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Experimental test of non-macrorealistic cat states in the cloud
Huan-Yu Ku 1,2, Neill Lambert2✉, Feng-Jui Chan1, Clive Emary3, Yueh-Nan Chen 1,2✉ and Franco Nori 2,4

The Leggett–Garg inequality attempts to classify experimental outcomes as arising from one of two possible classes of physical
theories: those described by macrorealism (which obey our intuition about how the macroscopic classical world behaves) and those
that are not (e.g., quantum theory). The development of cloud-based quantum computing devices enables us to explore the limits
of macrorealism. In particular, here we take advantage of the properties of the programmable nature of the IBM quantum
experience to observe the violation of the Leggett–Garg inequality (in the form of a ‘quantum witness’) as a function of the number
of constituent systems (qubits), while simultaneously maximizing the ‘disconnectivity’, a potential measure of macroscopicity,
between constituents. Our results show that two- and four-qubit ‘cat states’ (which have large disconnectivity) are seen to violate
the inequality, and hence can be classified as non-macrorealistic. In contrast, a six-qubit cat state does not violate the ‘quantum
witness’ beyond a so-called clumsy invasive-measurement bound, and thus is compatible with ‘clumsy macrorealism’. As a
comparison, we also consider un-entangled product states with n= 2, 3, 4 and 6 qubits, in which the disconnectivity is low.
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INTRODUCTION
The availability of public quantum computers, like the ‘IBM
quantum experience’ (IBM QE)1, promises both applications2–11

and tests of fundamental physics12–14. In particular, as the number
of available qubits increases, it potentially allows for a rigorous
study of the crossover between classical and quantum worlds15,16,
including tests like the Leggett–Garg inequality (LGI)17,18. The LGI
was derived as a means to classify experimental outcomes as
arising from one of two possible classes of physical theories: those
described by macrorealism, and those that are not (e.g., quantum
theory).
A macrorealistic theory is one where the system properties are

always well-defined (i.e., obey realism), and in which said
properties can be observed in a measurement-independent
manner (i.e., measurements just reveal pre-existing properties of
the system, and do so in a way that does not change those
properties). Quantum theory obeys neither of these stipulations,
but our intuition about the classical world does. Thus, ‘macro-
realists’ propose that macrorealistic theories apply when the
dimension, mass, particle number, or some other indicator of the
size of a system is increased, such that the behaviour of suitably
macroscopic systems will tend to obey realism and can be
observed without disturbance.
Over the last 10 years a large variety of experimental tests of the

LGI, and its generalizations19–34, have been performed and
violations observed. In typical tests, such as with photon35–38

and nuclei–electron spin pairs39, the macroscopicity of the system
has been small. And while larger for superconducting qubits40–42

and some of the atom-based examples43,44, testing truly macro-
scopic systems yet remains a distant goal45,46.
In this work, we take advantage of the programmable nature of

the IBM QE to enable tests of increasing macroscopicity by directly
increasing the number of constituent parts of the system in a non-
trivial way. To do so we design a circuit that generates n-qubit ‘cat
state’ superpositions of fully polarized configurations, i.e., states

which have genuine multipartite entanglement47 and a large
‘disconnectivity’, an indicator of macroscopicity17,18,48–52. This
allows us to see how the violation of the LGI (here in the form
of a ‘quantum witness’23,53,54) changes as we increase the
macroscopicity in terms of the number of constituent qubits.
In addition, we augment the basic quantum witness test with a

measurement invasiveness test41,55, which accounts for ‘macro-
scopically invasive’ measurements by modifying the witness
bound. We term systems which cannot violate the bound
‘clumsy-macrorealistic’. For the experiments we perform on the
IBM QE, our tests show that two- and four-qubit ‘cat states’ clearly
violate the quantum witness and are thus non-macrorealistic. On
the other hand, as we increase the number of qubits involved in
the state to six, the witness value is suppressed, suggesting that
this case is compatible with ‘clumsy macrorealism’.
Finally, instead of preparing entangled states, we also consider

product states with zero entanglement, and hence low discon-
nectivity (compared with our test using entangled states), which
implies these states are less macroscopic. In comparison with the
cat states, we observe that the violation of the witness for these
states is more robust to decoherence as the number of qubits is
increased. We also show that the quantum witness can serve an
additional role as a dimensionality (as in the number of states in
the Hilbert space discriminated by the intermediate measure-
ment) witness.

RESULTS
Quantum witness
According to Leggett and Garg, macrorealistic systems obey two
assumptions: macrorealism per se (MRPS) and non-invasive
measurability (NIM)17,18. MRPS assumes that the system always
exists in a definite macroscopic state, and NIM assumes that
measurements reveal what that state is, but do not change it.
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Under the assumptions of MRPS and NIM, the LGI in the form of
a ‘quantum witness’23,53,54 tells us that if we consider measure-
ments on a system at two times, t1 and t2, the probability of
observing outcome j at time t2 should be independent of whether
the measurement at the earlier time, t1, was performed or not. This
probability is then related to the sum of all joint probabilities in
the standard way53:

pt2ðjÞ ¼ pMt2ðjÞ ¼
X
i

pt1ðiÞpt2;t1ðjjiÞ: (1)

Here, pt2ðjÞ is the probability of observing the outcome j at time t2,
and pt1ðiÞpt2 ;t1ðjjiÞ is the joint probability for observing the
measurement outcome i at time t1 followed by the outcome j at
time t2. The superscript M denotes that a measurement was
performed at the earlier time t1, and conversely the absence of M
implicitly denotes the probabilities are collated from experiments
where such an earlier measurement was not performed.
Given these definitions, the quantum witness53 can be defined

as the breakdown of the equality W= 0 where the witness is
defined as

W ¼ jpt2ðjÞ � pMt2ðjÞj: (2)

