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Precise programmable quantum simulations with optical
lattices
Xingze Qiu 1, Jie Zou 1, Xiaodong Qi2 and Xiaopeng Li 1,3✉

We present an efficient approach to precisely simulate tight binding models with optical lattices, based on programmable digital-
micromirror-device (DMD) techniques. Our approach consists of a subroutine of Wegner-flow enabled precise extraction of a tight-
binding model for a given optical potential, and a reverse engineering step of adjusting the potential for a targeting model, for
both of which we develop classical algorithms to achieve high precision and high efficiency. With renormalization of Wannier
functions and high band effects systematically calibrated in our protocol, we show the tight-binding models with programmable
onsite energies and tunnelings can be precisely simulated with optical lattices integrated with the DMD techniques. With numerical
simulation, we demonstrate that our approach would facilitate quantum simulation of localization physics with adequate
programmability and atom-based boson sampling for illustration of quantum computational advantage. We expect this approach
would pave a way towards large-scale and precise programmable quantum simulations based on optical lattices.
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INTRODUCTION
Quantum simulation and quantum computing have been attract-
ing tremendous attention in recent years. Among the rapidly
advancing quantum hardwares1, cold atoms provide a quantum
simulation platform with excellent controllability and scalability2–5.
In the last two decades, cold atom based quantum simulations
have achieved fantastic progress not only along the line of
conceptually exotic physics such as artificial gauge fields6–8, and
topological matters9, but also along the line of simulating
computationally difficult problems such as BEC-BCS crossover10,
High-Tc physics11–15, and non-equilibrium dynamics16, where its
exceptional quantum advantage has been demonstrated.
In quantum simulations aiming for demonstration of funda-

mental physical concepts, it is not crucial to precisely calibrate the
system. However, in order to use quantum simulations to solve
computationally difficult problems, it is required to make the
simulation precise—for example in the study of quantum
criticality and in solving spin-glass problems, the physical proper-
ties of interest are sensitive to Hamiltonian parameters. And in
quantum simulations of many-body localization using an incom-
mensurate optical lattice, it has been found that calibration
problems cause qualitative disagreement17–20 with the targeting
Aubry–Andre (AA) model21,22. This issue also arises generically in
using speckle-pattern induced disorder optical potentials to
simulate localization physics23–34, as the onsite energies and
tunnelings are not programmable, let alone the simulation
precision.
Here, we consider integration of the recently developed DMD

techniques in controlling optical potentials13,35–38 to optical
lattices, and calibrate the platform towards precise programmable
quantum simulations. We develop an efficient algorithm, which
can systematically construct an inhomogeneous optical potential
to precisely simulate a given tight binding lattice model, i.e., both
the onsite energies and the tunnelings are made precisely
programmable. Its efficiency relies on the physical locality. For
benchmarking, we provide detailed numerical results for AA and

Anderson localization (AL) models, where we show our approach
has adequate programmability and systematically eliminates
calibration errors. We show that our approach can also be used
to implement atom-based quantum sampling algorithms such as
boson sampling39,40 and determinantal point process41,42, having
promising applications to quantum machine learning. Our
protocol provides precise programmability to the quantum
platform of optical lattice, which is intrinsically demanded for
quantum simulations aiming for computationally difficult
problems.

RESULTS
Theory setup
For atoms confined in an optical potential, the Hamiltonian
description is

H ¼ � _2

2m
d2

dx2
þ VpðxÞ þ VDðxÞ: (1)

Here we have separated the optical potential into a primary part
VpðxÞ ¼ Vp

2 cosð2kxÞ created by standard counter propagating
laser beams and an additional potential VD(x) created by
DMD13,35–38 or sub-wavelength potential43,44 techniques. The
primary part has lattice translation symmetry with the lattice
spacing determined by the forming laser wavelength. Hereafter,
we use the lattice constant a= π/k as the length unit and the
photon recoil energy of the lattice ER= ℏ2k2/2m as the energy
unit. The added potential VD(x) in general has no homogeneity,
and with the present technology it is typically much weaker than
the primary lattice. A targeting tight-binding Hamiltonian matrix
for the continuous system to simulate is referred to as H? , which
contains onsite energies ϵi and tunnelings Jhii0i, with i; i0 labeling
lattice sites determined by the primary optical potential. In the
following, we describe our numerical method to reverse engineer
VD(x) and Vp(x) that makes the precise tight-binding model
description of H in Eq. (1) our target, H?.
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Firstly, we describe our method for efficient extraction of a
tight-binding model of the continuous Hamiltonian H to obtain a
single band effective Hamiltonian. Without the inhomogeneous
potential VD(x), the precise tight binding model of the system can
be efficiently constructed by introducing Bloch modes, because
different modes with different lattice momenta are decoupled due
to lattice translation symmetry. We denote the Hamiltonian matrix
in the Wannier function basis {wm(x− xi)} as Hmi;m0 i0 , with m;m0
labeling different bands running from zero (lowest band) to a
high-band cutoff Mc, and i; i0 the Wannier function localized
centers (or equivalently the lattice sites of the primary lattice). This
Hamiltonian matrix takes a block diagonalized form with the
decoupled blocks corresponding to different bands45,46. However,
in the presence of an inhomogeneous potential VD(x), the
generated matrix elements

