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Superconducting circuit protected by two-Cooper-pair
tunneling
W. C. Smith1,2*, A. Kou1, X. Xiao1, U. Vool1 and M. H. Devoret1*

We present a protected superconducting qubit based on an effective circuit element that only allows pairs of Cooper pairs to
tunnel. These dynamics give rise to a nearly degenerate ground state manifold indexed by the parity of tunneled Cooper pairs. We
show that, when the circuit element is shunted by a large capacitance, this manifold can be used as a logical qubit that we expect
to be insensitive to multiple relaxation and dephasing mechanisms.
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INTRODUCTION
Superconducting circuits are widely recognized as a powerful
potential platform for quantum computation and now stand at
the frontier of quantum error correction.1 Future progress will
likely stem from two complementary strategies: (i) active error
correction characterized by measurement-based2–4 and autono-
mous5–8 stabilization, and (ii) passive error correction character-
ized by protected qubits,9 and references therein]. We address
strategy (ii) in this article by designing an experimentally
accessible protected qubit.
The transmon qubit10 has proven to be a remarkably successful

prototype of a protected qubit. Its circuit (depicted in Fig. 1a)
contains a Josephson junction whose potential energy is
U ¼ �EJ cosφ, with EJ being the tunneling energy and φ being
the superconducting phase across the junction. The large shunt
capacitance imposes a large effective mass for the analogous
“particle in a box,” confining the low-energy wavefunctions near
φ ¼ 0, the only minimum for φ 2 ð�π; πÞ. This confinement
suppresses the susceptibility of the qubit to offset charge noise
and renders the energy spectrum approximately harmonic with
level spacing much smaller than EJ (see Fig. 1b). On the other
hand, circuit elements with degenerate phase states that only
allow tunneling of pairs of Cooper pairs, meaning their potential
energy is U ¼ �EJ cos 2φ, have been developed in recent years as
a building block for topologically protected qubits.11,12 In this
article, we propose a transmon-like qubit with additional
protection from environmental noise by combining the large
shunt capacitance of the transmon with such a cos 2φ circuit
element (the cross-hatched box in Fig. 1c). In this case, the
wavefunctions are localized near φ ¼ 0; π (see Fig. 1d), resulting in
a nearly degenerate harmonic level arrangement. While the
detrimental effects of offset charge noise are similarly suppressed
in this circuit, sensitivity of the qubit to other decoherence
mechanisms is also reduced, owing to the conservation of Cooper
pair number parity.
In this article, we introduce a few-body transmon-type qubit

where the charge carriers are exclusively pairs of Cooper pairs. Our
central result is that there exists an experimentally attainable
parameter regime for which conservative predictions of relaxation
and dephasing times exceed 1 ms, i.e., an order of magnitude
higher than those of typical transmons, given the same
environmental noise.13,14 In the following section, we describe a

toy model for the protected qubit. We proceed by analytically and
numerically examining the Hamiltonian for the full superconduct-
ing circuit. Our attention then turns to properties of the ground
state manifold, which we envision using as a protected qubit. A
brief discussion about the concept of protection and examples of
protected qubits, as well as our perspectives on readout and
control, follows.

RESULTS
cos 2φ element
We first examine the advantages of the ideal circuit in Fig. 1c as a
protected qubit. This circuit can be viewed as a Josephson-
junction-like element (the cross-hatched box) shunted by a
capacitance. Pairs of Cooper pairs are the only charge excitations
permitted to tunnel through this element.11 In the Cooper pair
number basis, the potential energy assumes the form

� 1
2
EJ

X1
N¼�1

Nj i N þ 2j þ jN þ 2h i Nh jð Þ ¼ �EJ cos 2φ; (1)

where EJ is the effective tunneling energy of the process. This
expression follows from the conjugacy relation ½φ;N� ¼ i, where N
is the number of Cooper pairs that have tunneled. The invariance
of the potential under translations in φ by multiples of π implies
that half-fluxons are able to traverse the element.
The shunt capacitance and other charging effects produce a

quadratic kinetic energy, yielding the Hamiltonian

H ¼ 4ECðN � NgÞ2 � EJ cos 2φ; (2)

where EC is the charging energy and Ng is the offset charge. This
offset charge has been introduced due to the periodicity of the
Hamiltonian in φ, which reflects the presence of a superconduct-
ing island in the circuit (as colored in Fig. 1c).
Since the circuit element only allows pairs of Cooper pairs to

tunnel, the parity of the number of Cooper pairs that have
tunneled is preserved under the action of the Hamiltonian. This
property leads to two nearly degenerate ground states þj i and
�j i, which only consist of even and odd Cooper pair number
states, respectively.12 Since these states have no overlap in charge
space (equivalently, they have opposite periodicity in phase space
—see Fig. 1d), we have h�jOjþi � 0 for any sufficiently local
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operator O. Furthermore, the states j↻=↺i ¼ 1ffiffi
2

p ðjþi± j�iÞ are,
respectively, localized near φ ¼ 0; π (see Fig. 1d). As these states
have suppressed overlap in phase space for large EJ=EC (i.e., they
are roughly inversely periodic in charge space), we have
h↺jOj↻i � 0 for similarly local O. These are precisely the
conditions for simultaneously suppressing spurious transitions
and phase changes between the states15 [resembling a
Gottesman–Kitaev–Preskill (GKP) encoding on a circle16].
More concretely, the ground state splitting obeys