If we find W ≠ 0, the state at time t1 is said to be non-
macrorealistic, in the sense that the assumptions of either MRPS or
NIM (or both) are shown to be invalid for it.
The assumption of NIM is hard to justify, even if we assume

MRPS holds. We can modify Eq. (2) to take into account certain
types of invasive measurements by allowing the measurement
process at time t1 to change the macroscopic state of the system.
In this case, the relationship between marginal and joint
probabilities can be extended to53,56

pMt2ðjÞ ¼
X
k

pt2;t1ðjjkÞ
X
i

ϵMðkjiÞpt1ðiÞ; (3)

which incorporates the probability ϵM(k∣i) that observing the
system in state i at t1 can cause the system to change to state k.
We dub this the assumption of ‘macroscopically invasive
measurements’.
As shown in the Methods section, combining this assumption

with Eq. (2) gives us an inequality for ‘clumsy macrorealism’

W � max
i
½IðiÞ�; IðiÞ ¼ j1� ϵMðijiÞj: (4)

We call IðiÞ an invasiveness test, and it can be evaluated in an
additional experimental run by preparing the system in state i,
performing a measurement, and checking whether it is still in that
state immediately after said measurement. If we observe that the
inequality in Eq. (4) is violated we can say that the both
macrorealism and non-clumsy macrorealism do not hold.
Under the most clumsy of measurements, the clumsy macro-

realism bound can be unity if ϵM(i∣i)= 0, which occurs when the
measurement so strongly disturbs the system the given state i is
completely changed into some other states j ≠ i. Therefore, we note
that the quantum witness and the measurement invasiveness test
should be implemented under the same conditions. One of the
goals of the LGI is to identify whether the macroscopic nature of a
given system influences whether it behaves in a ‘quantum way’ or
in a macrorealistic fashion. While definitions of macroscopicity are
myriad52, Leggett48,49 suggested that a minimal starting point are
the extensive difference and the disconnectivity. The former
compares the difference in magnitude of the observable outcomes
to some fundamental physical scale. Recent experiments have
attempted to maximize the extensive difference with a macro-
scopically large superconducting flux qubit41.
The disconnectivity, in contrast, arises from considering that a

violation of the witness by a quantum system arises because, at
time t2, quantum dynamics can generate superpositions of
‘macroscopic states’. Simultaneously, these superpositions are

collapsed by measurement, and hence LGI and quantum witness
tests are violated. Thus, if an object is composed of many
‘particles’, we want the macroscopic nature of the system to
contribute to the ‘superposition of macroscopic states’ in a non-
trivial way, i.e., a large number of the particles should have
different states in the ‘branches’ of the superposition. For instance,
a Bell state 1=

ffiffiffi
2

p ð 11j i þ 00j iÞ satisfies the above statement with
both qubits having clearly different states in the two branches of
the superposition, while the product state 1=

ffiffiffi
2

p ð 0j i þ 1j iÞ �
ð 0j i þ 1j iÞ does not. This recalls the idea that in a Schródinger’s
cat thought experiment, the whole cat is in superposition, not just
one whisker.
To put such a definition in a quantitative format, Leggett48,49

argued that the disconnectivity can be defined as the ‘number’ of
correlations (between constituents) one needs to measure to
distinguish a linear superposition between two branches from a
mixture (which are indistiguishable with single-particle measure-
ments alone). A potential quantitative measure proposed by
Leggett in ref. 49 is as follows: considering n spins, for any integer
n0 � n, the reduced von-Neumann entropy (also known as the
entanglement entropy, a measure of entanglement for bi-partite
pure states) of the state ρn0 (having traced out the other spins) is
Sn0 ¼ �Trρn0 lnρn0 . Leggett then defined the disconnectivity Γ as
the maximum value of n0 such that

δn0 ¼ Sn0

minmðSm þ Sn0�mÞ < η; (5)

where η is a small value that sets the bound between classical
mixtures and entangled states (see below). Here one assigns δn0 ¼
1 when Sn0 ¼ minmðSm þ Sn0�mÞ ¼ 0 and defines δ1= 0. With this
definition one can see that states which are ‘globally’ pure but
locally mixed give large values of disconnectivity, implying the
mixed-ness arises from global entanglement.
Considering an n-body pure entangled state like the GHZ state

we use in our experiment, we will have a vanishing numerator and
non-vanishing denominator, leading to δn= 0 and thus Γ= n. On
the other hand, for a product state, or a mixture of product states,
one finds δ2= 1 and 0.5, respectively, and hence Γ= 1 for these
cases. (As an aside, this suggests a possible choice of η= 0.5 as a
bound to delineate between mixtures of product states and mixed
entangled states in Eq. (5).) It is clear that the disconnectivity
is strongly related to definitions of genuinely multipartite pure-
state entanglement, a connection which is discussed in-depth in
refs 48,49. In the tests of macrorealism performed to date, most are
arguably in the regime of Γ= 1, particularly those employing
single photons, electrons, or nuclear spins, and so on35–37,39. On
the other hand, the question of the disconnectivity of a single
superconducting qubit40–42 has been open to debate (see the
Supplementary Information of ref. 41 for an in-depth discussion).
Our approach here, irrespective of the disconnectivity of the
constituent qubit, provides a way to increase the overall
disconnectivity by constructing large cat states of many entangled
qubits.
To translate this onto the IBM QE, we identify the macroscopic

states i with the n-qubit computational basis states of the
quantum register, as revealed by standard read-out measure-
ments. We denote, where appropriate, these macroscopic states
with classical bit-strings, such that what would be 0j i�n in the bra-
ket notation we write as {0}n.
To generate superposition states with high disconnectivity, we

design circuits in the IBM QE to produce an evolution which starts
with all qubits in the product state 0j i�n at time t0, and then
ideally implements a unitary U(n, θ) that creates an entangled n-
qubit ‘cat state’ at ‘time t1’, namely