R
dx wmðx � xiÞVDðxÞwm0 ðx � xi0 Þ

induce inter-band couplings. We propose to use Wegner flow47,48

to decouple different bands, which then produces a precise tight-
binding model. The band decoupling procedure follows a flow
equation,

dHðlÞ
dl

¼ ½ηðlÞ;HðlÞ�; (2)

that generates a continuous unitary transformation
HðlÞ ¼ UðlÞHð0ÞUyðlÞ. Here, the anti-Hermitean generator
ηðlÞ ¼ dUðlÞ

dl UyðlÞ, which we choose to be ηðlÞ ¼ ½G;HðlÞ�, with
Gmi;m0 i0 ¼ δii0 2δmm0 � δm;0δm0;0

� �
. Following the flow from l= 0 to

+∞, HðlÞ converges to a matrix that commutes with G because

Tr½HðlÞ � G�2 � 0;
d
dl Tr½HðlÞ � G�2 ¼ �2Tr½ηyðlÞηðlÞ� � 0:

(3)

This means the coupling between the m= 0 block of the matrix
H and other blocks monotonically converges to 0. A more
thorough analysis shows an exponential convergence with a
convergence speed inversely proportional to the band gap (see
“Methods” section). We remark that although there are different
ways of choosing the generator η, other generators may not
produce a Wegner flow with strict exponential convergence,
which we prove for the particular generator used here. This means
our approach is applicable as long as the inhomogeneous
potential VD(x) is not too strong to close the band gap. The
finite-depth flow equation generates a local unitary that defines a
precise tight-binding model as the converged m= 0 Hamiltonian
block, which is denoted as the single band effective Hamiltonian
Heff .
Secondly, we develop a numerical optimization method to

adjust the potential VD(x) to minimize the difference between Heff
andH? . We choose a Frobenius-norm based cost function f= f0+
λ1f1, where f0 and f1 are Frobenius norms for the difference in the
onsite energies and tunnelings, respectively, and a hyper-
parameter λ1 is introduced to afford extra weight to the tunneling
for better optimization-performance. In our numerics, we para-
meterize

VDðxÞ ¼
X2L�1

n¼0

eVn

2
cos 2

n
L
kx þ eϕn

� �
; (4)

where L is the number of periods of the primary lattice, and eVn, eϕn
are variational parameters. The maximal spatial frequency of the
DMD potential is about twice over the frequency of the primary
lattice. Regarding the phase stabilization, it is required to stabilize
the phase between the DMD and the primary lattice potential,
which has been achieved in recent experiments49. We start from a
random initialization, obtain Heff through Wegner flow, and then
update the optical potential through a gradient descent method.
This procedure is iterated until the cost function is below a
threshold of our request.

Furthermore, our method is highly efficient by making use of
locality. Considering a system with large system size, instead of
performing the Wegner-flow for the full problem which then has a
computation complexity of O(L3), we split the system into small
pieces, with an individual length Lp. The adjacent pieces have
about one third of their length overlapped with each other. We
optimize the optical potential to reproduce the precise tight-
binding model piece-by-piece, and then glue them together. This
is sensible because of the locality in the problem—the onsite
energy at one site and the tunnelings between two sites are both
determined by their neighboring potential, following the finite-
depth Wegner flow. Note that one problem arises that the
potential may not be smooth in the overlapping regions, as the
obtained potential could be inconsistent in optimizing the two
adjacent pieces. To solve this problem, we add λ2f2 to the cost
function, where f2 is the Frobenius norm of the difference of the
potential in the overlapping region obtained in the optimization of
its belonging two pieces (see “Methods” section). The piece-by-piece
procedure is swept back-and-forth for convergence, analogous to
the optimization in the standard density-matrix-renormalization
group calculation50. In the sweeping process, we find a monotonic
decrease in the difference between Heff and H? in the whole
system, and that the converged optical potential is smooth. The
computation complexity scaling is thus reduced to O(L).
Although this work focuses on one-dimensional lattices, the

developed approach is adaptable to high-dimensional lattices as
well (see Supplementary Note 1 and Supplementary Fig. 1). The
sweeping process in the piece-by-piece optimization has more
choices for higher-dimensional systems. How to perform the
sweeping in an optimal way is worth future study.

