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Generalizable control for quantum parameter estimation
through reinforcement learning
Han Xu 1,2,3, Junning Li1,2, Liqiang Liu4, Yu Wang3, Haidong Yuan4* and Xin Wang 1,2*

Measurement and estimation of parameters are essential for science and engineering, where one of the main quests is to find
systematic schemes that can achieve high precision. While conventional schemes for quantum parameter estimation focus on the
optimization of the probe states and measurements, it has been recently realized that control during the evolution can significantly
improve the precision. The identification of optimal controls, however, is often computationally demanding, as typically the optimal
controls depend on the value of the parameter which then needs to be re-calculated after the update of the estimation in each
iteration. Here we show that reinforcement learning provides an efficient way to identify the controls that can be employed to
improve the precision. We also demonstrate that reinforcement learning is highly generalizable, namely the neural network trained
under one particular value of the parameter can work for different values within a broad range. These desired features make
reinforcement learning an efficient alternative to conventional optimal quantum control methods.
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INTRODUCTION
Metrology, which studies high precision measurement and
estimation, has been one of the main driving forces in science
and technology. Recently, quantum metrology, which uses
quantum mechanical effects to improve the precision, has gained
increasing attention for its potential applications in imaging and
spectroscopy.1–6

One of the main quests in quantum metrology is to identify the
highest precision that can be achieved with given resources.
Typically the desired parameter, ω, is encoded in a dynamics Λω.
After an initial probe state ρ0 is prepared, the parameter is
encoded in the output state as ρω = Λω(ρ0). Proper measurements
on the output state then reveals the value of the parameter. To
achieve the highest precision, one needs to optimize the probe
states, the controls during the dynamics and the measurements
on the output states. Previous studies have been mostly focused
on the optimization of the probe states and measurements.6 The
control only starts to gain attention recently.7–18 It has now been
realized that properly designed controls can significantly improve
the precision limits. The identification of optimal controls,
however, is often highly complicated and time-consuming. This
issue is particularly severe in quantum parameter estimation, as
typically optimal controls depend on the value of the parameter,
which can only be estimated from the measurement data. When
more data are collected, the optimal controls also need to be
updated, which is conventionally achieved by another run of the
optimization algorithm. This creates a high demand for the
identification of efficient algorithms to find the optimal controls in
quantum parameter estimation.
Over the past few years, machine learning has demonstrated

astonishing achievements in certain high-dimensional input-
output problems, such as playing video games19 and mastering
the game of Go.20 Reinforcement Learning (RL)21 is one of the
most basic yet powerful paradigms of machine learning. In RL, an
agent interacts with an environment with certain rules and goals

set forth by the problem desired. By trial and error, the agent
optimizes its strategy to achieve the goals, which is then
translated to a solution to the problem. RL has been shown to
provide improved solutions to many problems related to quantum
information science, including quantum state transfer,22

quantum error correction,23 quantum communication,24 quantum
control25–27, and experiment design.28

Here we show that RL serves as an efficient alternative to
identify controls that are helpful in quantum parameter estima-
tion. A main advantage of RL is that it is highly generalizable, i.e.,
the agent trained through RL under one value of the parameter
works for a broad range of the values. There is then no need for
re-training after the update of the estimated value of the
parameter from the accumulated measurement data, which
makes the procedure less resource-consuming under
certain situations.

RESULTS
We consider a generic control problem described by the
Hamiltonian:29

ĤðtÞ ¼ Ĥ0ðωÞ þ
Xp
k¼1

ukðtÞĤk ; (1)

where Ĥ0 is the time-independent free evolution of the quantum
state, ω the parameter to be estimated, uk(t) the kth time-
dependent control field, p the dimensionality of the control field,
and Ĥk couples the control field to the state.
The density operator of a quantum state (pure or mixed)

evolves according to the master equation,30

∂tρ̂ðtÞ ¼ �i ĤðtÞ; ρ̂ðtÞ� �þ Γ ρ̂ðtÞ½ �; (2)

where Γ½ρ̂ðtÞ� indicates a noisy process, the detailed form of which
depends on the specific noise mechanism and will be
detailed later.
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The key quantity in quantum parameter estimation is the
QFI,31–34 defined by

FðtÞ ¼ Tr ρ̂ðtÞL̂2s ðtÞ
� �

; (3)

where L̂sðtÞ is the so-called symmetric logarithmic derivative that
can be obtained by solving the equation
∂ωρ̂ðtÞ ¼ 1