ρt1 ¼ ϕðn; θÞj i ϕðn; θÞh j; (6)

where ϕðn; θÞj i ¼ cos θ2 0j i�n þ sin θ
2 1j i�n, with real coefficient θ

(which for θ= π/2 and n > 2 are GHZ states). According to the
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witness prescription, a measurement is then either performed or
not performed on this state. We then choose the evolution for t1
to t2 to be given by the inverse unitary transformation U† so that,
in the situation where no intermediate measurement has been
performed, the entangled state is, ideally, ‘evolved back’ to the
starting state and ρt2 ¼ 0j i 0h j�n (see Fig. 1 for a schematic
description). In the witness itself we choose to only look at the
probability of being in that particular macroscopic state, i.e., j≡
{0}n at t2.
In an ideal quantum system, undergoing evolution described

by Eq. (6), one can trivially calculate that pt2ðf0gnÞ ¼ 1,
pt1ðf0gnÞ ¼ cos2 θ

2

� �
, pt1ðf1gnÞ ¼ sin2 θ

2

� �
, pt2;t1ðf0gnjf0gnÞ ¼

cos2 θ
2

� �
and pt2;t1ðf0gnjf1gnÞ ¼ sin2 θ

2

� �
. The corresponding quan-

tum witness evaluates as

W ¼ 1� cos4
θ

2

� �
� sin4

θ

2

� �
: (7)

Equation (7) shows that the quantum witness in Eq. (2) is violated
for any θ ≠ kπ with k= 0, 1, 2, ….
It is interesting to compare the situation described in Eq. (6) to

an example which still uses many qubits but has low disconnec-
tivity. In this case, the maximally entangled states we used
previously are now replaced by a product of single-qubit
superposition states at time t1,

ψðnÞj i ¼ 1ffiffiffiffiffi
2n

p 0j i þ 1j ið Þ�n; (8)

which has the lowest disconnectivity48,49 of Γ= 1. Surprisingly, this
product state saturates the maximum quantum bound of the
witness, which is given by57

Wmax ¼ 1� 1
DIdeal

; (9)

where DIdeal is the number of states spanning the Hilbert space,
obtained when the intermediate measurement process discrimi-
nates all DIdeal states. We note that this bound is derived under the
assumptions of quantum mechanics (not clumsy macrorealism).
As an aside, we mention that combining Eq. (9) with the clumsy-
macrorealistic bound in Eq. (4), we can obtain that we need
ϵMðijiÞ � ½DIdeal��1 for the possibility of our system to violate
clumsy macrorealism at all.
In our experiments, since we individually measure every qubit in

the computational basis, DIdeal= 2n with n number of qubits.
Because of this relation between the maximum violation and the
dimensionality of the states contributing to the quantum witness,
a secondary application as a dimensionality witness arises. In our
previous example of cat states, even though we had many qubits,
and high disconnectivity, the effective dimension of the states
involved in the test of the witness was low, because it was
dominated by just two states, 0j i�n and 1j i�n.

Circuit implementation
We use the processor IBM Q5 Tenerife to experimentally test the
n= 2 cat state with θ ∈ {0, π/8, 2π/8, 3π/8, 4π/8}. With the 14-qubit
processor IBM Q14 Melbourne, the GHZ states are implemented
by considering θ= π/2 for n= 4 and 6. The IBM QE only allows for
a single measurement to be performed on each qubit. This makes
collating the two-time correlation functions required by the
quantum witness difficult. To overcome this restriction, we use
CNOT gates between ‘system qubits’ and ‘ancilla qubits’, followed
by measurements on the ancilla qubits, to perform the
intermediate measurement. As a consequence, we are restricted
to a maximal qubit number of 6, with correspondingly 6 ancilla
qubits for measurements at time t1.
From the initial state 0j i�n, ‘cat states’ can be obtained by

performing the unitary transformation U. The unitary U can be
decomposed into several parts. It contains the following single-
qubit operation applied to the first qubit:

U3ðλ; ϑ; θÞ ¼ cos θ=2 �eiλ sin θ=2

eiϑ sin θ=2 eiðλþϑÞ cos θ=2

 !
; (10)

with λ= ϑ= 0, followed subsequently by a series of CNOT gates
between the first qubit and each of the others in turn. The inverse
operation U† is given by applying CNOT gates again before
applying the Uy

3 ¼ U3ð0; 0;�θÞ gate on the first qubit. In the
Methods section, we presents a detailed schematic example for a
two-qubit system as well as the details of how these operations
function.
To generate the product of superposition states described in Eq.

(8), we perform Hadamard gates on each qubit individually at t1.
At time t2, the Hadamard gates, which are self-inverse, are
performed to again obtain a state 0j i�n.

Noise simulation
Before discussing the experimental results, we introduce a
numerical noise model which will assist in understanding two of
the main experimental features: suppression of the witness
violation due to dephasing and accidental enhancement of the
witness violation due to macroscopically invasive measurements.
In the following, to include the influence of decoherence and

gate infidelities in a simulation of the quantum circuit, we consider
a simple strategy where we assume that each gate is performed
perfectly, and instantaneously, after which follows a period of
noisy evolution for the prescribed gate time (which can be
substantial for two-qubit gates). During such periods, the
dynamics of the system can be described by the following
Lindblad master equation58,59:

_ρs ¼
PN
i

γiT1
2 2σi

�ρsðtÞσi
þ � σi

þσ
i
�ρsðtÞ � ρsðtÞσi

þσ
i
�

� �
þPN

i

γiT2
2 2σi

zρsðtÞσi
z � σi2

z ρsðtÞ � ρsðtÞσi2
z

h i
:

(11)

where σi
þ, σi

�, σi
z represent the raising, lowering and Pauli-Z

operators of the ith qubit, respectively. Here, we consider the
coefficients to be uniformly γiT1 ¼ 1=T1 and
γiT2 ¼ ½T�1