ΔE � 16EC

ffiffiffi
2
π

r
2EJ
EC

� �3=4

e�
ffiffiffiffiffiffiffiffiffiffi
2EJ=EC

p
cosðπNgÞ; (3)

for large EJ=EC (see Supplementary information). The two ground
state energies oscillate out of phase with one another in Ng.
Moreover, this shows that the splitting, as well as the charge
dispersion, is exponentially suppressed in EJ=EC . Thus, the role of
the shunt capacitance is to decrease the charging energy EC and
hence mitigate offset charge noise, much like in the transmon
qubit.10

Superconducting circuit
We now detail the superconducting circuit necessary to practically
implement the sought-after cos 2φ Josephson element. This
circuit, depicted in Fig. 2a, is composed of two identical arms,
each containing a Josephson junction in series with super-
inductances,17,18 arranged in parallel19,20 and shunted by a large
capacitance. These superinductances are split in half and placed
on either side of the respective Josephson junctions to avoid large
capacitances to ground. Kirchoff’s current law allows us to treat
the phases across the superinductances in series as equal. When
the external magnetic flux threading the inductive loop reaches
half of a flux quantum, i.e., when φext ¼ π, the loop approximates
the cross-hatched box in Fig. 1c. At this particular bias point, a
Cooper pair can only tunnel through one of the Josephson
junctions if it is accompanied by another Cooper pair tunneling
through the other junction (in either direction). Conversely, a

fluxon traversing a single Josephson junction corresponds to a
half-fluxon traversing the whole element.
We consider the symmetric and antisymmetric combinations of

superconducting phase coordinates

ϕ ¼ φ1 þ φ2 φ ¼ 1
2
ðφ1 � φ2Þ θ ¼ 1

2
ðϕ1 � ϕ2Þ; (4)

and their conjugate charges fn;N; ηg in numbers of Cooper pairs.
Note that the prefactor in the definition of φ is chosen to bring the
coordinate into agreement with the phase drop across the
inductive loop in the limit that θ vanishes. The Hamiltonian reads

H ¼ 4ϵC 2n2 þ 1
2 ðN � Ng � ηÞ2 þ xη2

h i

þ ϵL 1
4 ðϕ� φextÞ2 þ θ2
h i

� 2ϵJ cosφ cos ϕ
2 ;

(5)

where ϵC and ϵJ are the single junction charging and tunneling
energies, 2ϵL is the inductive energy of each superinductance,
x � CJ=Cshunt is the ratio of the junction capacitance to the shunt
capacitance, and Ng is the offset charge on the superconducting
island (see Fig. 2a).
From this expression, it is clear that this circuit has three

strongly coupled modes. The ϕ mode is flux-dependent and is
strongly and nonlinearly coupled, via the Josephson junctions, to
the φ mode. The φ mode is offset charge dependent and strongly
but linearly capacitively coupled to the θ mode. Our analysis and
the effects observed in the remainder of this article require the
parameter regime ϵL � ϵJ , ϵC t ϵJ , and x � 1 (Specifically, the
semiclassical theory breaks down at ϵL � ϵJ and the protection
breaks down for x≳ 0.1). In particular, the parameters chosen for
numerical simulations are ϵJ=h ¼ 15 GHz, ϵC=h ¼ 2 GHz,
ϵL=h ¼ 1 GHz, and x ¼ 0:02—which are similar to those of recent
fluxonium devices.17,21

Fig. 1 Principle of the protected qubit. a Electrical circuit for the
transmon qubit. b Potential energy of the transmon with energy
levels and wavefunctions for the first few eigenstates. c Electrical
circuit for the idealized protected qubit. The cross-hatched circuit
element comprises a capacitance in parallel with an inductive
element that exclusively permits the tunneling of pairs of Cooper
pairs. The superconducting island is indicated by color. d Potential
energy of the ideal charge-protected qubit with the lowest-energy
levels and wavefunctions.

Fig. 2 Physical realization of the cos 2φ element. a Reduced
electrical circuit for the physical protected qubit. When φext ¼ π, the
two Josephson junctions and superinductances collectively behave
as the cross-hatched element. The superconducting island is
indicated by color. b Contour plot of the potential energy U in Eq.
(5) in the φ1φ2-plane at φext ¼ π for θ ¼ 0. The numerically
computed instanton trajectory between adjacent potential minima
is overlaid in black. Importantly, this trajectory closely resembles a
sequence of straight lines.
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Semiclassical theory
In order to gain insight into the structure of the Hamiltonian in Eq.
(5), we briefly revisit its potential energy U in the φ1φ2-plane,
which is plotted in Fig. 2b for θ ¼ 0. The cosine terms in the
potential form a two-dimensional “egg carton” of wells. The
minimum of the quadratic term in the potential occurs at
φ1 þ φ2 ¼ φext, which generally falls between adjacent diagonal
ridges of cosine wells. At the special value of φext ¼ π, these two
ridges are degenerate. Near this value of the external flux, we
consider the path of the system between neighboring potential
minima by numerically solving for the three-dimensional instan-
ton22 trajectory (see Supplementary information).
We then constrain the system to this maximally probable

tunneling path. For the parameters mentioned above, this path is
well-described by

ϕ ¼ 1
1þ z

2 φ� 2π round
φ

2π

��� ���þ zφext

� �
; (6)

where z � ϵL=ϵJ is a small parameter. Plugging this expression into
the Hamiltonian in Eq. (5), approximating the resulting one-
dimensional potential by the first few terms in its Fourier series,
and Taylor expanding about z ¼ 0 yields H � Heff with