Application to quantum simulation of AA model
In the study of quantum localization physics, AA model has been
investigated extensively in both theory and experiment17–20,28,49,51–56.
Its Hamiltonian reads as

H?
AA ¼ �JAA

P
i

byiþ1bi þ h:c:
� �

þ ϵAA
2

P
i
cosð2παi þ ϕÞbyi bi ;

(5)

where byi (bi) denotes the creation (annihilation) operator on a lattice
site i, α is an irrational number, JAA is the site-independent tunneling,
ϵAA describes the strength of the onsite energies, and ϕ is an arbitrary
phase. Here, we choose α as the golden ratio ð ffiffiffi

5
p � 1Þ=2, which is

approximated by the Fibonacci sequence (Fn) as Fn/Fn+1 in a finite-
size calculation. Because of its energy independent duality defined by
a Fourier transform, the model exhibits a phase transition from all
wave-function localized to all extended, which makes it natural place
to examine one-dimensional localization criticality.
In the optical lattice experiment17, the AA model Hamiltonian is

achieved by using an incommensurate bichromatic potential, a
primary lattice perturbed by a second weak incommensurate
lattice with VD;roughðxÞ ¼ V1 cosð2αkxÞ=2 following our notation in
Eq. (1). However, its corresponding tight-binding model is not a
precise AA model—there are corrections making tunnelings
inhomogeneous and generating higher-order harmonics, which
generically breaks the central ingredient of duality of the AA
model57. The effects of such corrections have been established
both in theory18 and experiment19,20. This problem can be solved
by using our precise quantum simulation method.
Taking the general form of VD(x) in Eq. (4), we find the

variational minimization for the precise quantum simulation of the
AA model automatically reduces to a more specific form

VD;preciseðxÞ ¼
eV1

2
cos 2

Fn
Fnþ1

kx

� �
þ
eV2

2
cos 2

Fn�1

Fnþ1
kx

� �
; (6)

since all other parameters except eV1;2 in Eq. (4) are found to
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vanish. As an example, we consider a specific model H?
AA with

parameters JAA=−0.0308ER, ϵAA= 0.0841ER, α ≈ Fn/Fn+1 (Fn= 34
and Fn+1= 55), and ϕ=−πα. This target model is reached by
choosing Vp= 8ER, V1= 0.1ER, eV1 ¼ 0:0341ER, andeV2 ¼ �0:0592ER. In Fig. 1a, we show the optical potentials
corresponding to VD,rough and VD,precise for comparison. We find
that the resultant onsite energies are approximately the same
(Fig. 1b), yet with the potential VD,precise giving a more precise
solution. More drastically, the tunnelings out of our potential with
VD,precise(x) are precisely homogeneous, with a relative inhomo-
geneity below 10−4 (Fig. 1c). This cannot be achieved with the
potential of VD,rough(x).
We also emphasize here that our constructed potential VD,

precise(x) possesses a vanishing derivative at the individual sites, as
exhibited in Fig. 1a. This is crucial to experiments as a potential
with finite derivative at the position of atoms would make the
system more susceptible to shaking-induced heating processes49.

Anderson localization with programmable disorder potential
To further demonstrate the precise programmability enabled by
our method, we also carry out an application to quantum
simulation of Anderson localization models whose previous
experimental realization by speckle pattern lacks programmabi-
lity23–34. The Hamiltonians of 1D AL models are given as

H?
AL ¼

X
i

hib
y
i bi þ

X
i

tib
y
iþ1bi þ h:c:

� �
: (7)

