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Alignment between initial state and mixer improves QAOA
performance for constrained optimization
Zichang He 1✉, Ruslan Shaydulin1, Shouvanik Chakrabarti1, Dylan Herman1, Changhao Li 1, Yue Sun1 and Marco Pistoia 1

Quantum alternating operator ansatz (QAOA) has a strong connection to the adiabatic algorithm, which it can approximate with
sufficient depth. However, it is unclear to what extent the lessons from the adiabatic regime apply to QAOA as executed in practice
with small to moderate depth. In this paper, we demonstrate that the intuition from the adiabatic algorithm applies to the task of
choosing the QAOA initial state. Specifically, we observe that the best performance is obtained when the initial state of QAOA is set
to be the ground state of the mixing Hamiltonian, as required by the adiabatic algorithm. We provide numerical evidence using the
examples of constrained portfolio optimization problems with both low (p ≤ 3) and high (p= 100) QAOA depth. Additionally, we
successfully apply QAOA with XY mixer to portfolio optimization on a trapped-ion quantum processor using 32 qubits and discuss
our findings in near-term experiments.
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INTRODUCTION
Combinatorial optimization is one of the most promising
applications of quantum computers due to its broad applicability
in science and industry and the availability of promising quantum
algorithms with the potential for speedups over the classical state-
of-the-art1,2. A leading quantum algorithm for combinatorial
optimization is the quantum approximate optimization algo-
rithm3,4 and its generalization, quantum alternating operator
ansatz (QAOA)5. QAOA solves the optimization problem by
preparing a parameterized quantum state using a quantum circuit
consisting of layers of phase and mixing (mixer) operators applied
in alternation, with parameters optimized to extremize a chosen
measure of solution quality. QAOA has promising applications in
optimization6–12, finance13,14 and machine learning15–17, and has
been adapted to be applicable to quantum chemistry18. Among
the numerous QAOA variants that have been introduced, our
focus is on the widely-studied local Hamiltonian-based QAOA (LH-
QAOA)5. In this variant, the phase and mixing operators
correspond to the time evolution under phase Hamiltonian HP

and mixing Hamiltonian HM, with HM being the sum of
polynomially many local terms. Note that HP does not have to
be local. In the remainder of the paper, we use QAOA to refer to
LH-QAOA.
QAOA has an important connection to adiabatic quantum

algorithm (AQA)19,20. AQA prepares ground states of Hamiltonians
by performing a slow interpolation between an easy-to-prepare
ground state of some simple Hamiltonian and the ground state of
the target Hamiltonian. The speed of interpolation is governed by
the minimum spectral gap of the instantaneous system Hamilto-
nian during the evolution. AQA can be applied to optimization
problems by choosing an appropriately constructed diagonal
Hamiltonian as the target. If the alternating operators in QAOA are
chosen to be time evolution with the target and a simple
Hamiltonian (e.g., the commonly used transverse field Hamilto-
nian), and the initial state is set to be the ground state of the
simple Hamiltonian, QAOA can approximate the AQA evolution
with an approximation error that depends on the number of the
alternating layers (QAOA depth).

While the connection between AQA and QAOA is simple and
well-known, QAOA is typically used with parameters that are
different from the AQA schedule and with a depth that is too small
to approximate AQA meaningfully. This creates ambiguity
regarding the extent to which the QAOA mechanism is related
to AQA, as well as how to leverage the techniques for boosting
AQA performance in the QAOA setting. In this paper, we show that
in one important aspect, the lessons of the adiabatic algorithm
indeed apply clearly. Namely, we show that QAOA performance is
improved if the ground state of HM and the initial state are
aligned. Specifically, we show that QAOA gives better perfor-
mance when the initial state matches the ground state of HM

compared to other setups. This choice of initial state and HM also
aligns with that in the AQA. We refer to this setup as initial-mixer
alignment or alignment for short.
We note that in some cases the mixer as well as the ground

state of HM are difficult to implement on the quantum hardware.
Therefore is may be desirable to use alternative initial states and
mixers that are not well-aligned but are easy to implement.
Moreover, previous studies have found that the performance of
QAOA may be improved by carefully preparing a ‘warm-start’
initial state different from the ground state of HM

21,22. In general, it
may be hard to modify the mixer to make sure that the warm-start
initial state is exactly the ground state of the mixer. These
examples motivate the current study of misaligned combinations
of mixer and initial state.
In this work, we study QAOA with Hamming-weight-preserving

XY mixers6, where the mixing operator is a time evolution
governed by Heisenberg XY models23. This variant of QAOA is of
particular interest as evidence suggests that it has the potential to
provide exponential speedup over unstructured search on certain
problems24. We choose the various XY models as the constraint-
preserving mixing Hamiltonian in QAOA: ring-XY, complete-XY,
and several XY models with arbitrary connectivity. We apply QAOA
with XY mixers to the portfolio optimization problem with an
equality constraint on the portfolio size, which corresponds to a
constraint on the Hamming weight of the binary string. This is a
well-studied toy financial problem, which is commonly considered
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as a benchmark for quantum optimization heuristics14,25–29. Such
heuristic algorithms often aim at approximately solving the
portfolio optimization problem with a goal of maximizing the
approximation ratio. We will follow the same convention and use
approximation ratio as the primary metric for evaluating the
performance of QAOA. To quantify the impact of alignment on
QAOA performance, we design two sets of numerical experiments.
First, we compare the performance of various initial-mixer pairs.
Here, we isolate the impact of alignment by considering the exact
implementation of the mixer. Second, we fix the initial state as the
ground state of HM and implement the XY mixer with various
fidelities by varying the step of Trotter approximation. This setup
highlights the practical considerations when implementing
complex mixers with non-commuting terms in HM.
The main conclusion of the paper is illustrated in Fig. 1. Our