Heff ¼ 4ϵC 1
4ð1�zÞ ðN � Ng � ηÞ2 þ xη2
h i

þ ϵLθ
2

� 16
3π ϵLðπ � ϕextÞ cosφ� ϵJ 1� 5

4 z
� 	

cos 2φ
(7)

to leading order. Here, ϕext ¼ φext � 4π round φext
4π

�� �� and we have
discarded terms higher than the second harmonic or OðϵLÞ (see
Supplementary information for additional terms). This treatment
exposes the “cos 2φ nature” of the potential at φext ¼ π, where the
cosφ term vanishes. By comparison to Eq. (2), we see that the
added complication is that the φ mode is strongly coupled to the
θ mode. The resulting hybridization is a central ingredient to
understanding properties of the system beyond the ground state
manifold (see Wavefunctions).
We comment that this approximation neglects quantum

fluctuations that are perpendicular to the path in Eq. (6). This is
consequently a semiclassical approximation: we have minimized
the energy of the system with respect to the dynamical coordinate
orthogonal to the trajectory.22 Moreover, from Fig. 2b, it is clear
that the approximation we have made is that fluxons traverse a
single Josephson junction at a time.

Energy spectrum
From numerical diagonalization of Eq. (5) (see Supplementary
information), we obtain the dependence of the energy levels on
external flux as shown in Fig. 3a.23 At φext ¼ π (the dashed line in
Fig. 3a), the spectrum resembles a doubled harmonic oscillator
with energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16xϵLϵC

p
. Once φext deviates from π, half of the

energy levels increase in energy linearly with slope � 32
3 ϵL. The

other half of the energy levels form a flux-independent harmonic
ladder.
We can understand this level structure as that of two emergent

modes (see also Supplementary information). The first mode is
flux-dependent and its excitations correspond to the number of
magnetic flux vortices, or fluxons, enclosed by the inductive loop
in Fig. 2a. In turn, the number of enclosed fluxons identically maps
onto the magnitude and chirality of the circulating persistent
current in the inductive loop. The second mode is flux-
independent and its excitations correspond to quantized charge
density oscillations, or plasmons, across the inductive loop/shunt
capacitance in Fig. 2a. Each plasmon involves the two super-
inductances (energy 2ϵL in parallel) and the shunt capacitance
(energy xϵC), and hence has energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16xϵLϵC

p
. Hereafter, we refer

to these modes as the “fluxon mode” and the “plasmon mode,”
respectively. Additionally, we assign the labels m�j i to the lowest-
energy states, wherem denotes the number of plasmons and � (or 	)
denotes the presence (or absence) of a fluxon excitation relative to
the ground state (Here, we restrict the Hilbert space to the two
fluxon states with lowest-energy). Note that the fluxon place-
holder indices are defined by

�=	 ¼
↺=↻; for φext mod 2π < π

�=þ; for φext mod 2π ¼ π

↻=↺; for φext mod 2π > π

8><
>: ; (8)

where m±j i ¼ mj i 
 1ffiffi
2

p ð ↻j i± ↺j iÞ and the index j↻=↺i
represents the persistent current direction. This labeling serves
the purpose of assigning quantum numbers consistently for all
external flux values (see the colors in Fig. 3a — note that the
coloring changes for only the odd-numbered plasmon states, due
to the fact that the eigenstate with even overall parity has lower
energy for each plasmon state, and that the overall parity includes
both a plasmon and a fluxon component), except the particular
case φext mod 2π ¼ 0 that we do not focus on.

Fig. 3 Energy levels and wavefunctions. a Normalized transition energies E from the ground state of the Hamiltonian in Eq. (5) as a function
of external flux at Ng ¼ 0. The essential feature is the presence of a flux-independent plasmon mode (maroon) with energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16xϵLϵC

p
and a

flux-dependent fluxon mode (green). The coloring reflects the assigned quantum numbers. b Charge wavefunctions hNjψi ¼ hNjm± i of the
first four eigenstates of Eq. (5), illustrating that the plasmon excitation index m ¼ 0; 1; ¼ indicates the functional form while the fluxon
excitation index ± indicates charge parity. c Phase wavefunctions hφ;ϕjψi of the first four eigenstates of Eq. (5), showing that the intrawell
excitation number corresponds to the plasmon index and that the bonding/antibonding configuration corresponds to the fluxon index. All
wavefunctions are computed at φext ¼ π.
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Wavefunctions
Calculated charge wavefunctions hNjψi and phase wavefunctions
hφ;ϕjψi, obtained from numerical diagonalization of Eq. (5), are
shown in Figs. 3b, c for the four lowest-energy eigenstates at
φext ¼ π. Roughly, the phase wavefunctions are computed by
projection of the θ coordinate and a Fourier transform to the
φϕ-plane, while the charge wavefunctions are computed by
projection of the θ coordinate and constraint to the trajectory in
Eq. (6) (see Supplementary information for details).
The charge wavefunctions are grid states with Fock-state

envelopes.16,24 For fluxon excitation index þ=�, these grid states
are superpositions of even/odd Cooper pair number states.
Additionally, m corresponds to the order of the Fock-state
envelope. Note that a logical qubit encoded in 0þj i and 0�j i is
protected from spurious transitions except those mediated by
operators that flip Cooper pair parity.
On the other hand, the phase wavefunctions are approximately