2 � ð2T1Þ�1�=2 8i. The parameters above (like the energy
relaxation time T1, dephasing time T2, and gate times) are publicly
available and can also be reconstructed by the user using well-
defined protocols in the IBM QE.
Equation (11) can be derived by assuming that the influence of

the environment obeys the standard Born–Markov–Secular
approximations. The first and second lines respectively describe
energy dissipation and pure dephasing. For the comparison to the
experimental data we use values for γT1 and γT2 which
approximately fit the order of magnitude of the published data

t1 t2

Fig. 1 Schematic setup. We prepare n qubits on the state 0j i�n

(blue) at time t0. A unitary U transfers the system into the entangled
cat state ϕðn; θÞj i ¼ cos θ2 0j i�n þ sin θ

2 1j i�n (red) at time t1. Then, an
inverse unitary U† is performed to the entangled system, such that
the system returns back to the state 0j i�n at time t2. The outcomes i
and j are obtained at t1 and t2, respectively.
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(T1= 46 μs and T2= 13.5 μs) such that the numerical simulations
approximate the observed experimental results well.
Although in general the noise suppresses the violation of the

quantum witness, we will show later that the experimental result
with θ= 0, in which the state has no superposition, is not exactly 0
as one might expect. From our numerical simulation we find that
this non-zero value is due to imperfect gate operations; in
particular, the ancilla CNOT gates for the intermediate measure-
ment. For example, during the intermediate measurement step,
for θ= 0 we ideally expect the system to remain in the 0j i�n state
for the whole duration of the experiment. However, during the
intermediate measurement state the system may be accidentally
excited from state 0j i�n into other states. This is precisely a
‘clumsy’ macroscopically invasive measurement, such that W ≠ 0,
even though the state of the system obeys MRPS. With the
effective identity operations U= U†= id in θ= 0 case, this
example exactly corresponds to the measurement invasiveness
test we described in the section ‘Quantum witness'.
In our minimal simulation, we simply model the effects of such

errors by the following extra Lindblad terms for all qubits i:

γiErrors
2

2σi
þρsðtÞσi

� � σi
�σ

i
þρsðtÞ � ρsðtÞσi

�σ
i
þ

� �
; (12)

where γiErrors is the coefficient to simulate the gate errors for each
qubit (which again we take to be uniform γiErrors ¼ γErrors). This
noise term is phenomenological, and is introduced to capture the
noisy imperfect nature of the intermediate measurements which
can cause an effective excitation of the qubits, as described above.
For our quantum circuits, we determine this value (γErrors= 8.5 ×
10−2 μs−1).
While we primarily use this parameter to fit the witness

violation, we point out that when θ= 0, the circuit implementa-
tion of the quantum witness is identical to the clumsy-
measurement test because the intermediate state is simply {0}2

in the computational basis. Thus, the noisy simulation of the
parameter γErrors estimates not only the quantum witness but also
the measurement invasiveness in that round of the experiment
(see Fig. 1).

Experimental results
To evaluate our proposed modified bound on the witness, we
must run additional experiments wherein one prepares and
measures all possible quantities IðiÞ. Although we do not
explicitly test the quantum witness for a single-qubit, we do test
the measurement invasiveness for this case, to check the effect of
the clumsy measurement in the IBM QE. The average and
maximum values of the invasiveness of single, two, four and six
qubits are shown in Table 1. While we only present the
invasiveness of the state 0f gn, as it usually presents the largest
disturbance, we do prepare ‘all possible states’ in the computa-
tional basis for single-, two-, four-qubit systems, in order to test
the invasiveness, see ‘Methods'.
In general, as we increase the number n of qubits involved in

the experiment, testing the invasiveness can be challenging
because there are a total of 2n circuits to be generated to prepare
all possible states i. However, if one finds a IðiÞ which is already
greater than the observed witness violation, it is of course
unnecessary to continue. For example, for the six-qubit case,
instead of preparing all possible macroscopic states i, we only
consider the state 0f g6 because the experimental value of the
quantum witness we observe for the six-qubit case later is already
lower than the invasiveness quantity:

Ið 0f g6Þ ¼ j 1� ϵMð 0f g6j 0f g6Þ j: (13)

In all cases (n= 1, 2, 4, 6), we test the measurement
invasiveness in 25 different experiments across different days,
each consisting of 8192 runs. This was done because the tests

were not performed at the same time as the data collection for
testing the actual witness itself. On these long timescales, the IBM
QE exhibits fluctuations in parameters, including coherence times,
gate fidelities, etc., and thus we introduce a variance in this test
that represents these fluctuations. We note that the results of
single- and two-qubit systems are obtained from the IBM Q5
Tenerife, while the results for four- and six-qubit systems are
obtained from the IBM Q14 Melbourne.
Figure 2 shows experimental data for the n= 2 cat state with

θ∈ {0, π/8, 2π/8, 3π/8, 4π/8}. We also show the theoretical
predictions both with and without noise simulation, as well as
the modified witness bound based on the measurement
invasiveness tests. From Fig. 2 we observe that the maximum
value of the quantum witness occurs when the entanglement
parameter θ ¼ π