We consider three different cases: (a) random onsite model with
hi 2 ½�eϵAL=2;eϵAL=2� and ti= JAL being homogeneous, (b) random
hopping model with hi= ϵAL homogenous and ti 2
½JAL �eJAL=2; JAL þeJAL=2�, and (c) both onsite energies and
tunnelings being random with hi 2 ½�eϵAL=2;eϵAL=2� and ti 2
½JAL �eJAL=2; JAL þeJAL=2�. The random onsite energies and

tunnelings are drawn according to a uniform distribution. In
Fig. 2, we show all the three different cases of AL model can be
precisely achieved with our optimization method. The absolute
errors in the tight-binding model compared to the target one is
made smaller than 10−5 in units of recoil energy, which
demonstrates the precise programmability of our scheme.
Regarding the efficiency of the optimization method, we find the

cost function is typically evaluated for 104 times before reaching
convergence. For the actual CPU time cost, the results in Fig. 2a are
obtained in 30 s with MATLAB implementation on an Intel processor
of 8-core Xeon E5-2640 v4 CPU at 2.40 GHz, similarly for Fig. 2b,c.
The method is thus confirmed to be highly efficient.
One immediate application of the programmable quantum

simulation of Anderson localization is to study the anomalous
localization in the random hopping model. Unlike the random
onsite model, where all states are localized in one dimension, the
random hopping model has delocalized states at band center58,59.
But it is extremely difficult to perform quantum simulation of this
pure random hopping model with the speckle-pattern approach
lacking programmability, since the unavoidable inhomogeneity in
the onsite energy will make all states localized. We randomly
generate 2000 disorder samples for the hopping, and compute the
corresponding potential VD(x) using our optimization method. The
averaged inverse participation ratio (IPR) which diagnoses
localization to delocalization transition60 is calculated, with the
results shown in Fig. 3. We find quantitative agreement of results
obtained for the continuous potential with the targeting tight-
binding model. The discrepancy can be further improved by
increasing the lattice depth or allocating more numerical resources.

Implementation of boson sampling and determinantal point
process
Boson sampling is a promising candidate to demonstrate
quantum computational advantage for its established exponential
complexity on a classical computer39,40,61. Its experimental
implementation has been achieved in linear photonic62, trapped
ion63, and quantum-dot devices64. Here we show that boson
sampling could also be implemented with bosonic atoms
confined in an optical lattice using our developed precise
programmability. One advantage of atomic realization is that
one can replace bosonic atoms by their fermionic isotopes, which
then performs quantum sampling for determinantal point
process41. This then provides one way to verify the quantum
advantageous boson sampling because the simulation of deter-
minantal point process is efficient on a classical computer41,42.
Here, we consider a standard boson sampling problem with m

input modes and n identical bosons, where the n bosons are one-
to-one injected into the first n modes as the input state, and then
let evolve under an m ×m Haar-random unitary U. In the dilute
limit (n≪m), where each output mode contains at most one
particle, the probability of a specific output Fock-state configura-
tion S is p(S)= ∣per(US)∣2, with per meaning the permanent, and US

a submatrix of U selected according to the input and output
configurations39.
To experimentally realize the Haar-random unitary U with an

optical lattice, we adapt the decomposition in ref. 65, where the
random unitary is constructed by multiplication of a series of
building blocks of two-mode unitary operations. For the optical
lattice implementation, we develop a different construction from
photonic realization66 (see “Methods” section). We choose the
two-mode building blocks as

T ðp;qÞ ¼ exp ihðp;qÞz σðp;qÞ
z

� �
exp ihðp;qÞx σðp;qÞ

x

� �
: (8)

Here we have the Pauli matrices σ
ðp;qÞ
x ¼ qj i ph j þ pj i qh j and

σ
ðp;qÞ
z ¼ qj i qh j � pj i ph j, p, q ∈ {1, 2, …, m}, the quantum states pj i

and qj i represent the Wannier functions in the optical lattice, and
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Fig. 1 Precise quantum simulation of AA model. a The optical
potential VD,precise (red solid line) and VD,rough (blue dash-dotted line).
Here, we have VD;rough ¼ V1 cosð2αkxÞ=2, and VD,precise given in Eq.
(6). The potential VD,precise possesses a vanishing derivative at the
individual sites (black dots), whereas VD,rough does not. b The onsite
energies produced by VD,precise (red circles) and VD,rough (blue crosses).
The dashed line is the desired sinusoidal form of the site-dependent
onsite energies in H?

AA. c The tunnelings produced by VD,precise (red
circles) and VD,rough (blue crosses). The dashed line marks the desired
site-independent tunnelings in H?