Fock states localized within the potential energy wells (see Fig. 2b).21

The fluxon index þ=� denotes whether the state m±j i is a
symmetric (bonding) or antisymmetric (antibonding) superposition
of states localized within opposite ridges of potential wells. These
ridges correspond to persistent currents of opposite chirality, and
hence also to the absence/presence of a fluxon in the inductive loop
of the circuit.25 In this picture, m refers to the Fock order of the
localized states. Finally, operators that flip Cooper pair parity
correspond to odd functions of ϕ or functions of φ with period an
odd division of 2π, which can be seen from Fig. 3c to mediate the
transition mþj i $ m�j i:

Matrix elements
In the previous sections, we analyzed the multi-mode Hamiltonian
describing the superconducting circuit in Fig. 2a. Numerical
diagonalization of this Hamiltonian showed the emergence of a
linear plasmon mode and a nonlinear fluxon mode. In the
following sections, we consider the properties of the logical qubit
formed by f 0þj i; 0�j ig, the two lowest-energy eigenstates at
φext ¼ π, which generalizes to f 0	j i; 0�j ig away from φext ¼ π.
To better elucidate which types of operators can and cannot

induce transitions between the two states of the qubit, we
examine the relevant matrix elements corresponding to capacitive
and inductive coupling. This discussion is particularly relevant to
understanding the expected dominant loss mechanisms and
designing a measurement and control apparatus that does not
directly couple to the qubit.
For capacitive coupling, a generic voltage V couples to the

superconducting island of the circuit in Fig. 2a via a gate
capacitance Cg and will append the term

Hint ¼ Cg

Cshunt þ Cg
ð2eηÞV (9)

to the Hamiltonian in Eq. (5), in addition to dressing the shunt
capacitance. This voltage may be a degree of freedom of another
mode in the embedding circuit, a noise source, or an ac drive. We
therefore see that the susceptibility of undergoing a transition
from the ground state, due to capacitive coupling to the qubit
island, is directly related to the matrix element hψjηj0	i.
For inductive coupling, a generic current I couples to the circuit

via a small inductance Ls shared with the inductive loop, which
adds the term

Hint ¼ Ls
2L

ϕ0ϕð ÞI (10)

to the Hamiltonian in Eq. (5). Here, ϕ0 ¼ _=2e is the reduced
magnetic flux quantum and L is the superinductance in each arm
of the qubit (i.e., ϵL ¼ ϕ2

0=L). Like the voltage source, this current
may represent an internal or environmental degree of freedom.
We see that the susceptibility of undergoing a transition from the

ground state, due to inductive coupling to the inductive loop, is
related to the matrix element hψjϕj0	i.
Limiting the Hilbert space to the six lowest-energy eigenstates

f m±j i : m ¼ 0; 1; 2g, we numerically compute the normalized
matrix elements

jOψj2 � jhψjOj0	ij2
h0	jOyOj0	i (11)

from the ground state 0	j i for the operators O ¼ η;ϕ. Results are
plotted in Fig. 4. Note that

P
ψjOψj2 ¼ 1 and jOψj2 > 0, so we may

reasonably consider these as transition probabilities via O.
We see from Fig. 4a that transitions mediated by capacitive

coupling to the qubit island are only allowed from 0	j i to 1	j i.
These selection rules result from the decoupling of the even and
odd Cooper pair number parity manifolds (see Supplementary
information). Most importantly, transitions between qubit states
are forbidden, meaning capacitive coupling offers a promising
ingredient for indirect qubit measurement and control (see
Discussion). Conversely, inductive coupling to the inductive loop
of the qubit permits transitions between 0	j i and 0�j i in the
vicinity of φext ¼ π, as shown in Fig. 4b. This effect arises because
the operator ϕ induces transitions between the Cooper pair parity
manifolds, as can be seen from the Fourier series for Eq. (6). As a
consequence, we expect that relaxation of the qubit will be
primarily due to inductive loss in the superinductances (see
Relaxation).

Disorder
A highly symmetric superconducting circuit is usually fragile in
view of unavoidable fabrication imperfections.25 The symmetry
of our circuit involving the two inductive arms in Fig. 2a may be
broken in three parameters: the Josephson energies of the
junctions, the capacitances of the junctions, or the super-
inductances. To analyze these effects, we numerically diagona-
lize Eq. (5) and examine the energy splitting ΔE (evaluated at
Ng ¼ 0), as well as the charge dispersion ϵ ¼ maxNgΔE �
minNgΔE of the f 0þj i; 0�j ig manifold at φext ¼ π. A dimension-
less quantity δ 2 ½0; 1Þ is introduced to parameterize the extent
of asymmetry in all three cases, and the δ-dependence of the
energies ΔE and ϵ is studied.
We model disorder in the Josephson energies of the junctions

by allowing the values of ϵJ to deviate. We, therefore, set the left
and right junction tunneling energies to ð1 ± δJÞϵJ , respectively,
where δJ is the aforementioned asymmetry parameter. The
Hamiltonian in Eq. (5) is perturbed by the term

H0 ¼ 2ϵJδJ sinφ sin
ϕ

2
: (12)