results show that, in most cases, the alignment boosts the QAOA
performance. The only exception is when the mixing XY
Hamiltonian is relatively simple, e.g., a chain or ring. In these
cases, QAOA performance is more robust under Trotter approx-
imation error. However, given a high Trotter error, a more accurate
Trotter approximation still improves the QAOA performance.
Across all simulations, we observe a consistent trend in QAOA with
both low and high depth. The first set of results clearly shows the
alignment effect without considering the circuit implementation.
While the improvement in performance from alignment is

consistent across the many settings we consider, its absolute
effect is relatively small. Therefore, when executing on noisy
intermediate-scale quantum era (NISQ) devices, enhancing the
alignment at the cost of increased circuit depth is unlikely to
improve the results significantly. To illustrate this observation, we
apply QAOA with ring-XY mixer to portfolio optimization using all
32 qubits of the Quantinuum H2-1 trapped-ion processor. We
observe that even the step-1 Trotter approximation of the ring-XY
mixer gives a high-quality solution on hardware, and further
improvements in alignment do not significantly increase the
solution quality on hardware. This contrasts with the noiseless
case, where a more accurate Trotter approximation results in
better performance.
To the best of our knowledge, this is also the first study of the

impact of mixer Trotterization on QAOA performance. Recent
works have developed various techniques to improve the
performance of QAOA. Specifically, non-standard initial states
have been used, such as the ‘warm-start’ initial state constructed
using a solution produced by a classical solver21,22 abd the
randomly sampled computational basis states with a given

Hamming weight for QAOA with Hamming-weight preserving
mixers30. In addition, alternative ansätze have also been proposed,
such as initial-state-dependent custom mixers for warm-started
QAOA31. Here, we do not aim to propose an optimal ansatz with
minimal depth but try to systematically demonstrate the
mechanism that the alignment effect from the adiabatic theorem
applies to QAOA in the low-depth regime. Therefore, our study will
not include techniques in which the initial state and the ground
state of the mixing Hamiltonian are purposefully not aligned, such
as the ones mentioned above. Beyond the investigation of the
QAOA mechanism, we also discuss the techniques we used to
improve the convergence of local QAOA parameter optimizers,
which may be of independent interest. We note that our results
are expected to apply broadly beyond the particular problem
considered and may be particularly impactful in applications
where the target ground state must be prepared with high fidelity,
such as in quantum chemistry18.

RESULTS
Background
In this section, we will briefly review the relevant technical
background around the portfolio optimization problem, the
quantum alternating operator ansatz (QAOA) and the adiabatic
quantum algorithm (AQA). We will also discuss parameter
optimization for QAOA and the connection between QAOA and
AQA.
Portfolio optimization problem. We focus on the mean-variance

portfolio optimization problem32 with objective f given by

min
x2f0;1gN

f ðxÞ ¼ qxTWx� μTx;

s:t: 1Tx ¼ K ;
(1)

where x∈ {0, 1}N denotes a vector of binary decision variables
indicating whether a given asset is included in (1) or excluded from
(0) the portfolio, μ 2 RN denotes the vector of expected returns for
the assets, W 2 RN ´N is the covariance matrix between N assets
and q > 0 is a risk factor to balance the importance of risk and return
in the objective. The equality constraint corresponds to a fixed
budget requiring the manager to pick exactly K assets. This equality
constraint is also called a Hamming-weight-preserving constraint
since it restricts the Hamming weight of x to a constant K.
Quantum alternating operator ansatz (QAOA). In order to apply

QAOA for solving (1), we must define the Hamiltonians in the two
alternating operators: HP encoding the classical objective function

Fig. 1 An overview of the results. We show that the QAOA performance depends on the alignment between the initial state ψ0j i of QAOA
and the ground state of the mixing Hamiltonian HM. Right: the approximation ratios (ARs) obtained by QAOA applied to constrained portfolio
optimization with N= 6 assets and Hamming weight constraint K= 3 with the complete-XY mixer and the initial state set to be the ground
state of complete-XY (`Aligned') and ring-XY (`Misaligned') mixing Hamiltonian. The error bars represent the standard error of the mean
approximation ratio estimated from 10 problem instances of portfolio optimization.
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and HM mixing the probability amplitudes while preserving the
constraints.
To encode the objective function (1), we construct a diagonal

Hamiltonian HP= diag(f(x)) by mapping each binary variable xi to
a quantum spin using xi→ (I− Zi)/2, giving

HP ¼ 1
2
q
X
i<j

WijZiZj � 1
2

X
i

q
X
j

Wij � μi

 !
Zi þ c; (2)

where c ¼ 1
2

P
iðq
P

j¼iWij � μiÞ is a constant. We denote the time
evolution under HP given by e�iβHP as the phase operator.
In order to enforce the Hamming weight constraint on the

quantum state, we follow refs. 5,6 and use the Heisenberg XY
model as the mixing Hamiltonian