AA. Here, we choose the hyper-
parameter λ1= 1, the system size L= 55, and periodic boundary
condition. In our numerical calculation, we choose high-band cutoff
Mc= 2, and confirm that the including higher bands do not affect the
presented results.
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hðp;qÞx;z are parameters determined by U. With our optimization

method, we can obtain the Hamiltonians Hðqþ1;qÞ
z ¼ ϵzσ

ðqþ1;qÞ
z and

Hðqþ1;qÞ
x ¼ Jxσ

ðqþ1;qÞ
x , and hence the unitary T ðqþ1;qÞ	 
y

can be
achieved through the time evolution operator

expð�iτðqþ1;qÞ
x Hðqþ1;qÞ

x Þ expð�iτðqþ1;qÞ
z Hðqþ1;qÞ

z Þ, with the evolution

time τ
ðqþ1;qÞ
x ¼ hðqþ1;qÞ

x =Jx and τ
ðqþ1;qÞ
z ¼ hðqþ1;qÞ

z =ϵz , which are
positive with proper construction (see “Methods” section). For p−

q > 1, a more involved construction is required, which is provided in
“Methods” section. The building blocks of T(p, q) ultimately realize any
random unitary, and the total evolution time is just the summation
of all the evolution time of the building blocks.
For experimental implementation, we consider Li atoms67,68

confined in a lattice formed by a laser with wavelength 1064 nm,
the recoil energy is ER= 2π × 25.12 kHz with 7Li. For a mode
number m= 10 and number of atoms n= 3, we find that the
average total evolution time is estimated to be 0.1 second taking
Jx=−0.01ER and ϵz= 0.2ER. We emphasize here that the current
lifetime of cold atoms is about one second, which permits
quantum sampling with the mode number as large as m= 30. We
also confirm that the overall harmonic potential confinement in
standard cold atom experiments can be corrected by our precise
quantum simulation scheme (see Supplementary Note 2 and
Supplementary Fig. 2), which is required in performing program-
mable quantum sampling. Denoting the probabilities correspond-
ing to the theory and the simulated DMD-based experimental
realization as p1(S) and p2(S), respectively, the sampling precision
is characterized by a measure of similarity G ¼PS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðSÞp2ðSÞ

p
,

and a measure of distance D= (1/2)
P

s∣p1(S)− p2(S)∣. The
numerical results are shown in Fig. 4a. We find quantitative
agreement between the simulated experimental realization and
the theory prediction, which implies the precision achieved with
our scheme is adequate to perform boson sampling experiments.
We also study the case with fermionic atoms, which then realize

the determinantal point process41. The results are shown in Fig.
4b, where we also find the quantitative agreement between the
simulated experimental realization and the theory prediction. It is
worth noting here that even when the classical simulation of
boson sampling is unavailable for a large particle number, the
experiment with fermions allows one way to detect errors when
the device is erroneous, since the determinantal point process can
be efficiently simulated on both classical computers41,42 and
quantum devices. In Fig. 4c, we set an error in the Hamiltonian
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Fig. 2 Precise quantum simulation of three cases of AL models. a The random onsite model with hi ∈ [−0.05ER, 0.05ER] and ti=−0.0308ER
being homogeneous. b The random hopping model with hi= 0 homogenous, ti ∈ [JAL− ∣JAL∣/2, JAL+ ∣JAL∣/2], and JAL=−0.0308ER. c Both
onsite energy and tunneling being random with hi ∈ [−0.05ER, 0.05ER], ti ∈ [JAL− ∣JAL∣/2, JAL+ ∣JAL∣/2], and JAL=−0.0308ER. The first row shows
the reverse-engineered optical potentials VD(x). The middle row shows the onsite energies (circles) and the tunnelings (crosses) of the
targeting tight binding model. The “dashed” and “dash-dotted” lines mark the averaged value of on-site energies and tunnelings, respectively.
And the last row shows the absolute errors in the tight-binding models extracted from the continuous Hamiltonian in Eq. (1) compared to the
target one. Here, we choose the hyper-parameter λ1= 100, the system size L= 10, the depth of the primary lattice Vp= 8ER, and periodic
boundary condition. In our numerical calculation, we choose high-band cutoff Mc= 2, and confirm that the including higher bands do not
affect the presented results.

-0.05 0 0.05

0.03

0.1

0.17

Fig. 3 Averaged IPR for the random hopping model by sampling
2000 disorder configurations. Here, we set JAL=−0.0308ER andeJAL ¼ 2jJALj=3, the system size L= 100. The blue solid, and red dash-
dotted lines, correspond to the results obtained from diagonalizing
the continuous Hamiltonian in Eq. (1) and the tight binding random-
hopping model, respectively. Here, we choose the hyper-parameter
λ1= 100, λ2= 0.5, the system size L= 100, the depth of the primary
lattice Vp= 8ER, and periodic boundary condition. The whole system
is split into a number of pieces with Lp= 10, and the adjacent pieces
overlap with each other over 4 sites. In our numerical calculation, we
choose high-band cutoff Mc= 2, and confirm that the including
higher bands do not affect the presented results.
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Hð9;8Þ
x , whose amplitude is deliberately set to be 70% of the correct

value in order to check whether the error can be detected. We find
that the error is indeed detectable by comparing the quantum
sampling with the exact results.