See Fig. 5 for a plot of ΔE and ϵ as a function of δJ . The important
feature in these plots is that the charge dispersion decreases
exponentially while the splitting increases exponentially with δJ
(The extrapolation of the charge dispersion as a function of the
disorder beyond δ ¼ 0:6 is due to numerical instabilities inherent
to low-energy quantities paired with disappearance of an efficient
diagonalization basis for large disorder). These features arise from
the effective Hamiltonian in Eq. (7) being accompanied by
2π-periodic terms in the presence of disorder. In this case of
disorder in ϵJ , the semiclassical approximations used earlier lead
to H0 � H0

eff with

H0
eff ¼ � 16

3π
ϵJδJ sinφ� 1

5
sin 3φ

� �
; (13)

which evidently permits the tunneling of single Cooper pairs
across the element. The resulting qubit retains characteristics of
the symmetric circuit, as well as the asymmetric/transmon-like
circuit.
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Analogously, we set the left and right junction charging
energies to ϵC=ð1 ± δCÞ, respectively. Aside from dressing the
charging energy, the Hamiltonian in Eq. (5) inherits the term

H0 ¼ �8ϵC
δC

1� δ2C
nðN � Ng � ηÞ; (14)

whose effect on the qubit manifold is plotted in Fig. 5.
This form for capacitive disorder is assumed due to the fact that,

if δJ ¼ δC � δA, then the product ϵJϵC is kept constant for both
junctions under the effects of disorder. This corresponds to the
physical case where the junction plasma frequencies are fixed by
oxidation, but their areas differ due to fabrication imperfections.
Here, the junction areas are ð1 ± δAÞA because A / ffiffiffiffiffiffiffiffiffiffiffi

ϵJ=ϵC
p

. The
consequences of area disorder are plotted in Fig. 5.
Following the same procedure, we set the left and right

superinductance inductive energies to ϵL=ð1 ± δLÞ, respectively.
This form is taken in order to fix the total linear inductance in the
loop. Aside from dressing the inductive energy, the Hamiltonian in
Eq. (5) is perturbed by

H0 ¼ ϵL
δL

1� δ2L
ðϕ� φextÞθ: (15)

Note in Fig. 5 that the charge dispersion and energy splitting
follow the same general trend for inductive disorder as for the
other three. The key difference is that the charge dispersion
decreases more quickly than for any other form of disorder.
Oppositely, the splitting is initially the same as for area disorder,
but the slope decreases in δL. We conclude that disorder allows us
to engineer a circuit with a sufficiently non-degenerate ground
state manifold whose charge dispersion is largely suppressed. For
reasons that will become clear in two sections, these features are
extremely valuable for designing a qubit that is protected from
dephasing.

Relaxation
We model loss due to an arbitrary channel using Fermi’s Golden
Rule. This gives us the relaxation rate, including both emission and
absorption, of

1
T1

¼ 1

_2
jh0 þ jOj0�ij2 SEEðΔωÞ þ SEEð�ΔωÞ½ �: (16)

In this expression, O is the operator of the circuit coupling to a
noisy bath variable EðtÞ, the noise spectral density of which is

given by SEEðωÞ. Note that ΔE ¼ _ Δω. In this section, we calculate
the relaxation rates for the expected dominant loss mechanisms
of the qubit based on numerical diagonalization of the full
Hamiltonian in Eq. (5). We perform this calculation for various
degrees of inductive disorder δL (see Fig. 5).
We consider four possible loss channels for the qubit: capacitive

loss, inductive loss, Purcell loss, and quasiparticle tunneling.26

Capacitive loss involves dielectric dissipation in the Josephson
junction capacitances. In this case, we have O ¼ 2eNi ¼
2e½n± 1

2 ðN � ηÞ� for the charge across the i-th junction and E ¼
V for a bath voltage with

SVV ðωÞ þ SVVð�ωÞ ¼ 2_
CJQcapðωÞ coth

_jωj
2kBT

: (17)

Here, CJ ¼ e2=2ϵC is the junction capacitance, T is the tempera-
ture, and QcapðωÞ is a frequency-dependent quality factor27 with
nominal value Qcap � 1 ´ 10628 (see Supplementary information
for more details).
Depending on the specific implementation, inductive loss may

occur within the superinductances via quasiparticle tunneling.26

This situation can be modeled by taking O ¼ ϕ0ϕi for the flux
across the i-th superinductance and E ¼ I for a bath current with

SIIðωÞ þ SIIð�ωÞ ¼ 2_
LiQindðωÞ coth

_jωj
2kBT

: (18)

In this expression, Li ¼ ð1 ± δLÞL is the i-th superinductance and
QindðωÞ is a frequency-dependent quality factor with nominal
value Qind � 500 ´ 106.26 As shown in the Supplementary
information, this frequency dependence is included to extrapolate
to small qubit transition frequencies.
Loss due to the Purcell effect should mainly arise from coupling

of the qubit to the plasmon mode, which we model as dielectric
loss in the shunt capacitance. As such, we have O ¼ 2eη and
E ¼ V for a bath voltage with the same noise spectral density as
Eq. (17), but with CJ replaced by Cshunt.
Finally, quasiparticle tunneling is expected to occur across

either Josephson junction and contribute to qubit relaxation.26 In
this case, we have O ¼ 2ϕ0 sin

φi
2 for the i-th junction and the

noise spectral density

SqpðωÞ þ Sqpð�ωÞ ¼ 2_ω Re YqpðωÞ coth _ω

2kBT
; (19)

with Re YqpðωÞ being the dissipative part of the Josephson
junction admittance29 (see Supplementary information for the

Fig. 4 Selection rules. a Normalized charge matrix elements jηψj2
between the ground state 0	j i and the excited state ψj i, showing
immunity of the qubit manifold to capacitive coupling. b Normal-
ized phase matrix elements jϕψj2 between states 0	j i and ψj i. This
matrix element is near-unity between the two qubit states at
φext ¼ π, meaning the qubit manifold is primarily susceptible to
inductive loss.