HM :¼ HXY
S ¼

X
ði;jÞ2S

XiXj þ YiYj ; (3)

where S is a set of index pairs describing the interaction among
qubits, X and Y are the Pauli matrices. We denote the time
evolution under HXY

S given by e�iβHXY
S as the XY mixer. The

performance and the implementation difficulty of an XY mixer
depend on the choice of the connectivity defined by S. Two
commonly used XY models are ring-XY and complete-XY.
Specifically, the ring-XY model includes one-dimensional near-
est-neighbor interactions with a periodic boundary condition, i.e.,

Sring ¼ ði; jÞ j j ¼ ði þ 1Þmod N; i 2 ½N�f g:
On the other hand, the complete-XY model contains interac-

tions between all pairs of qubits, i.e.,

Scomplete ¼ ði; jÞ j i < j; i; j 2 ½N�f g:
It is easy to see that the evolution with the XY mixers preserves

the Hamming weight. In other words, if we start from a
superposition of states of Hamming weight K, the measurement
outcomes of the final state are also guaranteed to have Hamming
weight K.
For a given pair of HP and HM, QAOA with depth p consists of

the following three steps. First, QAOA prepares a feasible initial
state ψ0j i. Then the phase operator and the mixer are applied p
times to obtain the state

ψðγ; βÞj i ¼ e�iβpHMe�iγpHP ¼ e�iβ1HMe�iγ1HP ψ0j i; (4)

where γ and β are vectors of free parameters obtained using some
classical procedure. Finally, the state ψðγ; βÞj i is measured in the
computational basis to obtain solutions to the original problem.
QAOA is typically used as a hybrid quantum-classical algorithm

wherein a classical optimizer is used to optimize the parameters γ
and β to minimize the energy of HP. We denote it as unrestricted
optimization:

min
γ;β

hψðγ; βÞjHPjψðγ; βÞi: (5)

Usually, the parameter optimization is nontrivial since the
energy landscape is known to contain many local optima. Many
advanced methods have been developed for QAOA training33–36.
We will discuss our techniques for accelerating the parameter
optimization in the method section.
When p is large, parameter optimization becomes hard.

Restricting the QAOA parameters can allow faster parameter
optimization for large p. For example, it has been shown that good
solution quality can be achieved with reduced optimization
complexity by using a linear ramp schedule for the QAOA
parameters given by4,18,37–39

γðlÞ ¼ Δl; βðlÞ ¼ Δð1� lÞ; (6)

where Δ is a constant and l∈ (0, 1). In QAOA with depth p, the
linear schedule may be applied with the QAOA parameters for

each layer set as follows:

γi ¼ γðliÞ; βi ¼ βðliÞ with

li ¼ i
pþ1 ; 8i ¼ 1; 2; ¼ ; p:

(7)

With Δ > 0 and p→∞, the QAOA approaches the adiabatic
limit40. In this case, if the initial state is the ground state of HM, the
resulting final state will converge to the ground state of HP

18.
The linear schedule can be optimized by setting Δ to be a free

parameter39. We denote this setting as the optimized linear
schedule (OLS). Specifically, in QAOA with OLS, we fix the depth to
a large value (e.g., p= 100) and optimize Δ to minimize the
energy:

min
Δ

hψðγðΔÞ; βðΔÞÞjHPjψðγðΔÞ; βðΔÞÞi: (8)

Compared with (5) with 2p variables, QAOA with OLS has only
one free parameter Δ to optimize regardless of p, and hence is
much easier to search for the optimum. Given the effectiveness of
OLS in large-depth QAOA where regular QAOA parameter
optimization becomes intractable18,41, we include QAOA with
OLS in this study.
Adiabatic quantum algorithm (AQA). AQA20,42 prepares the

ground state of some target Hamiltonian by performing adiabatic
evolution. Specifically, it proceeds from an initial Hamiltonian
whose ground state is easy to prepare to a final Hamiltonian
whose ground state encodes the solution to the computational
problem.
For a system evolving under a time-dependent Hamiltonian

H(t), its time-evolution is governed by the Schrödinger equation

i
∂ ψðtÞj i

∂t
¼ HðtÞ ψðtÞj i: (9)

The quantum adiabatic theorem guarantees that if the initial
state ψð0Þj i is the ground state of H(0) and H(t) varies sufficiently
slowly with t, the quantum state ψðtÞj i will remain in the ground
state of the instantaneous Hamiltonian H(t) for all t.
Connection between QAOA and AQA. QAOA has important

connections to AQA and its non-adiabatic variant. ref. 43 shows
that with a sufficiently large depth, QAOA with optimal angles can
become a digitization of quantum annealing. ref. 44 applies
optimal control theory to solving the protocol for controlling the
Hamiltonian evolution in both quantum annealing and QAOA. The
optimal QAOA parameter schedule matches the optimal control
protocol for AQA45. ref. 46 shows that both AQA with tuned scaling
and QAOA with an optimal control protocol can solve a quantum
linear system problem. An analog version of the QAOA by
parameterizing and optimizing the schedule function is proposed
in ref. 47. ref. 48 shows the possibility of running QAOA in a
customized device with the digital analog paradigm. ref. 49 derives
the lower bound of annealing time beyond the adiabatic regime.
While adiabatic evolution is a promising approach for quantum

optimization, it suffers from potential non-adiabatic transitions
between eigenstates of the system at time points where the
Hamiltonian has small energy gaps and it is often infeasible for
near-term devices due to noise and limited coherence times.
Counterdiabatic driving is a method that compensates for the
non-adiabatic effects by adding an additional term to the evolved
Hamiltonian. The counterdiabatic evolution has been shown to
improve adiabatic quantum optimization in50. In addition, the
counterdiabatic term and counterdiabatic-inspired ansatz have
also been found to benefit QAOA performance51–54.
Motivated by the connection between QAOA and AQA, the

initial state ψ0j i is typically set to be the ground state of
the mixing Hamiltonian HM