DISCUSSION
We have proposed a scheme for precisely simulating lattice models
with optical lattices, whose potentials can be manipulated through
the high-resolution DMD techniques. We have developed a
Wegner-flow method to extract the precise tight-binding model
of a continuous potential, and a scalable optimization method for
the reverse engineering of the optical potential whose tight binding
model precisely matches a targeting model. The performance is
demonstrated with concrete examples of AA and Anderson models,
and quantum sampling problems. Our approach implies optical
lattices can be upgraded towards high-precision programmable
quantum simulations by integrating with DMD techniques.
The precise programmable quantum simulation enabled by our

scheme make the optical lattice rather flexible. For disorder
physics, having programmable disorder allows for more systema-
tic study of the localization transition, especially for cases where
the rare disorder Griffith effects are important for example in
understanding disordered Weyl semimetals69, and many-body
localization mobility edge70,71.
Our proposing setup also paves a way to building a program-

mable quantum annealer with optical lattices. Considering spinor
atoms in a deep lattice with strong interaction, programmable
tunnelings imply programmable spin-exchange. For interacting

systems, our approach is directly adaptable in the limit of
interaction much weaker than the band gap, because the Wannier
functions are easily accessible in the Wegner flow (see Supple-
mentary Note 3 and Supplementary Fig. 3). We expect the
approach can be further generalized for generic interacting
systems, which is worth future investigation.

METHODS
Exponential convergence of Wegner flow
As the efficiency of our method relies on the convergence behavior of
Wegner flow, in this section we prove that the convergence is exponential,
and that the convergence speed is inversely proportional to the band gap
—it has a lower bound inversely proportional to the band gap to be more
precise.
Note that we use Wegner flow to decouple the lowest band from the

rest. The flow converges when the coupling between the lowest and
excited bands vanish. To analyze such couplings, we rewrite the
Hamiltonian matrix in terms of the lowest and excited band blocks and
their couplings as

Hmi;m0 i0 ¼ Dð0Þ
ii0 δm0δm00 þDð1Þ

mi;m0 i0 ð1� δm0Þð1� δm00Þ
þ δm0Ci;m0 i0 ð1� δm00Þ þ ð1� δm0ÞC�i0 ;miδm00:

(9)

Following our constructed Wegner flow, we have the flow equation for
the coupling matrix C as

dC
dl

¼ Dð0ÞC � CDð1Þ: (10)

The overall strength of these couplings in C are quantified by the trace
Tr½CyC�, whose l-dependence obeys

d
dl Tr½CyC� ¼ 2Tr½CCyDð0Þ � CyCDð1Þ�

< �2 dð1Þmin � dð0Þmax

h i
Tr½CyC�; (11)

with dð1Þmin the minimal eigenvalue of the Hermitian matrix Dð1Þ and dð0Þmax
the maximal eigenvalue of Dð0Þ. We then obtain a bound on the trace as

Tr½CyC�l0þΔl < Tr½CyC�l0 e�2½dð1Þmin�dð0Þmax �Δl : (12)

Having a finite gap between the lowest and the first excited bands, we

have dð1Þmin � dð0Þmax > 0. The exponential convergence of the couplings
between the lowest and excited bands is then assured. The convergence
speed is larger than a value inversely proportional to the band gap. In
practical calculations, the Frobenius norm of the Wegner flow generator η
flows to 10−6 after 300 calculations of commutators of sparse matrices for
the results presented in the paper.

The piece-by-piece optimization method
In this section, we provide the details of the piece-by-piece optimization
method. Taking a system having L number of periods—the period is
defined according to the primary lattice, the starting points of the periods
are labeled as (X0, X1, X2, …, XL−1). We split the system into smaller pieces
with a piece-size Lp. Two adjacent pieces have a finite overlap region with
size Mp. The i-th piece contains the periods from XiðLp�MpÞ to XiðLp�MpÞþLp . Its
overlap with the lefthand [righthand] side (i− 1)-th [(i+ 1)-th] piece is from
XiðLp�MpÞ to Xði�1ÞðLp�MpÞþLp [from Xðiþ1ÞðLp�MpÞ to XiðLp�MpÞþLp ]. In optimizing
the optical potential at i-th piece for the targeting tight-binding model in
that local region, we introduce an additional cost function λ2f2, with λ2 a
hyper-parameter, and

f 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Xði�1ÞðLp�Mp ÞþLp

XiðLp�Mp Þ
dx VD;iðxÞ � VD;i�1ðxÞ
� �2s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ XiðLp�Mp ÞþLp

