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Quantum LOSR networks cannot generate graph states with
high fidelity
Yi-Xuan Wang1,2,3, Zhen-Peng Xu 1,4✉ and Otfried Gühne 1

Quantum networks lead to novel notions of locality and correlations and an important problem concerns the question of which
quantum states can be experimentally prepared with a given network structure and devices and which not. We prove that all multi-
qubit graph states arising from a connected graph cannot originate from any quantum network with bipartite sources, as long as
feed-forward and quantum memories are not available. Moreover, the fidelity of a multi-qubit graph state and any network state
cannot exceed 9/10. Similar results can also be established for a large class of multi-qudit graph states.
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INTRODUCTION
A central topic in quantum information theory is entanglement
theory1. Since quantum entanglement is a valuable resource for
quantum metrology2, quantum computation3,4, quantum key
distribution5 and anonymous quantum conference key agree-
ment6, bundles of experimental effort have been devoted to
create more entangled state7–10, and series of theoretical works
have contributed to characterize different types of
entanglement11–13.
A quantum state is said to be entangled if it is not a convex

combination of product states. To detect the quantum entangle-
ment of two particles, witnesses14,15 (often related to the fidelity
of a target state11,16,17) and the PPT criterion18 are standard
methods. In the multiparticle case a state can be entangled, but it
is still a convex combination of states which are separable for the
different bipartitions, then it is called biseparable13. If the state
cannot be written as a convex combination of any biseparable
states, it is said to be genuine multiparticle entangled (GME)11–13.
As for the detection of GME states, the fidelity with a highly
entangled state, such as the Greenberger-Horne-Zeilinger (GHZ)
state is one of the most used in experiments7,19. For example, an
n-partite state with a GHZ fidelity exceeding 1/2 is GME. Including
GHZ state as a special example, graph states20–22 play an eminent
role in entanglement theory and its applications.
Recently, the concept of genuine multiparticle entanglement

has been debated23,24, and novel notions appropriate for the
network scenario have been introduced and studied25–27. In a
network, states can be prepared by distributing particles from
multiple smaller sources to different parties and applying local
channels, see Fig. 1 for an example. In this fundamental scenario
the local operations rely on a globally shared classical variable
(Local operations and shared randomness, LOSR), e.g., a pre-
defined protocol with shared randomness. The scenario of local
operations assisted by classical communication (LOCC) gives more
power to create distributed quantum states. But, communication
based on outcome of local operations requires considerable time,
either in the scenario of distributed quantum computation where
local operations takes a while, or in the case that nodes in the
network are far away from each other. Consequently, it would also
require the usage of quantum memories or feed-forward

techniques, which are expensive resources for current quantum
technologies. Moreover, device-independent quantum informa-
tion protocols are frequently related to Bell scenarios, where
communication is impossible due to the space-like separation.
Overall, an n-partite state is called genuine network multipartite
entangled (GNME) if it cannot be created via LOSR in the network
approach using (n− 1)-partite sources only. Besides this, other
quantum correlations like quantum nonlocality and quantum
steering have also been generalized to quantum networks
recently28–35.
For three-qubit states in the triangle network, a witness derived

from the fidelity25,34 and semidefinite programming methods
based on the inflation technique25,36 can be useful. The
disadvantage of these approaches is that both of them are hard
to generalize to more complicated quantum networks. An
analytical method based on symmetry analysis and inflation
techniques37 was proposed recently27 and can overcome some of
the difficulties. Explicitly, it was shown there that all n-qubit graph
states with n≤12 are not available in networks with bipartite
sources, and it was conjectured that this no-go theorem hold for
multi-qubit graph states with an arbitrary number of particles.
In this paper we prove that all multi-qudit graph states with a

connected graph, where the multiplicities of the edges are either
constant or zero, cannot be prepared in any network with only
bipartite sources. In fact, this result holds also for all the states
whose fidelity with some of those qudit graph states exceeds a
certain value. More specifically, our results exclude the generation
of any multi-qubit graph state with a fidelity larger than 9/10 in
networks. This proves the conjecture formulated in ref. 27, it also
may provide interesting connections to other no-go theorems on
the preparability of graph states in different physical scenarios,
such as spin-models with two-body interactions38,39.