3. However, in many cases, either the
ground state of HM or HM itself is difficult to implement exactly.
The behavior in the adiabatic regime suggests that if HM or the
initial state is not implemented exactly (meaning that the initial
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state is not aligned with the ground state of HM), the QAOA
performance may be affected. However, the impact of such
alignment on the performance of low-depth QAOA has received
little attention to date. In this work, we systematically study this
alignment effect and demonstrate that it can significantly benefit
QAOA performance far from the adiabatic limit, even in the low-
depth regime.
In this section, we describe the results from numerical

simulations applying QAOA to ten portfolio optimization problem
instances with the number of assets N= 6. Unless otherwise
specified, we set p= 1, 2, 3 for unrestricted QAOA given by Eq. (5)
and set p= 100 for QAOA with OLS (8). All the circuits were
simulated using the qiskit_aer_statevector simulator. To
optimize both QAOA parameter schedules, we use the BFGS
optimizer built in the Scipy55 package, running with multiple
initial guesses (50-250 depending on the problem dimension).
Given a solution x (portfolio selection) to the problem, we use

approximation ratio (AR) to quantify the quality of the solution,
defined as

ARðxÞ ¼
f ðxÞ�fmax

fmin�fmax
;

P
ixi ¼ K;

0;
P

ixi ≠ K ;

(
(10)

where fmin and fmax are the maximum and minimum value of f(x)
among all feasible portfolios, i.e.,

fmin ¼ minP
i
xi¼K

f ðxÞ;

fmax ¼ maxP
i
xi¼K

f ðxÞ: (11)

Alignment effect with exact mixers
To investigate the alignment effect between the initial state and the
ground state of HM, we conduct numerical simulations comparing
circuits with different pairs of initial states and exact mixers. Our
simulations studied various XY mixers, including the exact ring-XY
mixer, complete-XY mixer, and arbitrary mixers that will be
explained later. The exact mixers are implemented by a unitary
operator constructed from directly exponentiating the correspond-
ing mixing Hamiltonian. Correspondingly, we prepare the initial
state by assigning it as the ground state of a mixing Hamiltonian.
Exact ring-XY and complete-XY mixers. We first look at the exact

ring and complete mixers for comparison. We separate the results

by the combination of initial state and mixer type, and we label such
combinations by ‘S-H’ pairs. For example, we use Scomplete−Hring to
denote that the initial state is the ground state of a complete-XY
mixing Hamiltonian whereas the mixing Hamiltonian is a ring-
XY model.
As shown in Fig. 2, for all p studied, the Scomplete− Hcomplete pair

gives significantly better AR than the Scomplete− Hring pair, which
aligns with the results reported in a previous study30. Similarly, the
Sring− Hring pair performs better than the Sring− Hcomplete pair.
This indicates that alignment between the initial state and the
ground state of HM improves the QAOA performance for these
cases, enabling the algorithm to converge more effectively to
high-quality solutions.
We note that it is not meaningful to directly compare the solution

AR given by the unrestricted QAOA (5) with that from QAOA with
OLS (8) since they have different depths and parameter schedules.
The OLS method will gradually converge to the global optimum
with a high enough depth (as shown in Fig. 3). The performance of
the linear schedule could be less regular at a relative small p (like
p= 100 and 200 for Scomplete−Hcomplete), which is referred as the
ridge region in41. For more detailed discussions on the linear
parameter schedule, we refer the readers to ref. 41. We only show
the p= 100 results in Fig. 2 and in the following sections as a sanity
check to demonstrate that the alignment effect holds in QAOA with
both a low and high depth. We also note that the performance
improvement does not result from the warm-start effect, as the
Scomplete−Hcomplete pair consistently outperforms the Sring−
Hcomplete pair, and the Sring−Hring pair also consistently performs
better than the Scomplete−Hring pair. This means that given different
mixers, there is no such a fixed best initial state.

Exact mixers with arbitrary connectivity
Next, we investigate the impact of alignment on some XY mixers
that have arbitrary connectivity beyond ring and complete. XY
models can be viewed as graphs with edges (i, j) representing the
indices (i, j) of the interacting qubits. To satisfy the Hamming
wight constraint of a solution, we have significant freedom to
select edges and construct different variants of XY model. Here,
we introduce an option for constructing mixers by selecting
chains.

Fig. 2 Comparisons of the exact ring- and complete-XY mixers in
QAOA with unrestricted optimization at p= 1, 2, 3 and with the
OLS method at p= 100. We reported the mean approximation
ratios over 10 instances with N= 6 and K= 3. The error bars
represent standard errors of the mean. The alignment enhances
performance in both low and high-depth QAOA.