Xðiþ1ÞðLp�Mp Þ
dx VD;iðxÞ � VD;iþ1ðxÞ
� �2s

;

(13)

where VD,i(x) is the variational potential in optimizing the i-th piece. The f2
cost function is introduced to minimize the inconsistency of the potential
in the overlap region with the neighboring (i− 1)-th and (i+ 1)-th pieces.
Since the constraint on the consistency is not implemented strict, there will
still be leftover inconsistency between VD,i(x) and VD,i ± 1(x) in a single run.
To solve this problem, we perform a back-and-forth sweeping process—
we first carry out optimization in a forward direction from the leftmost

Fig. 4 Comparison between theory and simulated experimental
realization for atom-based samplings. a boson sampling, b
determinantal point process, and c determinantal point process
with an error. Here, we choose mode number m= 10 and particle
number n= 3. The solid bars indicate the results of the simulated
experimental realization based on DMD enabled programmability.
Empty bars indicate the results from the precise targeting theory
model. In c, we deliberately introduce an error in the Hamiltonian
Hð9;8Þ
x (see main text), whose amplitude is set to be 70% of the

correct value. The similarities (distances) between them are a G=
0.997 (D= 0.0525), b G= 0.998 (D= 0.0412), and c G= 0.884 (D=
0.327). The error in the quantum simulation is thus detectable from
the results of determinantal point process, which can be simulated
efficiently on a classical computer. Here, we only show no-collision
output combinations in the bosonic case, and we set Jx=− 0.01ER,
ϵz= 0.2ER.
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piece to the rightmost, and then in a backward direction from the
rightmost to leftmost. This sweeping process is iterated for potential
convergence. In our numerics, we find convergence with three to four
times of sweeping. We then glue all the pieces together and construct the
global optical potential. It is confirmed that this procedure gives the
correct potential whose tight binding model is the targeting model.

Decomposition of a Haar-random unitary with optical lattice
accessible operations
Here we describe how to adapt the decomposition of the Haar-random
unitary in ref. 65 to optical lattice implementation. An m ×m Haar-random
unitary U(m) is decomposed into

UðmÞ ¼ Udiag ´
Y2
p¼m

Y1
q¼p�1

T ðp;qÞ
 !" #y

: (14)

The order of matrix multiplication using ∏ is defined to be from left to
right, for example

Q1
i¼3 Ai means A3A2A1 and

Q3
i¼1 Ai means A1A2A3. In the

above equation, we have

T ðp;qÞ ¼ exp ihðp;qÞz σðp;qÞz

� �
exp ihðp;qÞx σðp;qÞx

� �
; (15)

where the Pauli operations are defined according to the Wannier basis

quantum states qj i with q the lattice site index—σ
ðp;qÞ
z ¼ qj i qh j � pj i ph j,

σ
ðp;qÞ
x ¼ qj i ph j þ pj i qh j. To specify the matrix T(p, q), we introduce a matrixeUðp;qÞ

, whose elements eUðp;qÞ
p;q and eUðp;qÞ

p;p determine the parameters hðp;qÞx;z as

hðp;qÞx ¼ � arctan
eUðp;qÞ
p;qeUðp;qÞ
p;p

�����
�����

 !
� 0;

hðp;qÞz ¼ 1
2 π � arg

ieUðp;qÞ
p;qeUðp;qÞ
p;p

 !" #
� 0:

(16)

Here, T(p,q) and eUðp;qÞ
are constructed in a sequential manner as (p, q)

goes through the sequence {(m, m− 1), (m, m− 2), …, (m, 1), (m− 1, m−

2), (m− 1, m− 3), …, (2, 1)}. From eUðm;m�1Þ ¼ UðmÞ, we obtain T(m,m−1)

through Eq. (16) and Eq. (15), and then we haveeUðm;m�2Þ ¼ eUðm;m�1Þ
T ðm;m�1Þ . In general once eUðp1 ;q1Þ and T ðp1 ;q1Þ are

obtained, we have eUðp2 ;q2Þ ¼ eUðp1 ;q1ÞT ðp1 ;q1Þ for (p2, q2) next to (p1, q1) in
that sequence. Following this sequence, all matrices are constructed. The
additional matrix Udiag in Eq. (14) is diagonal with the elements

ðUdiagÞn;n ¼ ½eUð2;1Þ
T ð2;1Þ�n;n , n= 1, 2, …, m.