Fig. 5 Effects of disorder. a Plot of the charge dispersion ϵ of the
qubit transition as a function of disorder parameters δ. Here, δJ , δC ,
and δL correspond to disorder in the characteristic energy scales ϵJ ,
ϵC , and ϵL, respectively. Disorder in the area of the two Josephson
junctions is represented by δA. b Plot of the energy splitting ΔE as a
function of disorder parameters δ. The dashed lines and circles
indicate the values of δL used for inductive disorder when
computing coherence estimates.
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explicit form). Note that this admittance scales linearly in both ϵJ
and the quasiparticle density xqp defined relative to that of
Cooper pairs.
The calculated relaxation rates and the corresponding compo-

nents of Eq. (16) are shown in Table 1 for all four loss channels at
φext ¼ π. For both capacitive and inductive loss, we note that
measurements have not yet been performed using qubits with
extremely small energy splittings, and the calculation presented
here relies on an extrapolation to such frequencies. A key feature
is the complete absence of quasiparticle loss, as in the fluxonium
qubit.26 Additionally, we see that the asymmetric qubit is
marginally less susceptible to inductive loss than the symmetric
qubit. This improvement comes at the cost of the susceptibility to
capacitive and Purcell loss. However, we emphasize that the
lifetimes shown in Table 1 are conservative estimates that
demonstrate T1\1 ms, which is at least competitive with state-
of-the-art qubit implementations.13,24,26,30–32

Pure dephasing
In this section, we examine the dependence of the qubit transition
energy ΔE on various system parameters λ corresponding to
different dephasing mechanisms. We estimate the dephasing
times due to offset charge noise, external flux-noise, photon shot
noise in the plasmon mode, and critical current noise. The noise
spectral densities are all assumed to be 1=f and hence given by
SλλðωÞ ¼ 2πAλ=jωj, where

ffiffiffiffiffi
Aλ

p
is the amplitude, with the sole

exception of shot noise whose spectral density is assumed to be
Lorentzian.
In the case of perfect symmetry, the charge dispersion ϵ is

identically mapped to ΔE. As a consequence, resilience to
dephasing from offset charge noise demands a high degree of
degeneracy, making experimental implementation difficult. For-
tunately, this issue can be avoided by introducing inductive
disorder into the system (see Disorder). In the slow-varying limit
for charge noise, the pure dephasing rate is bounded by

1
Tϕ

¼ π

ð2eÞ2 ϵ=_; (20)

where e is Euler’s number.10 In Table 1, we see that this yields a
strict bound on the decoherence time in the case of perfect

symmetry, which is greatly alleviated in the presence of inductive
disorder. Note that this estimate does not explicitly involve

ffiffiffiffiffiffiffi
ANg

p
because the slow-varying limit has been taken where the offset
charge assumes a random value for each measurement, but does
not fluctuate within a given measurement.
At φext ¼ π, the qubit manifold is only susceptible to external

flux-noise to second order. However, one can easily obtain the
relation ∂2ΔE=∂φ2

ext / 1=ΔE (at φext ¼ π), which shows that
insensitivity to flux-noise-induced dephasing requires sufficiently
weak degeneracy, at odds with the requirement for resilience to
charge noise. Once more, introducing inductive disorder avoids
this issue. Neglecting components that depend on details of the
implementation, the pure dephasing rate33 is bounded by

1
Tϕ

¼ Aφext

∂2ΔE
∂φ2

ext

����
����; (21)

where
ffiffiffiffiffiffiffiffiffi
Aφext

p
=2π � 3 ´ 10�6 is the amplitude of the noise

spectral density34,35 for φext. As in the case of charge noise, this
places a stringent limit on the decoherence time of the qubit in
the absence of inductive disorder, as we see in Table 1.
We expect the dominant contribution to dephasing due to

thermal photons to arise from coupling to the plasmon mode. This
mode has an angular frequency ωp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16xϵCϵL
p

=_ and an
occupation np with mean given by nth ¼ 1=ðe_ωp=kBT � 1Þ. To this
end, we place a bound on the pure dephasing time Tϕ using the
expression13

1
Tϕ

¼ nthκ
χ2

χ2 þ κ2
; (22)

where χ is the dispersive shift of the qubit on the plasmon mode and
κ ¼ ωp=QcapðωpÞ is the linewidth of the plasmon mode. Note that,
as for capacitive loss, we use the frequency-dependent dielectric
quality factor QcapðωÞ with nominal value Qcap � 1 ´ 106.28 In all
cases, this form of noise is not expected to limit the decoherence
time of the qubit (see Table 1).
The final dephasing mechanism we investigate is critical current

noise, or fluctuations in the Josephson energy ϵJ . As in the case of
flux-noise, we discard factors that are sensitive to experimental

Table 1. Expected relaxation times T1 and pure dephasing times Tϕ at φext ¼ π through various channels.