Fig. 3 An example demonstrating the convergence of the OLS
method for QAOA with exact mixers with the instances from
Fig. 2. For both mixers, the initial states are aligned. As the QAOA
depth increases, the final state of the OLS method (8) will gradually
converge to the ground state of the problem Hamiltonian HP. The
complete-XY mixer needs a larger depth to converge with the OLS
schedule. The error bars represent standard errors of the mean
approximation ratios.
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For a complete-XY Hamiltonian with N qubits (suppose N is
even), we can decompose the interaction terms as a summation of
N/2 chains:

HXY
Scomplete

¼
XN=2
v¼1

HXY
Cv

¼
XN=2
v¼1

X
ði;jÞ2Cv

XiXj þ YiYj; (12)

where Cv is the set of qubit indices in a chain. Inspired by the
above decomposition, we can construct different XY mixing
Hamiltonians by selecting a subset of chains from the complete
graph. Notably, there are many possible ways to decompose a
complete graph into chains, each of which may have different
implications for QAOA performance. In our simulations, we
arbitrarily select a decomposition of a 6-node complete graph
into 3 chains as shown in Fig. 4. This approach allows us to
compare the performance of QAOA with and without initial-mixer
alignment across a range of XY mixers. We expect our conclusions
to hold for other XY mixers as well.
Figure 5 illustrates the comparison of results from XY mixers

constructed using the decomposition in Fig. 4, with the x-axis and
y-axis indicating the initial state and mixing Hamiltonian labels,
respectively. For example, the label S12 on the x-axis indicates that
the initial state is the ground state of the mixing Hamiltonian built
with chain-1 and chain-2, while the label H12 on the y-axis
indicates that the mixing Hamiltonian is built with chain-1 and
chain-2. Our results show that the ARs of diagonal pairs (i.e., with
initial-mixer alignment) are significantly better than the non-
diagonal pairs (without initial-mixer alignment), complementing
the results observed for the exact ring-XY and complete-XY
mixers. It suggests that the alignment effect applies to a wide

range of XY mixers. Specifically, we found that the alignment
effect is more pronounced for simpler mixers with less con-
nectivity, such as those constructed using a single chain.

Alignment effect with trotterized mixers
Next, we explore the alignment effect in the practical circuits. To
achieve it, we must decompose the mixing operator e�iβHM into a
series of 1-qubit and 2-qubit gates. One of the widely used
approaches is Trotterization. In the following, we will first describe
the Trotterization procedure for various XY mixers, and discuss
how the resulting Trotter error can impact the quality of the
solution.
Mixer Trotterization. For ease of notation, we define

XYi= XiXj+ YiYj, where j ¼ ði þ 1Þmod N. For a one-dimensional
(i.e., chain or ring) mixer, we use the popular parity partition
strategy to Trotterize it:

e�iβ
P

i
XYi �

Y
jisodd

e�iβTXYj
Y

jiseven

e�iβTXYj

" #T
; (13)

where T denotes the number of Trotter steps, called the Trotter
number.
When constructing a mixer using multiple XY chains, we apply a

two-level approximation strategy. Firstly, we Trotterize the chains
in sequential order with a Trotter number T1. Secondly, we apply
the parity partition strategy within each chain with a Trotter
number T2. Given a mixing Hamiltonian constructed by k chains,Pk

v¼1 H
XY
Cv , we approximate its unitary as follows:

e�iβ
Pk

v¼1
HXY
Cv � Qk

v¼1
e�i βT1

HXY
Cv

� �T1
with

e�i βT1H
XY
Cv � Q

j¼odd
e�i β

T1T2
XYj Q

j¼even
e�i β

T1T2
XYj

" #T2
:

(14)

The choices of T1 and T2 control the Trotter error. Given a
Hamiltonian H=H1+H2 with evolution time t, the commutator-
type error bound for its first-order Trotter approximation is as
follows56:

keitH � eitH1eitH2k2 �
t2

2
k H1;H2½ �k2: (15)

Intuitively, the spectral norm of the commutator between two
chain Hamiltonians HXY

Cv will be significantly larger than the one
between the two parity-partitioned parts of one chain Hamilto-
nian. Therefore, in our implementation, we fix T2= 1 and adjust T1
to control the approximation accuracy. Generally, a T-step
Trotterization will enlarge the mixer circuit for T times. However,

Fig. 4 An example of the six-qubit complete-XY model. The
complete graph is constructed by three separate chains, denoted by
different colors and line styles.

Fig. 5 Comparisons of exact XY-mixers in QAOA with unrestricted optimization at p= 2 and with OLS at p= 100. The heatmaps display
the average AR over the 10 instances considered with N= 6 and K= 3. The mixers are constructed using one or two chains, as shown in Fig. 4.
The alignment improves performance in both low and high-depth QAOA, as the diagonal pairs outperform others in the corresponding row
and column.
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using a large Trotter number can be computationally costly, even
in simulation. Therefore, we implement the Trotterized mixer
operators with steps up to six, which we find is sufficient for our
purposes.
In the following simulations analyzing the impact of alignment

on QAOA performance, we will fix the initial state as the ground
state of the exact mixing Hamiltonian and approximate the mixer
operator via different Trotter numbers. While some XY mixers can
be implemented exactly, such as the ring-XY mixer can be realized
by diagonalization57 or other algebraic compression techniques58,
and a 2m-sized complete-XY mixer (with m being a positive
integer) can be realized efficiently for a Hamming-weight K= 1
problem6, we chose to use the Trotterization to implement all the
mixers in our simulations. The reason for this choice is that the
Trotterization is more flexible and allows us to analyze the QAOA
performance under mixers with various approximation accuracies
more easily. It is worth noting that there also exist other Trotter
strategies56,59,60, which are out of the scope of this paper.