From Eq. (14), we see that to realize the Haar-random unitary U(m), the

building block is the unitary ðT ðp;qÞÞy , which can be achieved through time
evolution of the corresponding Hamiltonian, as specified latter. To

engineer the non-local gate operation ðT ðp;qÞÞy we perform the following
transformation,

σðp;qÞ
x;z ¼ Uðp;qÞ

� �y
σðqþ1;qÞ
x;z Uðp;qÞ;

where,

Uðp;qÞ ¼ Identitymatrix ; p ¼ qþ 1;Qp�1
n¼qþ1 U

ðnþ1;nÞ; p >qþ 1;

(

with

Uðnþ1;nÞ ¼ nj i nþ 1h j � nþ 1j i nh j
þ P

k2f1; ¼ ;mgnfn;nþ1g
kj i kh j:

Hence, we have

T ðp;qÞ ¼ Uðp;qÞ
� �yeT ðp;qÞUðp;qÞ;

with

eT ðp;qÞ ¼ eiτ
ðp;qÞ
z Hðqþ1;qÞ

z eiτ
ðp;qÞ
x Hðqþ1;qÞ

x ;

which corresponds to time evolution with tight binding Hamiltonians

Hðqþ1;qÞ
z ¼ ϵzσ

ðqþ1;qÞ
z ; Hðqþ1;qÞ

x ¼ Jxσ
ðqþ1;qÞ
x :

Here ϵz > 0 and Jx < 0 are constants, and the evolution time is

τ
ðp;qÞ
z ¼ hðp;qÞz =ϵz , τ

ðp;qÞ
x ¼ hðp;qÞx =Jx . That is to say, eT ðp;qÞ� �y

can be achieved

through the time evolution operator

e�iτðp;qÞx Hðqþ1;qÞ
x e�iτðp;qÞz Hðqþ1;qÞ

z :
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Fig. 5 Precise quantum simulation of the Hamiltonians corresponding to different quantum gates. a Hð5;4Þ
x ¼ Jxσ

ð5;4Þ
x with Jx=−0.01ER. b

Hð5;4Þ
z ¼ ϵzσ

ð5;4Þ
z with ϵz= 0.2ER. c Hd ¼ i

8π log ðUdiagÞ, with Udiag defined in Eq. (14), corresponding to the decomposition of the Haar-random
unitary in Fig. 4 (see the notation in “Methods” section). The first row shows the reverse-engineered optical potentials VD(x). The middle row
shows the onsite energies (circles) and the tunnelings (crosses) of the targeting tight binding model. The ‘dashed’ and ‘dash-dotted’ lines mark
the zero value of on-site energies and tunnelings, respectively. And the last row shows the absolute errors in the tight-binding models
extracted from the continuous Hamiltonian in Eq. (1) compared to the target one. Here, we choose the hyper-parameter λ1= 20 and the depth
of the primary lattice Vp= 20ER. In our numerical calculation, we choose high-band cutoff Mc= 2, and confirm that the including higher bands
do not affect the presented results.
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It is straightforward to show that U(n+ 1,n) and its hermitian conjugate
can also be obtained through time evolution operators, i.e.,

Uðnþ1;nÞ ¼ e�iτuz H
ðnþ1;nÞ
z e�iτux H

ðnþ1;nÞ
x ;

Uðnþ1;nÞ
� �y

¼ e�iτux H
ðnþ1;nÞ
x e�iτuz H

ðnþ1;nÞ
z ;

with the evolution time τuz ¼ π=ð2ϵzÞ and τux ¼ �π=ð2JxÞ. Therefore, we
finally have

UðmÞ ¼ Udiag ´ eT ð2;1Þ� �y Qm
p¼3

Q2
q¼p�1

Uðqþ1;qÞ	 
y !"

´
Qp�2

q¼1

eT ðp;qÞ� �y
Uðqþ2;qþ1Þ

 ! eT ðp;p�1Þ� �y#
:

(17)

We see that in order to build a generalm ×m Haar-random unitary U(m),
both the number of Hx and Hz gates we need are (m− 1)(3m− 4)/2. And
also a gate Udiag is needed, which can be achieved through evolving the
Hamiltonian Hd ¼ i

8π log ðUdiagÞ with the time τd= ℏ8π/ER. In Fig. 5, we
show all the Hamiltonians of typical quantum gates can be precisely
achieved with our optimization method, and the absolute errors in the
tight-binding model compared to the target one is made smaller than
10−5 in units of recoil energy.
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