimension of
the vector (for example, dim(C) = n); v; represents the jth element of v and
V] = [V'> Vj+l) T Vdim(v)]~
Algorithm 1. Select(y, q, ], x)

1:if [#0:

2:  Toffoli(y, q,:4,)

3:  Select(y,, g2, 1 — 1, %)

4:  Toffoli(y;, q,;9,)

5. Toffoli(y:, q1; qz)

6:  Select(ys, qp, [ — 1,x+ 2"
7 Toffoli(y, q1; 92)

8: elseif [ = 0:

9: C' Ux(ql)

10: end if

In our implementation, the controlled-U, are queried for totally M
times with x € {0, --- , m — 1} sequentially. Moreover, there are totally O(M)
Toffoli gates acting sequentially. Therefore, the total gate count and circuit
depth are O(MCq(U,, 1)) and O(MD,i(U,, 1)) respectively.

We note that Algorithm 1 can be further simplified by combining some
concatenated gates™”. But the asymptotic scaling here is optimal.

We then consider the construction of expoential ancillary qubits. In
Algorithm 4,5 of™, based on the bucket-brigade architecture for quantum

random access memory” ™", it has been shown that any Select(U,) can be
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constructed by 4M — 1 ancillary qubits, O(M) Clifford + T gates arranged
in O(m) circuit depth, and queries to all single-qubit-controlled-U, for
x € {0, -+, M — 1} in parallel. If each controlled-U, uses r ancillary qubits,
we require totally M(4 + r) — 1 ancillary qubits, because they are imple-
mented in parallel. To sum up, we have the following result.

Lemma 7. (many qubit Select oracle). With M(4 + r) — 1 ancillary qubits,
Select(U,) can be constructed with OMC,y(U, 7)) count and
O(m + Dn(U,, 1)) depth of Clifford + T gates.

Select oracle for general unitary functions. In below, we give the proof
of Theorem 4 about the construction of select oracles for Pauli strings
defined in Eq. (6). Note that Eq. (6) is a special case of Eq. (40) with
U, € {+], +X, +Y, +Z}®".

proof of Theorem 4. Recall that Select oracle for Pauli strings corresponds to
Eq. (40) with U, = H,, where H, = ®j_H, jand H, € { + [+ X, = Y, + Z}.

Given L ancillary qubits, controlled-H, can be constructed with the
following circuit.

c
a D S
az S S
ar D ©
tr Hy

where control qubit is denoted as ¢, ancillary qubits, all initialized as |0}, are
denoted as a;,a,,++,a; and target qubits are denoted as t,t, -+,
respectively. Two of the L-Toffoli gates can be effectively constructed with
O(L) count and O(log L) depth of Clifford + T gates. All controlled Pauli
gates can be constructed with totally O(L) count and O(1) depth of Clif-
ford+T gates. In other words, we have C.y(H,L)=0(L)
and D ,(H,, L) = O(log L).

Our protocol of constructing Select(H,) uses at least Q(m + L) ancil-
lary qubits. We divide the m-qubit index registers into two subregisters A
and B with m, >log,(m + L) and m;, = m — m, qubits respectively. Let
M, = 2", M, = 2™, Select (H,) can be rewritten as

M,—1

Select (H,) = Z |xa><xa| V, (41)
x,=0
M,—1
an = Z |xb><xb| ® HxﬂéBxb‘ (42)

x,=0

X, and x;, are bit strings with m, and my, bits respectively, and x = x, @ x;,.
According to Lemma 7, V, can be constructed with M,(4+ L) — 1
ancillary qubits, O(M,L) count and O(m, + log L) depth of Clifford + T
gates. According to Lemma 6, with totally 7,,.=M,(4+L)—1+m,
ancillary qubits, the Clifford + T gate count of Select(H,) is

C = O(M,M,L) = O(ML). (43)

The Coifford + T depth is
D = O(M,(m, +logL))
_ o)
_ log((rpe+1)/4) (44)
= O(M W)

O((Mp8=c),

anc

which completes the proof. []

Details about LCU-based Block-encoding

Without loss of generality, we assume that m = log, P is an integer. We let
G)q be a state preparation unitary satistying || G [0™) ync — Gy 10™) anc
< ¢/3. Let @1, be unitaries satisfying || %, — u, || <&/3. We then define

G =Gy ®ly, (45)
U = G Select (up)G, (46)
U= G+ Select (up)G7 (47)
and W = U — U. With a similar argument to Eq. (31), we have
W) <e, (48)

where |¥) = |0™) ® |1//> and |1//> is an arbitrary N-dimensional quantum
state. We may rewrite W as

SH W,
W= '
WZ,I W2,2

where 0H € C**\w,, e CV*" ' w,, e C"" and W,, e V"N,
Note that if || §H || <¢, U is a (m, €)-block-encoding of H. We have

(49)

SHIy)

W|\P) — 0H WI,Z |V/> — (50)
Wy Wi, 0 Wi |‘/’>

Combining Eq. (48) with Eq. (50), we have

I 6Hy) | < [ WI¥) || <e. (51)
Because Eq. (51) isapplied for arbitrary | 1//> ,we have ||8H]| < &. Therefore, U
is a (m, €)-block-encoding to H. We can now study the efficiency of block-
encoding.