2, which is the maximally entangled state.
At θ= 0, we find that the value of the quantum witness is lower

than the average experimental measurement invasiveness tests,
implying it is consistent with macrorealism. Interestingly, there is a
residual small violation of the witness even though this is not
predicted by the simple ‘pure states’ {0}2 expression in Eq. (7). This
‘invasiveness’ represents a classically invasive measurement. For
example, in our simulation plotted in Fig. 2, we observe that the
θ= 0 non-zero witness value arises directly from γErrors in Eq. (12)
(i.e., if we set γErrors= 0 the witness value in the simulation falls to
zero). Thus, as discussed in the section Quantum witness, the
γErrors is related to the clumsy measurability ϵM({0}2∣{0}2) since at
θ= 0 the intermediate state corresponds to {0}2.
When we consider the results of the n= 4 and n= 6 cat states

in Table 2, we see that the magnitude of the quantum witness
violation drastically decreases, as compared to the n= 2 case. The
value of the quantum witness for the four-qubit cat state is still
larger than the invasiveness test, implying a non-macrorealistic
behaviour. In contrast, while the invasiveness test for six qubits is
only performed with the 0f g6 state, we see that the six-qubit cat
state does not exceed these tests. Thus, we can conclude the six-
qubit system is compatible with a clumsy-macrorealistic descrip-
tion. This result shows that the IBM QE tends to a clumsy-
macroscopic realistic behaviour as the number of qubits increases,
due to the increased influence of decoherence and dephasing
processes as the circuit complexity, or ‘depth’15, increases.
The values we observe for the quantum witness with the

product states are shown in Table 3. We find that, compared to cat
states, the product states witness values are more robust as we
increase n, reflecting the increased sensitivity of cat states used in
the previous section to dephasing and decoherence, and the
lower circuit depth (and hence less time being spent exposed to

Table 1. Table of the measurement invasiveness parameters of states
0f gn for single-, two-, four- and six-qubit systems, respectively.

n IMaxð 0f gnÞ IAveð 0f gnÞ
1 0.023 ± 0.004 0.016 ± 0.003

2 0.077 ± 0.008 0.068 ± 0.006

4 0.146 ± 0.006 0.106 ± 0.019

6 0.686 ± 0.007 0.310 ± 0.225

The results of all possible states i in the computational basis for single-,
two- and four-qubit cases are given in the ‘Methods’ section. Here we
perform 25 experiments, across multiple days, to take into account the
variability in the IBM quantum system parameters. Each experiment
consists of 8192 runs. The maximal and average values, over experiments,
of the measurement invasiveness are obtained from the IBM Q5 Tenerife
for the single- and two-qubit systems, while the results for four- and six-
qubit systems are from the IBM Q14 Melbourne. The simulation results,
using the noise model described in the main text, are respectively
I Simð 0f g1Þ ¼ 0:031 and I Simð 0f g2Þ ¼ 0:061 for the single- and two-
qubit cases.
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noise) of this product state example. Due to inevitable noise
described above, the observed values of the quantum witness for
each n do not reach precisely the corresponding theoretically
predicted maximum possible values of Wmax ¼ 1� D�1

Ideal with
DIdeal= 2n. Nevertheless the value of the witness increases with n
(and hence the number of states in the Hilbert space) as expected.
More specifically, as we increase the number n of qubits, the value
of the corresponding quantum witness not only increases but is
always larger than the maximum value with qubit number (n− 1).
This confirms that in practice the quantum witness can function as
a dimensionality witness. We note that several other approaches
to witnessing dimensionality, using different types of temporal
correlations, were recently implemented60,61.

DISCUSSION
By taking advantage of the programmable nature of the IBM QE,
our results have shown how the violation of an LGI, in the form of
a ‘quantum witness’, changes as we increase the number of qubits

contributing to a highly entangled state. This allows us to see
directly how the system becomes more macrorealistic as we
increase the macroscopicity.
For n= 2, we observed a violation of the quantum witness for

θ= π/8, 2π/8, 3π/8 and π/2, for n= 4 for θ= π/2. Thus, we can
claim that when manipulating and observing two qubits in the
IBM Q5 Tenerife device, and four qubits in the 14-qubit processor
IBM Q14 Melbourne used for this experiments, the results must be
described with a non-macrorealistic theory. On the other hand, we
found that six qubits, prepared in a GHZ state, did not violate the
witness beyond a measurement invasiveness test, and thus these
observations can, in principle, be described with macrorealistic
theories. As the capabilities of the IBM QE improve (e.g., when
ancilla qubits are not required for the intermediate measure-
ments), error correction and error mitigation techniques are
employed, the boundary between quantum theory and potential
clumsy-macrorealistic theories could be tested with a much larger
number of qubits.
The classical invasiveness, or clumisiness, we observed in the

data (e.g., clearly exemplified by the non-zero quantum witness
value at θ= 0 for n= 2) can be explained by our ‘minimal’
Lindblad master equation noise model, where the infidelity of the
CNOT operations used in the intermediate measurements causes
changes in the state of the qubits. Moreover, our minimal model
can also explain the suppression of the witness violation due to
dephasing and energy relaxation.
To complement our primary results, instead of preparing

entangled states, we also tested a product of superposition states,
which has a low disconnectivity. We found that, as expected for
such a state, the maximal violation increases with the number of
qubits, and hence the dimensionality. In addition, the influence of
noise on these results is substantially smaller than the GHZ-state
based test. This is because single-qubit coherence tends to be less
susceptible to noise than GHZ states, and because of the lower
total circuit depth.
Finally, it is important to note that recent work has shown non-

negligible non-Markovian effects in the IBM QE62. This can
introduce a secondary loophole in the LGI due to the non-
instantaneous nature of the measurements we perform at time t1.
For example, in the IBM QE, the measurements at time t1 take
about 0.4 and 0.9 μs for the 5- and 14-qubit devices, respectively.
This long timescale appears because of the CNOT operation
between primary and ancilla qubits needed for our intermediate
measurement. Recent works suggest that non-Markovian effects
are important on timescales of ≃ 5 μs62. Thus, differences in
environment evolution on the timescale of our intermediate
measurements may cause differences in the outcomes in the two
contributions to the witness (i.e., differences to the final
probability distributions between when the measurement is
performed and when it is not). Like with clumsy measurements,

Table 2. Table of the quantum witness W, maximal measurement
invasiveness IMaxð 0f gnÞ, and their relative difference for the larger cat
states n= 4 and n= 6.