Coherence time estimates

Loss channel O Quality factor T1 (ms)

δL ¼ 0:0 δL ¼ 0:3 δL ¼ 0:6 δL ¼ 0:9

Capacitive 2eNi Qcap � 1 ´ 10628 780 000 17 000 1 000 18

Inductive ϕ0ϕi Qind � 500 ´ 10626 0.61 0.79 1.1 1.4

Purcell 2eη Qcap � 1 ´ 10628 1 2 500 380 470

Quasiparticle 2ϕ0 sin
φi
2 1=x�qp � 0:3 ´ 10626 1 1 1 1

Dephasing channel λ Spectral density amplitude Tϕ (ms)

δL ¼ 0:0 δL ¼ 0:3 δL ¼ 0:6 δL ¼ 0:9

Charge Ng
ffiffiffiffiffiffiffi
ANg

p � � 1 ´ 10�454 0.0037 0.15 74 3:3 ´ 106

Flux φext

ffiffiffiffiffiffiffiffiffi
Aφext

p
=2π � 3 ´ 10�634 0.022 0.13 0.67 1.8

Shot np nth=Qcap � 1 ´ 10�728 4.6 4.8 5.3 8.7

Critical current ϵJ
ffiffiffiffiffiffi
AϵJ

p
=ϵJ � 5 ´ 10�736 210 40 8.2 2.9

The operators O coupling to the bath and the noisy parameters λ are listed in addition to the associated quality factors and spectral density amplitudes,
respectively. Relaxation and dephasing times are shown for varying cases of inductive disorder: δL ¼ 0:0; 0:3; 0:6; 0:9 (see also Fig. 5). The operators Ni depict
the number of Cooper pairs having tunneled across the two Josephson junctions, i.e., Ni ¼ n± 1

2 ðN � ηÞ. Entries that read “1” represent numerical infinity.
*These values are reported for clarity, but have no bearing on the estimates shown (see Relaxation, Pure dephasing).
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details and take the dephasing rate to be bounded by33

1
Tϕ

¼ ffiffiffiffiffiffi
AϵJ

p ∂ΔE
∂ϵJ

����
����; (23)

where
ffiffiffiffiffiffi
AϵJ

p � 5 ´ 10�7ϵJ is the amplitude of the noise spectral
density36 for ϵJ . As in the case of photon shot noise, we do not
expect critical current noise to place a strict bound on the
decoherence time (see Table 1).
At this point, it is clear that inductive asymmetry constitutes a

necessary ingredient in the protection of this qubit. In light of Eq.
(15), we attribute this to the resulting hybridization of the ϕ and θ
modes, which are not directly coupled in the symmetric case (see
Eq. (5)). The fluxon transition between the qubit states inherits
some character of the plasmon transition, thereby breaking the
correspondence between ϵ and ΔE and reducing the flux matrix
element h0jϕj0þi.

DISCUSSION
We have proposed a superconducting circuit whose ground state
manifold can be made protected, at the Hamiltonian level, from
multiple common sources of noise. Here we describe some of the
other strategies for achieving protection. The simplest manifesta-
tions involve improving quality factors associated with coupling to
different thermal baths30,37,38 and reducing noise spectral
densities for different Hamiltonian parameters.13,39,40 At a higher
level, a popular approach to suppressing qubit relaxation has been
to localize wavefunctions in disparate regions of phase space to
lessen transition matrix elements.21,24,26,41 On the other hand,
delocalization of the same wavefunctions has been shown to
mitigate dephasing effects by reducing qubit sensitivity to
Hamiltonian parameters.10,17,31,42–44 Superconducting circuits with
multiple degrees of freedom whose qubit wavefunctions are both
localized and delocalized combine both of these approaches. In
these circuits, quantum information is diffused among constituent
local degrees of freedom, providing protection from local
perturbations. The many-body limit promises topological protec-
tion,11,15,19,45 in which global operators are necessary to manip-
ulate logical qubits, but the few-body case described here offers
an experimentally realistic approximation.12,20,24,25,32,35,46 In the
following paragraphs, we outline the key differences between our
circuit and similar proposals.
The heavy fluxonium,21,41 in which a conventional fluxonium

qubit is shunted by a large capacitance, shares many similar
features with the circuit in Fig. 2a. In fact, our circuit roughly
reduces to that of the conventional fluxonium in the extremely
asymmetric limit of δL ! 1, and the eigenstates of both circuits
are similarly represented in terms of persistent currents. The two
main differences are that our circuit contains an additional small
Josephson junction and that the shunt capacitance is placed
across the junction along with a subset of the array junctions. An
analogy can be drawn between δL in our circuit and the shunt
capacitance in the heavy fluxonium, because they both suppress
the qubit transition frequency. Physically, the qubit eigenstates
differ when these analogous parameters fall to small values. While
the eigenstates collapse to Cooper pair number parity states in our
circuit, this is not true for the heavy fluxonium because the
variable φ is not compact.
The circuit in Fig. 2a bears resemblance to the rhombus,47 with

two central differences. First, in the rhombus, the superinduc-
tances are replaced by single Josephson junctions, or arrays of a
few larger junctions.9,24 This changes the parameter regime of the
circuit from ϵL � ϵJ to ϵL � ϵJ , decreasing the amplitude of the
cos 2φ term in the Hamiltonian. Second, the shunt capacitance is
replaced by a gate capacitance to a voltage source.24 This is akin
to substituting an electrostatic gate for a shunt capacitance to
obtain the Cooper pair box43 from the transmon;10 overall

suppression of the charge dispersion is traded for the ability to
bias the circuit at its charge sweet spot. Finally, the rhombus by
itself is not designed to be a protected qubit. Rather, when
multiple rhombi are arranged into a one-dimensional chain (or a
two-dimensional fabric), the ground states are eigenstates of a
nonlocal operator, which provides topological protection.9,11,15,45