The actual circuit complexity depends on the form of u,. We now proof
Theorem 7 which corresponds to u, € {+], +X, +Y, +Z}®".

Proof of Theorem 7. With #,, ancillary qubits where
log,P < n,,. <O(P), G can be constructed with O(Plog(1/¢)) count and
O(P w) depth of Clifford+ T gates. With

Q(log,P) < n,,. < O(Pn), Select(H,) can be constructed with O(nP) count
and O(nP %) depth of Clifford + T gates. Therefore, the total gate

count of Select(H,) is O(P(n + log(1/¢))). For Q(log, P) < n,,. < O(P), the
circuit depth is

(P12 1+ gt/ 2

anc
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- O(P(n +log(1/¢)) loiﬂ) . (53)

anc

For  Q(P) €4 <O(Pn), the circuit depth for G s
O(log Plog(log(P)/¢)) = O(log nlog(log n/¢)), where we have used the
assumption P = O(Poly(#)). Combining with circuit depth of Select(H, ), the
total circuit depth for block-encoding is

e log() logllog(n)/e) |, p) log n>

log 113, Manc

e

nPlog(n) log(log(n)/¢) logn,,.
ogop) T ) )

(54)

nPlog(log(n)) + nPlog(1/¢)) L)

nPlog(1/¢) %) ,

Il
(@]

TN TN N TN
—

which completes the proof. []

Sparse Boolean memory

Recall that sparse Boolean memory performs the transformation
Select (B)|9)i4x12)wra = 19)14x1Z ® B(q)) yrg> idx represents an #-qubit index
register, wrd represents a 71-qubit register, and there are most s input digits g
satisfying B(g) #0 --- 0. We define gy as the kth input digit with nonzero
output, and Qp = {q,, ¢, - - - ,4,}- In”, we have developed a construction
of SBM with O(nsn) ancillary qubits. The result is as follows.

Lemma 8. (Sec. I11 B in Supplemental Material of *). With O(ns#1) ancillary
qubits, Select(B) can be realized with O(nsn) count and O(log(ns)) depth of
Clifford + T gates.

Based on Lemma 8, we can obtain the gate complexity with inter-
mediate number of ancillary qubits. The proof of Lemma 5 is given as
follows.

Proof of Lemma 5. Let wrd; be the Ith qubit of the word register, and z; be
the Ith digit of z. S0 |2) uq = [T/, 121)yyrq - Select(B) can be separated into
multiple Boolean functions applied at different words. Let Bi(q) be the Ith
digit of B(q), and B, , (@) =B, (q9)---B, ,,(9)B, (). We define
Select(B; ;) as a unitary satistying

I

max

Select (B, ;1 )Iq);4 H |Zl>wrdl (55)
l=lmin

Fma
=12 1] 121 ® Bi(@))yyrg (56)

l:lmm

Forany 1l =[,<I, < --- <l, = n+ 1, it can be verified that
Select(B) = [] Select(B; ;). (57)
1

r=

We also define Select(B;) = Select(By,;). For each B, we further define Boolean
functions B;; ;. (q) = B)(q) A (kpyyn S k< k) for ki <k, For any

min E ‘max min =

0=ky<k; <--- <ky =s, it can be verified that

Select(By) = [ [ Select (Biy, -1): (58)

j=1
We first consider the construction with ancillary qubit number
O(ns) < n,,. < O(nsn). In this case, we decompose Select(B(g)) with Eq.
(57). Welet d = | nn/(ns)| and ' = [#/d], and

d+1 <n’
lr:{r~+ r<n ' (59)

n+1 r=n
According to Lemma 8, with 1, ancillary qubits, each Select (B, ,; _;) can
be constructed with O(nsd) count and O(log(nsd)) = O(log n,,,.) depth of

Clifford + T circuit. So the total gate countis O(nsd) X n' = O(nsn), and the

~ logn,

total circuit depth is O(log(nsn,, ) X n' = O( nsn =< ),

We then consider the construction with ancilldry qubit number
O(1) < Nanc < O(ns). In this case, we first perform the decomposition
Select (B) = [, Select (B;). Then, we decompose each Select(B)) with
Eq. (58). Welet w= |m/n] and s’ = [s/w], and

jw
-

According to Lemma 8, with 7, ancillary qubsits, each Select (B, ki kj_l)

can be constructed with O(nw) count and O(log(nw)) = O(log n,,,.) depth
of Clifford + T circuit. So each Select(B) requires gate count

O(nw) xs' = O(ns), and circuit depth O(log(n,,,.)) s’ = O <ns k)i#) .In
this case, we have n’ = 7 in Eq. (57), so the total gate count and circuit depth
of Select(B(g)) is O(nsn) and O(nsﬁ %) respectively. []

j<s
T (60)
J=n
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