Trotterized ring-XY and complete-XY mixers. First, we focus on
the Trotterized ring-XY and complete-XY mixers. Fig. 6 shows the
QAOA performance under different approximated mixers with low
and high QAOA depths. In the case of the complete-XY mixer, an
increase in the Trotter number consistently enhances QAOA
performance, converging to the Scomplete− Hcomplete results
depicted in Fig. 2. For the ring-XY mixer, QAOA performance
exhibits greater robustness in terms of the Trotter number.
However, an initially more accurate mixer continues to contribute
to performance improvement, such as the performance observed
when increasing Trotter number from 1 to 2. The results of low-
depth QAOA parameter optimization and high-depth linear
schedule simulations show a consistent relationship, specifically,
their AR results follow the same trend with respect to Trotter
number.
We hypothesize that the distinct behavior observed between

Trotterized ring-XY and complete-XY mixers arises from the
intricacy of their respective mixing structures. To substantiate this
hypothesis, we conduct subsequent numerical experiments
employing Trotterized variants of XY mixers.
We also demonstrate the alignment effect in noisy simulation

via the Quantinuum’s H2-1 device emulator. Considering the
practical circuit implementation, we prepare the circuits with the
Dicke state (a uniform superposition over bitstrings with a fixed
Hamming weight) and Trotter-step-1 approximated ring-XY and
complete-XY mixers. We report both the noisy and noiseless
simulation results in Fig. 7. We observe that for this problem with
the total number of 2-qubit gates less than 200, given an initial
Dicke state, the alignment effect still holds where the complete-XY
mixer achieves better performance than the ring-XY mixer in the
presence of realistic noise.
Trotterized arbitrary mixers. Next, we analyze the alignment

effect for the Trotterized XY mixers. To investigate the impact of
mixer structure, we did the same simulations for six XY mixers,
including three whose Hamiltonians are built with two chains and
three whose Hamiltonians are built with one chain. As illustrated
in Fig. 8, we observe consistent trends between the 2-chain mixers
and the complete-XY mixer, as well as between the one-chain
mixers and the ring-XY mixer. Based on these observations, we
argue that when the initial state aligns with the ground state of
the exact mixing Hamiltonian, a more precise implementation of
the mixing Hamiltonian with complex connectivity leads to
improved performance. In contrast, for a less connected mixing
Hamiltonian, a Trotterized implementation with a few steps attains
optimal performance, which then stabilizes.
In summary, our results demonstrate that the alignment effect

positively impacts QAOA performance across both low- and

Fig. 6 Comparisons of Trotterized ring- and complete-XY mixers in QAOA with unrestricted optimization at p= 1, 2, 3 and with the OLS
method at p= 100. We report the mean approximation ratio over 10 instances with N= 6 and K= 3 with error bars denoting the standard
errors of the mean estimation. A larger Trotter number consistently results in better performance for the complete mixer. However, for QAOA
with an approximated ring-XY mixer, we observe a more robust QAOA performance.

Fig. 7 Given an initial Dicke state, the comparisons of Trotter-
step-1 approximated ring- and complete-XY mixers in QAOA at
p= 1, 2, 3. We report the mean approximation ratio over 10
instances with N= 6 and K= 3 with error bars denoting the
standard errors of the mean estimation. Under the noisy simulation,
the complete-XY mixer still outperforms the ring-XY mixer, which
demonstrates the alignment effect.
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high-depth regimes. This observation was validated through the
application of exact and Trotterized mixers on various XY mixers.

Experiments on a trapped-ion quantum processor
While the improvement in performance from alignment between
the initial state and the ground state of HM is robust in the
noiseless simulation, its absolute value is relatively small.
Intuitively, this suggests that noise will likely affect it when
executed on near-term hardware. We now demonstrate this
intuition by executing QAOA with Trotterized ring-XY mixer on
Quantinuum H2-1 trapped-ion processor using 32 qubits.
For the ring-XY mixer, the ground state of the exact Hamiltonian

can be difficult to prepare in a quantum circuit, especially on noisy
hardware. Therefore, in our experiments, we use the Dicke state as
a proxy for the ground state of the exact ring-XY Hamiltonian, and
use it as the initial state of the QAOA circuit as well as the target
state in evaluating the overlap with the effective ground state. The
Dicke state is prepared using the divide-and-conquer approach
of61. Figure 9 shows that increasing the Trotter number from 1 to 2
improves the fidelity between the Dicke state and the effective
ground state, subsequently improving QAOA performance in the
noiseless simulation. However, we do not expect this to hold
strictly as the Trotter number increases, where an exact ground
state would need to be prepared.
The QAOA circuit is compiled to H2-1 and optimized using

pytket62, resulting in the total numbers of 2-qubit gates of 1, 159
for T= 1 and 1, 223 for T= 2. We note that the Dicke state
preparation needs 581 CNOT gates. As shown in Fig. 10, we
observe that in the hardware experiments, the performance of
the T= 2 circuit is worse than the T= 1 one. It validates that the
improvement of Trotter approximation can be impacted by the
hardware noise. However, the hardware results are still signifi-
cantly better than the random guess, shedding light on the power

of advanced quantum devices. The hardware results can be
further improved by performing error mitigation techniques such
as symmetry verification by parity checks63–65.