n= 4 n= 6

W 0.245 ± 0.008 0.181 ± 0.007

Imaxð 0f gnÞ 0.146 ± 0.006 0.686 ± 0.007

Relative difference 0.099 ± 0.010 −0.505 ± 0.010

Table 3. Table of the quantum witness for a product of superposition
states.

n 2 3 4 6

DIdeal 4 8 16 64

WMax 0.75 0.875 0.937 0.984

WExp 0.746 ± 0.005 0.857 ± 0.004 0.902 ± 0.003 0.940 ± 0.003

DExp ≥3 ≥6 ≥10 ≥16

Here, DIdeal= 2n is the ideal dimension of the system with qubit number n.
The corresponding ideal value of the quantum witness is
WMax ¼ 1� 1=DIdeal . Here, WExp is the value of the quantum witness
obtaining from the IBM Q14 Melbourne with the estimating dimension
DExp ¼ bð1�WExpÞ�1c, where ⌊Y⌋ is the integer of the number Y.0 0.25 0.5
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Fig. 2 The value of the quantum witness of n= 2 cat states. The
circuit is designed to produce the state ϕð2; θÞj i ¼ cos θ

2 0j i�2 þ
sin θ

2 1j i�2 at an intermediate time. The experimental results
obtained by the IBM QE are shown by blue diamonds. The
theoretical results, with and without noise simulation, are shown
by red dashed and black solid curves, respectively. Obviously, the
quantum witness increases with the parameter θ, but also shows a
residual violation due to the macroscopically invasive measure-
ments backaction and gate error at θ= 0. We simulate the influence
of decoherence and gate infidelities by Lindblad-form master
equations (11) and (12). The coefficients of relaxation time T1=
46 μs, dephasing time T2= 13.5 μs and gate-error coefficient γErrors=
8.5 × 10−2 μs−1 are determined by approximately fitting the experi-
mental results. The grey and orange shaded areas at the bottom are
the clumsy-macrorealistic regimes determined by the maximal and
average invasiveness tests in Table 1. Note that the invasiveness test
including the standard deviation does not depend on θ. The
experimental uncertainties are derived from the multinomial
distribution and error propagation except for the average dis-
turbance case which is the variance across 25 repeated experiments.
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because of this non-instantaneous measurement time, the origin
of violations in this test due to breakdown of macroealism, or due
to non-Markovian environmental influences, cannot be deli-
neated. Our measurement invasiveness test may compensate for
this to some degree, but further work is needed to take into
account this potential loophole with such a test. Alternatively, the
non-Markovian effect can be diminished by using faster measure-
ments, should such become available (either via faster CNOT
operations, or the availability of direct measurements on the
primary qubits at intermediate times).
In the Methods section, we consider an alternative approach to

implement the witness which removes the need to use ancilla
qubits, and hence reduce the circuit depth. From a simple
inspection of the definition of the quantum witness, one can see
that we can, instead of directly measuring the two-time
correlation functions by using the ancilla qubits, first run an
experiment where the probabilities pMt1ðiÞ are collected. Then we
run another experiment where one deterministically prepares the
system in the state i, and measures pt2;t1ðjjiÞ. This scenario, which
we call ‘prepare-and-measure’, replaces the non-invasive measure-
ment assumption with an ideal-state preparation and a more
explicit non-Markovian evolution assumption (see refs 53,63).
Overall, our results suggest that the current iteration of the IBM

QE tends towards clumsy-macrorealistic behaviour for more than
four qubits. This is inevitably also a function of the resulting circuit
depth15 (i.e., overall run-time) on which the witness can be tested,
which increases as the number of qubits is increased. A significant
contribution to the circuit depth arises from the ancilla-based
measurements, thus future improvements to the IBM QE which
allow multiple measurements on a single qubit may significantly
reduce this circuit depth.
Finally, we point out that since a CNOT gate is its own inverse,

one can reinterpret the combination of the quantum witness, and
our choice of circuit, as a test of a classical circuit identity under
the conditions of macrorealism. In other words, we tested whether
CNOT2= id still holds under the condition of an intermediate
projection onto a classical basis between the two CNOT gates.
Under quantum mechanics, of course, such relations are violated.
Thus, we arrive at a different perspective on quantum witness
tests, namely that they can be viewed as tests of reversible
classical circuit identities under intermediate measurements.

METHODS
Modifying the quantum witness for clumsy measurements
Here, we explicitly derive Eq. (4) in the main text. Inserting Eq. (3) into the
definition of the witness, one finds

W ¼ P
i;k

pt2 ;t1 ðjjkÞϵMðkjiÞpt1 ðiÞ �
P
i
pt2 ;t1 ðjjiÞpt1 ðiÞ

					
					

� max
i

P
k
pt2 ;t1 ðjjkÞϵMðkjiÞ � pt2 ;t1 ðjjiÞ

				
				;

(14)

where the maximum over states i at time t1 comes from the upper bound
on a convex combination. This we can rewrite as

W � max
i

pt2 ;t1 ðjjiÞ 1� ϵMðijiÞ� ��X
k≠i

pt2 ;t1 ðjjkÞϵMðkjiÞ
					

					:
Since pt2 ;t1 ðjjiÞ � 1, ∑kϵ

M(k∣i)= 1, and the remaining terms are positive,
we can bound the right-hand side further as

W � max
i

1� ϵMðijiÞ		 		: (15)

Thus we obtain an upper bound for the witness under the assumption
of a macroscopically invasive nature of the intermediate measurements.
This bound assumes nothing about the evolution from t1 to t2.
The bound in Eq. (15) can be said to be a weaker bound than that in

Eq. (14), but is more experimentally efficient because we do not need to
consider the effect of potential arbitrary evolution between t1 and t2.