RESULTS
Preliminaries
Network entanglement. The definition of network entanglement
is best explained using the example of the triangle scenario, see
Fig. 1. Here, one has three bipartite quantum source states ςx for
x= a, b, c, and three local channels EðλÞ

X for X= A, B, C, where λ is
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the shared random variable with probability pλ. The global state
can be prepared in this scenario has the form

ϱ ¼
X

λ

pλEðλÞ
A � EðλÞ

B � EðλÞ
C ςa � ςb � ςc½ �: (1)

For a given state ϱ, the question arises whether it can be
generated in this manner, and this question was in detail
discussed in refs. 25–27.
More generally, one can introduce quantum network states as

follows: A given hypergraph G(V, E), where V is the set of vertices
and E is the set of hyperedges (i.e., sets of vertices) describes a
network where each vertex stands for a party and each hyperedge
stands for a source which dispatches particles to the parties
represented by the vertices in it. This quantum network is a
correlated quantum network (CQN), if each party can apply a local
channel depending on a shared random variable. Then, in
complete analogy to the definition in Eq. (1) one can ask whether
a state can be prepared in this network or not. More properties of
these sets of states (e.g., concerning the convex structure and
extremal points) can be found in refs. 25,27.

Three-qudit GHZ states and the inflation technique. The inflation
technique37 turns out to be an useful tool to study network
entanglement25,27. Unless otherwise stated, we consider networks
with bipartite sources only. For a given network as the triangle
network depicted in Fig. 1 and also in Fig. 2a, the copies of sources
are sent to different copies of the parties as in Fig. 2b, c. In principle,
the source states may also be wired differently in different kinds of
inflation. For convenience, here we use also edges with only one
vertex as in Fig. 2d, e, which means that the particles, which have
not appeared in the state, are traced out in the source states.
The key idea of the inflation method is the following: If the three-

particle state ρ can be prepared in the network, the six-particle
states γ and η can be prepared in the inflated networks as well. The
states γ and η share some marginals with ρ and with each other. So,
if one can prove that six-particle states with these desired properties
do not exist, the state ρ is not reachable in the original network.
To see how the idea of inflation works in practice, we take the

three-qudit GHZ state40 as an example. The three-qudit GHZ state
GHZj i ¼ 1=

ffiffiffi
d

p Pd�1
i¼0 iiij i is a stabilizer state, whose stabilizers

include

ZBZ
y
A; ZAZ

y
C; ZBZ

y
C; XAXBXC; (2)

where the unitary operators are Z ¼ Pd�1
q¼0 ω

q qj i qh j; X ¼
Pd�1

q¼0 q� 1j i qh j; with⊕ to be the addition modulo d, and
ω ¼ exp 2πi

d . Note XmZn= ω−mnZnXm.
For a given network state ρ, we can consider the value ⌈M⌉ρ of

any stabilizer M in Eq. (2), i.e., the expectation value hΠð1Þ
M iρ with

Π
ð1Þ
M to be the projector into the eigenspace of M with

eigenvalue+ 1. If one of ⌈M⌉ρ does not equal to 1, we can
conclude that this network state ρ cannot be the state
GHZj i GHZh j.
Let us consider two kinds of inflation of the triangle-network as

in Fig. 2, where the corresponding network states are denoted as
γ, η. Roughly speaking, the source between B, C is broken in the γ
inflation. Note that inflation η is actually a trivial inflation in
triangular network. By comparing Fig. 2a–c, we have the marginal
relations

dZBZ
y
Aeγ ¼ dZBZ

y
Aeρ; dZAZ

y
Ceγ ¼ dZAZ

y
Ceρ; (3)

dZBZ
y
Ceη ¼ dZBZ

y
Ceγ; (4)

dðXAXBXC0 Þ
d
2b ceη ¼ dðXAXBXCÞ

d
2b ceρ: (5)

For convenience, here dZBZ
y
Ceη stands for dZBZ

y
CeηBC , where ηBC is

the reduced state of η on parties B and C. We use such shorthand
notations throughout the whole manuscript without confusion. By
applying Lemma 4 (see Supplementary Note 1 for the lemma and
its proof), we have

dZBZ
y
Ceγ � dZBZ

y
Aeγ þ dZAZ

y
Ceγ � 1: (6)

Under the assumption that dðXAXBXC0 Þ d
2b ceη � 1=2 and

dZBZ
y
Ceη � 1=2, Lemma 5–7 (see Supplementary Note 1 for

statements and their proofs), lead to

j2dðXAXBXC0 Þ
d
2b ceη � 1j2 þ j2dZBZ

y
Ceη � 1j2 � 1þ sin θd; (7)

where θd= 0 when d is even and θd ¼ π
2d when d is odd. This

assumption can be ensured whenever Fð GHZj i GHZh j; ρÞ � 3=4
according to Lemma 5 (see Supplementary Note 1 for Lemma 5).
If ρ is indeed the GHZ state, then Eq. (3)–(7) cannot hold

simultaneously, which is a contradiction. Combined with Lemma 5

(see Supplementary Note 1), which implies dðXAXBXC0 Þ
d
2b ceη � F

and dZBZ
y
Ceη � 2F � 1, Eq. (7) can be solved as

3
4
� Fð GHZj i GHZh j; ρÞ � 7þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 5 sin θd
p

10
: (8)

Hence, either the assumption does not hold, then
Fð GHZj i GHZh j; ρÞ<3=4; or the assumption holds and so do the
inequalities in Eq. (8). Since the upper bound in Eq. (8) is always
larger than 3/4 for any dimension d, the upper bound in Eq. (8)
holds whatever the assumption holds or not. We remark that we
only used GHZ states as an example to introduce our general
method, a tighter bound on the fidelity exists (see Supplementary
Note 4.B for discussions; see also25).