DISCUSSION
In this paper, we demonstrate that the alignment effect is
impactful even at very small QAOA depth, suggesting a strong
connection between QAOA and adiabatic quantum algorithms.
We show the evidence of the alignment effect by studying QAOA
performance with various XY mixers in two ways: with the exact
mixers and varying initial states, and with a fixed initial state and
varying fidelity of the mixer implementation. We use portfolio
optimization problems as the benchmark, but we expect the
findings to apply broadly to other combinatorial optimization
problems. To the best of our knowledge, this is the first study of
the impact of Trotter approximation error in mixer implementa-
tion on QAOA performance. For simple one-dimensional XY
mixers, the QAOA performance is relatively robust to the Trotter
error. Meanwhile, for the more complicated XY mixers, a larger
Trotter number leads to better performance since the effective
ground state is approaching the initial state (the ground state of
the exact mixing Hamiltonian).
While we show that better alignment improves performance,

for small system sizes accessible numerically the absolute value of
the improvement is relatively small. For instance, in hardware
experiments on the H2-1 device, we do not observe the
anticipated improvement in solution quality when increasing
Trotter number from 1 to 2. This highlights the centrality of
minimizing the circuit depth when executing QAOA on NISQ
devices.
Beyond demonstrating the alignment effect, designing

constraint-preserving mixers is of independent interest66,67. In a

Fig. 8 Comparisons of Trotterized XY mixers in QAOA with unrestricted optimization at p= 1, 2, 3 and with OLS method at p= 100. We
report the mean approximation ratio over 10 instances with N= 6 and K= 3 with error bars denoting the standard errors of the mean
estimation. A larger Trotter step consistently leads to better performance for mixing Hamiltonians built with two chains. In contrast, for the
approximated mixing Hamiltonians built with one chain, the performance improves when moving from Trotter step 1 to 2 and then stabilizes.

Z. He et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2023)   121 



recent paper66, the authors studied the mixer design from the
perspective of a transition matrix. For a Trotterized XY mixer, some
transitions between feasible states may be suppressed when the
Trotter number is not large enough. However, our results show that
QAOA performance is not explicitly related to the transition path. For
instance, in the Trotterized complete mixers, all the possible
transitions between feasible states have been filled with Trotter
number one. Meanwhile, the Trotter number still greatly influences
the QAOA performance, as shown in Figs. 6 and 8. This underscores
the importance of both the connectivity and probability of
transitions in mixer design for achieving high performance in QAOA.

METHODS
In this section, we introduce and discuss some implementation
details that enabled the simulations presented in the results section.

Problem instances selection
We first generate a pool of portfolio optimization problem
instances by randomly generating the mean return vector and

covariance matrix using RandomDataProvider in qiskit_fi-
nance68. To make the performance of different QAOA variants
clearly distinguishable, we intentionally select the ‘hard’ instances.
These instances are chosen by roughly examining depth-1 QAOA
performance with the initial state set to be the Dicke state and
Trotter-step-1 approximated ring-XY and complete-XY mixers.
Only instances that have relatively low AR (AR < 0.8 for ring-XY and
AR < 0.85 for complete-XY) are included in the benchmark. We
choose a total of 10 instances as our benchmark: 5 from QAOA
with a Trotterized ring-XY mixer and 5 from QAOA with a
Trotterized complete-XY mixer.

Improving the trainability
One of the challenges in solving the portfolio optimization
problem (1) with QAOA is that due to the non-integer weights
(mean returns and covariances between assets) assigned to the
problem Hamiltonian terms, the QAOA objective (5) is not
periodic. A larger parameter search space will correspondingly
require more initial points in a classical numerical optimizer to
converge to a high-quality local optimum. Different orders of γ
and β, and consequently different orders of their gradients, can
also introduce difficulties to the classical optimizer.
To address it, we multiply the objective function (1) by a

rescaling factor λ, which is a predefined instance-dependent
constant. Such a rescaling factor does not influence the true
solution to the problem, but it allows us to control the search
range in the energy landscape and rescale the order of γ and its
gradient. In QAOA, it is equivalent to scaling the γ to γ0 ¼ λγ. In a
numerical optimizer, if we fix a bounded search range of γ, such as
0; 2π½ �p, scaling by λ is equivalent to extending the search range to
0; 2λπ½ �p. In general, we are not guaranteed to find a global
optimum in this fixed interval; in fact, adversarial examples can be
constructed with a global optimum far from origin34. However, in
practice, we observe that this technique always gives a high-
quality local optimum. In this paper, we use the following protocol
to select the rescaling factor λ:

● Implement a QAOA with p= 1 for the specific problem
instance.

● Plot the heatmap of the circuit performance by conducting a
grid search over γ and β in a bounded range (e.g., 0; 2π½ � and
� π

2 ;
π
2

� �
). A coarse search grid may be used for efficiency.

● Select the rescaling factor λ by controlling the range of γ to
cover the regions on the heatmap with high-quality local
optima.

An example of selecting the rescaling factor is depicted in Fig. 11.
The selection of λ is not sensitive to the circuit structures discussed
in the results section. Similar protocols for rescaling the QAOA

Fig. 9 Left: an example of achieving a larger overlap between the Dicke state and the effective ground state of the Trotterized ring mixer
at β= 0.5 by increasing the Trotter number from 1 to 2. The Dicke state is prepared with different N values but a fixed K= 3. Right: the
quality of QAOA solution in noiseless simulation. The initial state is prepared as the Dicke state with a fixed K= 5, and the ring-XY mixer is
approximated with Trotter numbers 1 and 2. For various problem sizes, we consistently observe a performance improvement when
transitioning the Trotter number from 1 to 2.