We note that Eq. (14) alone is equivalent to the test employed in ref. 63.
One just needs to sum up the outcomes j in Eq. (14) for the multi-outcome
scenario considered in that work. Our additional derivation of a weaker
bound in Eq. (15) can be similarly generalized to multiple final outcome
measurements. This method is also related to the ‘adroit' measurement
test proposed in refs 40,55, when one assumes a particular intermediate
measurement and that the states before that measurement are macro-
realistic. Our bound is not as strong as the adroit one, but is easier to
implement for the many-qubit situation we explore in this work.

Quantum circuits: direct-measure scenario
From the initial state 0j i�n , ‘cat states' at time t1 can be obtained by
performing the unitary transformation U 0j i�n ¼ ϕðn; θÞj i ¼ cosðθ2Þ 0j i�n

þ sinðθ2Þ 1j i�n . In the IBM QE, we implemented the unitary U by applying
the U3(0, 0, θ) gate in Eq. (10) on the first qubit, and subsequently
performing n− 1 CNOT gates between the first qubits and all others.
Therefore, the unitary U ¼ CQn�2

Qn�1
::::::CQ1

Q2
CQ0
Q1
UQ0
3 with the superscript Q0 of a

single quantum gate U3 representing the operation acting on the qubit Q0.
Here, the super- and subscripts of a CNOT operation represent the control
and target qubits, respectively. The inverse operation U† is applied after
time t1 and it is given by reverse the gate implementation above. We note
that if one were to directly implement the circuit without ‘barriers’ on the
IBM QE it would be automatically ‘optimized’ to be an identity operation. In
Fig. 3a, we present an explicit example of a two-qubit cat state.
Now, we can introduce how to perform the intermediate measurement

at time t1 and obtain the two-time correlation function. Since the IBM QE
only allows at most one measurement operation on any given qubit, we
have to perform a CNOT gate on each measured qubit and an ancilla qubit.
Here, the ancilla and measured qubits are respectively the target and
control qubits [see Fig. 3b and ref. 64]. The measurement results on the
ancilla qubit refer to the outcomes i and leave behind the corresponding
post-measurement states γj ii . After the measurement at time t1, we apply
the U† on the post-measurement state. We denote this approach as a
direct-measure scenario.
For instance, if the target and control qubits are respectively 0j i and

α 0j i þ β 1j i, with ∣α∣2+ ∣β∣2= 1, the state after the CNOT operation is
κj i ¼ α 00j i þ β 11j i. Now we perform a measurement on the target qubit
in the computational basis. Following Born’s rule, we have

γi ¼ TrTargetð id � ij i ih jρÞ; (16)

where ρ ¼ κj i κh j is the state at time t1, ij i ih j is a projector onto the
computational basis, and γi ¼ γj ii γh j is the remained state with the
corresponding outcome i.
The second measurement with outcome j at time t2 can be

implemented, without the need for ancillas. From this, the IBM QE can
return the result pMt2 ðjÞ. Finally, we note that while IBM Q14 Melbourne has
14 qubits, one cannot perform CNOT gates between arbitrary qubits
because the direction of a CNOT gate is limited by the physical processor
design (see the physical structures in ref. 1), limiting us to 6 qubit in our cat
state, and 6 ancilla qubits. We note that in the current IBM QE, all of the
qubits are measured in the end regardless of whether the measurement
gates are actually implemented in the quantum circuit. After measuring all
of the qubits, post-processing of the resulting data is applied according to
the measurement gates one has chosen.

The measurement invasiveness of the other states
Here, we present the values of the measurement invasiveness of the
single-, two-, four-qubit states in Tables 4 and 5. We prepare all
‘macrorealistic’ states i in the computational basis to test the invasiveness
of the intermediate measurement at time t1.
In addition, it is important to note that the uncertainties given for the

average values of the measurement invasiveness test represent the
variance across 25 different experiments (each individually consisting of
8192 runs) performed on different days, and thus reflect the variance in
various properties of the IBM QE across these long timescales12, and are
thus different from the ones in the rest of the paper.

Quantum circuits: prepare-and-measure scenario
An alternative approach (which can in principle allow for a larger number
of measured qubits since no ancilla qubits are needed) relies on trading
the measurement at time t1 with ideal-state preparation. In this scenario,
the first circuit is performed with a unitary transformation U before the
measurements at time t1. The IBM QE returns the probability distribution
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pt1 ðiÞ with outcomes i. According to the probability distribution pt1 ðiÞ, we
then prepare a new circuit with an initial state in the eigenstates ij i. The U†

operation is then performed before the measurements at time t2 on the
system. The results from the IBM QE represent the conditional probability
distributions pt2 ;t1 ðjjiÞ. Here, only the outcome j= 0 is used to analyse the
quantum witness in Eq. (2).
We prepare all possible eigenstates ij i for n= 2 and 4 qubits systems.

For the 6-qubit case, we only prepare the eigenstates ij i if pt1 ðiÞ � 10�3,
which is chosen to be much smaller than the ideal outcome of, e.g.,
pMt1 ð0Þ ¼ 0:5 (note that the error induced in the witness due to omission of
these small terms can in principle be of the same order as the uncertainty
in the experimental data we show later; but given that the observed
violation is already lower than the measurement invasiveness, this error
does not cause a false witness). Finally, we note that there are at most (i+
1) quantum circuits in this scenario with i being the total number of the
states we need to prepare. However, there are only two experimental
circuits needed to collate the corresponding statistical data

P
ipt1 ðit1 Þpt2 ;t1 ðjjiÞ, and pt2 ðjÞ in the direct-measure scenario. Therefore,

the prepare-and-measure scenario is not efficient as the number of qubits
increases because the number of quantum circuits we need to collate all
possible correlations increases with the number of outcomes i.
As with the direct-measure scenario, which suffers from a ‘clumsiness

loophole’ arising from the non-invasive measurement assumption, the
prepare-and-measure scenario can similarly suffer from a clumsiness
loophole related to non-ideal-state preparation which lead a non-zero
value for θ= 0 in our experiment. Moreover, in principle, non-Markovian
effects also lead to a false-positive violation of the quantum witness. For
instance, if the history from time t0 to t1 influences the evolution from time