Multi-qudit graph states. The three-qudit GHZ state is a special
case of a multi-qudit graph state22. In the same spirit, we can also
derive no-go theorems for network states with multi-qudit graph
states as targets. Each graph state is associated with a multigraph
G= (V, E), defined by its vertex set V, and the edge set E, where the
edge between vertices i, j with multiplicity mij is denoted as
((i, j),mij). Without loss of generality, we will only consider multi-
partite graph states, i.e. number of parties (vertices) is at least 3.
Due to the periodicity as follows, the multiplicity can be limited to
mij= 0, 1,⋯ , d− 1, where d is dimension of Hilbert space for a
single qudit. Besides, we denote Ni the neighborhood of vertex i,
and define unitary stabilizers gi ¼ Xi�j2Ni Z

mij . Note that gdi ¼ I. For

A

BC

Fig. 1 Sketch of a triangle quantum network. Here three bipartite
sources ςa, ςb and ςc are distributed to three parties A, B, C, e.g., the
source states ςa are sent to B and C. Each party can apply local
operations EðλÞ

X (X= A, B, C) on the received particles, which are
affected by global shared randomness λ.
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a given multigraph G= (V, E), the corresponding graph state is the
unique common eigenvector of the operators fgigi2V with
eigenvalue+ 122,41–43. This eigenvector Gj i is called the graph
state associated to the graph G.

Main results
Let us now introduce our main result, stating that graph states and
certain multi-qudit graph states cannot be generated in any
network with bipartite sources.

A A

C C

C B

B

A

AA

A

A

B

C

C

BB

B

CC

BC

Fig. 2 Relevant inflations of the triangle network for GHZ state. The triangle network in a and two kinds of its inflation in b and c. For
convenience, we use d and e as short notations of b and c, respectively. Here the broken edge e with only one vertex v means that we ignore
or trace out the particles not for the party represented by v from the source state represented by e.

Fig. 3 Fully connected network with bipartite sources and two kinds of its inflation. Here the corresponding states are denoted as ρ, γ and
η. The sources which have not been changed in the whole proof are omitted in the figure. The original network in a and two kinds of its
inflation in b and c.
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Theorem 1. Multi-qudit graph states with connected graph and
multiplicities either being constant m or 0 cannot be prepared in
any network with bipartite sources.

Proof. Here we explain the main idea (see Supplementary Note 2
for the detailed proof). The structure of the proof is in the same
spirit as the one for GHZj i state. The key point is to keep necessary
marginal relations in different kinds of inflations and finally derive
a contradiction.
For a connected graph G with no less than three vertices, there

are always three vertices A, B, C such that (A, B), (A, C) are two
edges. If (B, C) is not an edge, we call (A, B, C) an angle. Otherwise,
we call (A, B, C) a triangle.
To carry out the proof, we have to carefully group the

neighborhoods of vertices A, B, C and choose proper stabilizers
of the graph state correspondingly. Here we consider the case
where (A, B, C) is a triangle as an example. Then we can partition
all the vertices into 4 groups as in Fig. 3, where TABC is the
common neighborhood of A, B, C, JAB is the common neighbor-
hood of A, B but not C, EA is the neighborhood which is not shared
by B, C and so on.
By choosing S1 ¼ gAg

y
B, S2 ¼ gyAgC, S3 ¼ S1S2 ¼ gyBgC and S4 ¼

gtC (the t-th power of gC), we have the marginal relations

dS1eγ ¼ dS1eρ; dS2eγ ¼ dS2eρ; (9)

hS3iη ¼ hS3iγ; hS40 iη ¼ hS4iρ; (10)

where S40 is related to S4 by changing party C0; E0C in the support to
C, EC. These marginal relations can be verified by comparing the
supports of each operator in different kinds of inflation. For
instance, the support of S1 is A, B, JAB, JBC, JCA, TABC.

However, S3; S40 do not commute in the inflation η. More
precisely, we have that

jhS3iηj2 þ jhS40 iηj2 � 1þ sin θt;d; (11)

where 0 ≤ θt,d ≤ π/6 by choosing t properly.
Similarly as the analysis for the GHZ state, the relation that

S3= S1S2 and conditions in Eqs. (9)–(11)) lead to

Fð Gj i Gh j; ρÞ � 7þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5 sinðθt;dÞ

p

10
<0:95495: (12)

This is in fact a universal bound for arbitrary configuration of
equal-multiplicity multi-qudit graph states.