Fig. 10 Experimental results for N= 32 in trapped-ion quantum
hardware: The AR from the random guess (uniform over all
feasible solutions) is 0.7801. For ARs from Trotter-number-1 (T= 1)
and Trotter-number-2 (T= 2) QAOA, hardware results are 0.8638 and
0.8424, while noiseless simulator results are 0.8808 and 0.8816. The
hardware results, though impacted by noise, are significantly better
than the random guess. To evaluate ARs, we post-selected feasible
solutions in the hardware experiments, selecting 213 and 172
feasible samples out of 2500 shots in T= 1 and T= 2 experiments.
The post-selection ratio is significantly better than a random
selection of 0.0047%. The p-value of the independent two-sample
t-test for the two groups of feasible samples is 0.0344, indicating a
significant difference between the means of the two groups. For
visualization purposes, we exclude one outlier with AR < 0.35 in the
swarm plot of both T= 1 and T= 2 experiments.
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objective have been proposed in Refs. 25,34,69. Similarly to previous
results, we observe that using one rescaling factor for all p works
well. When the problem size is large, we can make use of some
advanced QAOA simulators to obtain the expected energy, such
as70–72.
To study the alignment effect with Trotterized mixers, we try to

explore the performance within the same landscape. To avoid the
numerical optimizer driving the solution out of the targeted
landscape, we fix the same search range of β for all Trotterized
implementations and set a hard boundary constraint on the
solved γ. In the regular QAOA parameter optimization, for the
circuits with the same setup but different Trotter numbers, a
solution from one circuit could be a good initial guess for other
circuits.

Initial state preparation
Circuit realization. In our alignment effect simulations, we need to
prepare the initial state as the ground state of the corresponding
mixing Hamiltonian. However, in general, the state preparation
circuit for constructing the initial state can be costly to implement.
In our implementation, we skip the gate-based circuit realization
by assigning an exact state vector as the initial state in the
simulator. One special case is the complete-XY mixer. The ground
state of its Hamiltonian is the Dicke state, whose efficient circuit
implementation is known61,73 but could still be costly in the near
term devices. For example, ref. 74 studies fidelity lower bounds of
Dicke state preparation on Quantinuum H1 devices.

Determination of the ground state of the mixing Hamiltonian
In the case of the mixer implemented exactly, we can determine
the ground state by numerically performing the eigenvalue
decomposition on the mixing Hamiltonian. Since we are
considering a Hamming weight constraint, we only consider the
ground state in the feasible subspace.
However, when the mixer is implemented using Trotter

approximation, statements about the spectral properties of the
exact mixer may not be valid. Trotterization can make notions like
the ‘ground state of the mixing Hamiltonian’ ambiguous.
Specifically, if a mixer U(β) is the product of non-commuting
operators, its eigenvectors, and consequently the eigenvectors of
any Hermitian operator H(β) such that U(β)= e−iH(β), become
dependent on β. For this reason, we prepare the initial state as the
ground state of the exact mixing Hamiltonian and try to
approximate the mixer with a larger Trotter number T.

In addition, even for a fixed β, the periodicity of the eigenvalues
of U(β) (which are all unit complex numbers) allows each
eigenvalue of H(β) to be shifted by a multiple of 2π, while still
corresponding to the same eigenvalue and eigenvector of U(β).
This phenomenon is also discussed in41. It renders the notion of
the ‘smallest eigenvalue and the associated eigenstate’ ill-defined.
To quantify the alignment level between the initial state and the
mixer, similarly to ref. 75, we define the effective Hamiltonian for a
Trotterized unitary operator and its associated effective ground
state, based on the intuition from the adiabatic limit. Specifically,
the effective Hamiltonian associated with evolution time β is
defined as HeffðβÞ ¼ i logðUðβÞÞ and the corresponding effective
ground state is the eigenstate of Heff(β) that exhibits maximal
overlap with the ground state of the exact Hamiltonian. We refer
to the value of the maximal overlap as the ‘GS fidelity’. As the
Trotter number increases, the effective ground state at each QAOA
step should converge to the ground state of the exact
Hamiltonian, since the Trotterized mixer becomes more accurate.
As demonstrated in Fig. 12, even in the presence of potentially
large Trotter error, a small Trotter number is sufficient for the
effective ground state to be very close to the ground state of an
exact mixing Hamiltonian. In other words, the GS fidelity
converges much faster than the Trotter error with respect to the
Trotter number. This observation is also reported in75.

Fig. 11 This example demonstrates how to select the rescaling factor for one N= 6 instance. The figures from left to right display the
depth-1 QAOA energy landscape with gamma search space [0, 2000π], [0, 100π], and [0, 2π]. By applying a rescaling factor and fixing the
search space as [0, 2π], they are equivalent to setting the rescaling factors as 1000, 50, and 1, respectively. In this example, a rescaling factor of
50 encompasses high-quality local minima in the landscape.

Fig. 12 An example of Trotterizing the unitary U ¼ e�iβHXY
S with

N= 6 using different numbers of step with β= 0.5. The blue lines
represent the relative error in approximating the unitary, while the
orange lines depict the fidelity between the ground states of exact
and effective Hamiltonians.
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