Table 4. Table of the measurement invasiveness parameters for
single, two-qubit systems, respectively.

if g IMaxð if gÞ IAveð if gÞ ISimð if gÞ
0f g 0.023 ± 0.004 0.016 ± 0.003 0.031

1f g 0.024 ± 0.004 0.014 ± 0.004 0.011

00f g 0.077 ± 0.008 0.068 ± 0.006 0.061

11f g 0.051 ± 0.005 0.033 ± 0.009 0.021

10f g 0.033 ± 0.004 0.020 ± 0.006 0.019

01f g 0.040 ± 0.004 0.030 ± 0.005 0.019

Here we perform the 25 experiments, across multiple days, to take into
account variability in the IBM quantum system parameters. Each collation
consists of 8192 runs. The maximal and average values over experiments of
the measurement invasiveness are obtained from the IBM Q5 Tenerife for
the single- and two-qubit systems. The simulation results, using the noise
model described in the main text, are also presented.

Table 5. Table of the measurement invasiveness parameters for four-
qubit systems.

if g IMaxð if gÞ IAveð if gÞ
0000f g 0.146 ± 0.005 0.106 ± 0.019

0001f g 0.115 ± 0.005 0.075 ± 0.029

0010f g 0.123 ± 0.006 0.104 ± 0.011

0100f g 0.136 ± 0.006 0.093 ± 0.026

1000f g 0.100 ± 0.006 0.078 ± 0.015

0011f g 0.091 ± 0.006 0.067 ± 0.013

0101f g 0.124 ± 0.006 0.079 ± 0.031

1001f g 0.097 ± 0.006 0.061 ± 0.023

0110f g 0.121 ± 0.006 0.103 ± 0.012

1010f g 0.118 ± 0.006 0.086 ± 0.022

1100f g 0.122 ± 0.006 0.080 ± 0.020

1110f g 0.109 ± 0.007 0.078 ± 0.022

1101f g 0.068 ± 0.007 0.052 ± 0.010

1011f g 0.077 ± 0.006 0.046 ± 0.018

0111f g 0.095 ± 0.007 0.057 ± 0.021

1111f g 0.070 ± 0.007 0.035 ± 0.018

(a)

(b)

(c)

Fig. 3 Example of schematic quantum circuits for n= 2. (a) is for measuring pt2 ðjÞ. In the IBM QE, the qubits denoted by Qi for i= 0 and 1 are
initially prepared in 0j i. The left and right red areas, respectively, represent the unitary transformations U and U†, which can be decomposed
by U3(0, 0, θ) (U3 in short) and a series of CNOT operations. In the beginning, U3 is performed on Q0, followed by a CNOT gate on the control Q0
and the target qubits Q1. The green dots represent the barrier between U and U† to avoid the automatic optimization. The U† is performed
after the barrier. In the end, the measurements on the computational basis are performed such that the value pt2 ðjÞ is obtained. (b) shows the
quantum circuit for measuring

P
ipt1 ðiÞpt2 ;t1 ðjjiÞ in the direct-measure scenario. Since the IBM QE cannot measure the same qubit twice, the

intermediate measurement at time t1 can be implement by the CNOT operation with the ancilla qubit Q2 and Q3. We use the yellow box to
represent the intermediate measurement. Here, the ancilla qubits are initially in 0j i. Since we only consider the projective measurement onto
the computational basis, one can implement the CNOT operation to transfer the classical information of the state to the ancilla qubit. The
measurement operations on the ancilla qubits Q2 and Q3 remain in the post-measurement state γij i with outcomes i. Finally, with the
measurement on the qubits Q1 and Q2, the quantum circuit returns the result

P
ipt1 ðiÞpt2 ;t1 ðjjiÞ. (c) shows the quantum circuits for, respectively,

measuring pt1ðiÞ and pt2 ;t1 ðjjiÞ in the prepare-and-measured scenario. The unitary transformation U is performed on the state 0j i, followed by
measurement operations with outcome i at time t1. In the second experiments, the eigenstates ij i are prepared according to the probability
pt1 ðiÞ, followed by the inverse unitary transformation U†. The measurement results are the probability with outcome j conditional on i.
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t1 to t2, this may also lead to differences in the probability distributions53,63

pt2 ðjÞ and pMt2 ðjÞ.
Finally, we present a schematic example of the quantum circuit for the

two-qubit case [see Fig. 3c]. The initial state of the total system on the IBM
QE is 0j i�2. The state becomes a ‘cat state' in Eq. (6) by applying a unitary
transformation U. Instead of evolving back to the state 0j i�2, we measure
the cat states at time t1 to obtain the probability pt1 ðiÞ [see the top half of
the Fig. 3c]. After the first experiment, we prepare a quantum state ij i,
which is the eigenstate of the corresponding outcomes i, and perform a U†

operation. Finally, the measurement operation is performed to obtain the
probability pt2 ;t1 ðjjiÞ [see the bottom of the Fig. 3c]. One can easily expand
the two-qubit system to a GHZ one.
In general, the prepare-and-measure scenario can also test for qubit

number n > 6. However, we do not do this cumbersome procedure
because the direct-measure results shows that for the n= 6 case the
system is already classified as macrorealistic.
Interestingly, the witness values from the prepare-and-measure scenario

are almost all slightly higher than the direct-measure ones [see Tables 6
and 7]. From the circuit-implementation point of view, the prepare-and-
measure scenario significantly reduces the number of CNOT gates, which
take almost four times longer than the U3 gates. Therefore, the prepare-
and-measure scenario effectively reduces the overall effect of noise on the
witness and has a much lower circuit depth. However even the prepare-
and-measure scenario does not produce a violation for six qubits.
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