On one hand, our qubit does not require such scaling to achieve
protection. On the other hand, the protection we predict is
inherently susceptible to local perturbations (see Relaxation, Pure
dephasing).
The 0-π qubit20 also has a similar superconducting circuit to that

in Fig. 2a, but with three essential distinctions. First, the pairs of
superinductances on each arm of the circuit are combined,
altering the embedding capacitance matrix, in particular the
capacitances to ground. Second, there is the addition of a second
large capacitance shunting the inductive loop between its two
horizontally oriented nodes. When this second capacitance is
precisely Cshunt, this permits the exact decoupling of the θ mode
from the φ mode in Eq. (5). Third, the 0-π qubit is operated in a
parameter regime where ϵL � 0:01ϵJ , as opposed to our circuit,
where ϵL � 0:1ϵJ .

25 This additional order of magnitude in the
superinductance may prove marginally less accessible experimen-
tally.17,18 Notably, the inductive loop in the 0-π qubit is threaded
with φext � 0 at its working point instead of φext ¼ π. This leads to
a substantial change in the physics of the ground state manifold;
0þj i and 0�j i are approximately localized in distinct potential
wells.25 In our case, these states are approximately the symmetric
and antisymmetric superpositions of the localized wavefunctions,
which are themselves localized in distinct Cooper pair number
parities.
Protected qubits face the serious obstacle of realizing state

manipulation and measurement while remaining sufficiently
isolated from their environments to preserve their coherence.
We envision performing readout and control using an ancillary
mode structure, which enables cascaded dispersive readout and
Raman indirect transitions, as outlined below.
For readout, we aim to exploit the sizable native dispersive shift

of the qubit on the plasmon mode, χ=2π � �20 MHz (see Pure
dephasing). Unfortunately, the small anharmonicity, which is at
most of order 10 MHz, of the plasmon mode makes readout of the
plasmon mode using a linear mode (e.g., a microwave cavity)
difficult. As a remedy, we propose introducing an ancillary
anharmonic mode by which to measure the plasmon state. In
this scheme, a dispersive interaction will be mediated by the
ancillary mode between the readout and plasmon modes, thereby
enabling dispersive measurement with two readout tones.48

The above-mentioned ancillary anharmonic mode will also be
useful for control of the protected qubit. As shown earlier, direct
transitions mediated by capacitive coupling to the qubit super-
conducting island are strictly forbidden in the symmetric case, and
weakly forbidden in the asymmetric case. Note that this coupling
method is chosen to minimize the contributions to decoherence
resulting from the introduction of the readout/control circuit. For
manipulation, we therefore propose transitioning through the
1þj i or 1�j i state, as in a conventional Λ system. An additional
complication is that, even in the presence of inductive asymmetry,
the joint fluxon-plasmon transitions 0þj i $ 1�j i and 0�j i $
1þj i are forbidden.
Using an ancillary mode based on the Superconducting

Nonlinear Asymmetric Inductive eLement (SNAIL),49 it is possible
to engineer selection rules where the joint fluxon-plasmon
transitions are weakly permitted while the qubit transition is left
unaffected, as has recently been demonstrated in a fluxonium
qubit.50 This stems from the feature of the SNAIL that allows, at
specific flux biases, third-order nonlinearities without fourth-order
nonlinearities. If we parameterize the broken selection rule using
y 2 ½0; 1Þ, the matrix element of 0þj i $ 1�j i relative to
0þj i $ 1þj i, then the gate speed via sequential direct transitions
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and a stimulated Raman transition is estimated to be ð1þ
y�1Þtgate and 2Δy�1t2gate, respectively.

51 Here, Δ � 100 MHz is the
detuning of the Raman drive from the intermediate state and
tgate � 10 ns is the π-pulse time.52 This also introduces an
additional Purcell loss channel 0�j i ! 1þj i ! 0þj i (and vice
versa), which corresponds to the relaxation time
T1 � y�2QcapðωpÞ=ωp. We therefore expect gate speeds to be
slowed by a factor of y�1 < 10 while lifetimes are kept in the
millisecond range.
In summary, we have designed a few-body superconducting

circuit in which the charge carriers are well-approximated by pairs
of Cooper pairs at a particular bias point. The Josephson tunneling
element that supports these charge carriers is characterized by a
cos 2φ term in the Hamiltonian, whose emergence we have shown
analytically. Our numerical simulations supplement these argu-
ments and demonstrate protection against a variety of common
relaxation and dephasing sources. We find that this protection is
substantially enhanced in the presence of disorder. Finally, we
compared our circuit to similar proposals and offered our
perspectives on readout and control.
As a final remark, we comment that engineering a circuit whose

potential energy is dominated by a cos 2φ term opens the door to
more exotic designs with potential energies of the form cos μφ,
with μ 2 N, which could be obtained by introducing additional
loops in the circuit. These could be tremendously valuable for
quantum simulation, realizing nearly degenerate ground state
manifolds with greater multiplicities, or performing degeneracy-
preserving measurements of photon number parity.53
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