Note that for qubit graph states, the multiplicity is either 1 or 0,
this leads to the following theorem.

Theorem 2. Any multi-qubit graph state with connected graph
cannot be prepared in a network with only bipartite sources, with
9/10 as an upper bound of fidelity between graph state and
network state. This follows from the fact that θt,2= 0.

In order to formulate a more general statement, note that the
key ingredients in the proof of Theorem 1, were that all parties can
be grouped in a special way which fits to the algebraic relations
S3= S1S2 for commuting S1, S2, moreover, it was needed that
S3; S40 have no common eigenvectors with eigenvalue+ 1. This
leads to a a more general theorem for the states with a set of
stabilizers.

Theorem 3. For a given pure state σ with commuting (unitary or
projection) stabilizers {S1, S2, S3= S1S2, S4}, it cannot be prepared in
bipartite network if

Fig. 4 General inflation scheme in bipartite network similar to Fig. 3. In a, Gi’s are group of parties in a partition, the green, red, blue and
dashed circles stand for the supports for operators S1, S2, S3, S4, respectively. In b, c, and d, we replace the label of each group by the indices of
the Si’s which has this group as support. The green shadow represents a multipartite source relating to all the groups in it. The sources which
have not been changed in the whole proof are omitted in the figures.
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1. all the parties can be grouped into fGig4i¼1 such that Si has
no support in Gi, see also Fig. 4a;

2. S1, S2 commutes, and S3; S40 have no common eigenvectors
with eigenvalue 1, where S40 has the support G2, G3 and a
copy of G1, and S40 acts there same as S4 on supp(S4).

Proof. Here we provide the main steps of the proof without diving
into details. The first condition implies that, those four operators
do not have common support for all of them. Hence, the set of
parties can be divided into the four parts as illustrated in Fig. 4a.
By comparing the supports of the operators in different kinds of
inflation as in Fig. 4, we have the marginal relations

dS1eγ ¼ dS1eρ; dS2eγ ¼ dS2eρ; (13)

dS3eη ¼ dS3eγ; dS40 eη ¼ dS4eρ: (14)

Through those marginal relations, we can relate dS3eη and dS40 eη
to f ¼ Fðσ; ρÞ. Finally, the second condition leads to the result
that f < 1. In fact,

f � 7þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5λ0=2

p

10
<1; (15)

where λ0<2 is the maximal singular value of fS3; Sy40 g.

Note that all the bipartite sources in the network among parties
in supp(S1) have not been touched during the inflation procedure,
so the proof still holds even if there is a multipartite source just
affecting this set of parties. By exhaustive search and applying
Theorem 3 to multi-qudit graph states, we can figure out the
situations where all n-partite qudit graph states in dimension d
cannot arise from a network with bipartite sources, see Theorem
10, which is a consequence of Theorem 3 (see Supplementary
Note 3 for Theorem 10 and its proof). The result is summarized in
Table 1. Moreover, any prime-dimensional graph state satisfying
special structures as in Theorem 10 cannot be prepared in a
network with bipartite sources (see Supplementary Note 3 for
discussions).

DISCUSSION
Here, we have developed a toolbox to compare multi-qudit graph
states and states that are generated in a quantum network
without memory and feed forward. By combining those tools
related to symmetry and the inflation technique, we proved that
all multi-qudit graph states, where the non-zero multiplicities are a
constant, cannot be prepared in the quantum network with just
bipartite sources. The result can also be generalized to a larger
class of multi-qudit graph states and quantum networks with
multipartite sources, in the case that the generalization does not
affect the necessary marginal relations during the inflation
procedure. The more general case with multi-partite sources is
an interesting topic for future research. Furthermore, we provided
a fidelity estimation of the multi-qudit graph states and network
states based on a simple analysis.

More effort should be contributed to the fidelity analysis in the
future, such as introducing more types of inflation in ref. 27, and
generalizing the techniques in ref. 25 for the states other than GHZ
states. Another interesting project for further study is to consider
other families of states, like Dicke states or multi-particle singlet
states, which are not described by a stabilizer formalism. Finally,
from the fact that graph states cannot be prepared in the simple
model of a network considered here, the question arises, which
additional resources (such as classical communication) facilitate
the generation of such states. Characterizing these resources will
help to implement quantum communication in networks in the
real world.
Note added: While finishing this manuscript, we became

aware of a related work by O. Makuta et al.44. Albeit those two
works originate from the same conjecture in ref. 27, the
techniques and results are different from few perspectives.
Especially, we have only made use of two kinds of inflation and
Theorem 2 here holds for all dimensions but with limited
multiplicities. The resulting fidelity between the graphs states
and network states has also different estimations. The applica-
tion of Theorem 3, like in combination with Theorem 10, can
cover more situations.
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