2 ½ρ̂ðtÞL̂sðtÞ þ L̂sðtÞρ̂ðtÞ�.31,32,35 According to the Cramér-
Rao bound, the QFI provides a saturable lower bound on the

estimation as δω̂ � 1ffiffiffiffiffiffiffiffi
nFðtÞ

p , where δω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðω̂� ωÞ2�

q
is the

standard deviation of an unbiased estimator ω̂, and n is the
number of times the procedure is repeated. Our goal is therefore
to search for optimal control sequences uk(t) that maximize the
QFI at time t = T (typically the conclusion of the control), F(T),
respecting all constraints possibly imposed in specific problems.
Practically, we consider piecewise constant controls so the total
evolution time T is discretized into N steps with equal length ΔT

labeled by j, and we use uðjÞk to denote the strength of the control
field uk on the jth time step. Researches of such problem are
frequently tackled by the Gradient Ascent Pulse Engineering
(GRAPE) method,29 which searches for an optimal set of control
fields by updating their values according to the gradient of a cost
function encapsulating the goal of the optimal control. It has been
found that GRAPE is successful in preparing optimal control pulse
sequences that improve the precision limit of quantum parameter
estimation in noisy processes.11,12 Many alternative algorithms can
tackle this optimization problem such as the stochastic gradient
ascent(descent) method and microbial genetic algorithm,36 but
the convergence to the optimal control fields becomes much
slower when the dimensionality (p) of the control field or the
discretization steps (N) increases. Other optimal quantum control
algorithms, such as Krotov’s method37–41 and CRAB algorithm,42

typically depend on the value of the parameter, thus need to be
run repeatedly along the update of the estimation, which is highly
time-consuming. More efficient algorithms are thus highly desired.
In this work, we employ RL to solve the problem and compare

the results to GRAPE. Our implementation of GRAPE follows ref. 11

Figure 1 shows schematics of the RL procedure and the Actor-
Critic algorithm21 used in this work. In order to improve the
efficiency of computation, we used a parallel version of the Actor-
Critic algorithm called Asynchronous Advantage Actor-Critic (A3C)
algorithm.43 For more extensive reviews of RL, Actor-Critic
algorithm and A3C, see Methods and the Supplementary
Methods.
Next we apply the algorithm to two commonly considered

noisy processes: dephasing and spontaneous emission, to
demonstrate the effect of the algorithm.

Dephasing dynamics
Under dephasing dynamics, the master equation, Eq. (2), takes the
following form:11

∂tρ̂ðtÞ ¼ �i ĤðtÞ; ρ̂ðtÞ� �þ γ

2
σ̂nρ̂ðtÞσ̂n � ρ̂ðtÞ½ �; (4)

where

ĤðtÞ ¼ 1
2
ω0σ̂3 þ uðtÞ � σ; (5)

the control field u(t) = (u1, u2, u3) is a magnetic field that couples
to σ = (σ̂1, σ̂2, σ̂3), and γ is the dephasing rate which is taken as 0.1
throughout the paper. We consider a dephasing along a general
direction given by n ¼ ðsinϑcosϕ; sinϑsinϕ; cosϑÞ, σ̂n ¼ n � σ. The
parameter to be estimated is ω0 in Eq. (5), the true value of which
is assumed to be 1, and we take ω0

−1 = 1 as our time unit. We
choose the probe state, i.e. the initial state of the evolution, as
ðj0i þ j1iÞ= ffiffiffi

2
p

in all subsequent calculations, where |0〉, |1〉 are
the eigenstates of σ̂3.

In Fig. 2 we present our numerical results on QFI under
dephasing dynamics with ϑ = π/4, ϕ = 0 using square pulses.
Figure 2a–c show the results for ΔT = 0.1. Figure 2a shows the
training process in terms of F(T)/T as functions of the number of
training epochs. The blue line shows results from the training
using A3C algorithm. The value of F(T)/T corresponding to results
from GRAPE and the case with no control are shown as the orange
dotted line and gray dashed line, respectively. The red line shows
results from “A3C+ PPO”, an enhanced version of A3C which
converges faster.44 The details of this algorithm is explained in the
Supplementary Methods. We can see that after sufficient training
epochs, results from A3C exceed that for the case with no control,
and approaches the optimal results found by GRAPE. On the other
hand, “A3C+ PPO” converges more quickly to essentially the
same result of A3C.
We select one training outcome from those with best

performances in Fig. 2a and show F(t)/t and the pulse profiles in
Fig. 2b, c respectively. As can be seen from Fig. 2b, both GRAPE
and A3C outperform the case with no control, while the results of
A3C are comparable to those from GRAPE.
Figure 2d–f show results with a larger time step, ΔT= 1. From

the training results shown in Fig. 2d, we see that results from A3C
occasionally exceed those from GRAPE, for example at training
epoch ~1600 and 3000. F(t)/t and the pulse profile of one of the
best-performing results is again shown in Fig. 2e, f, and we see
from Fig. 2e that A3C indeed outperforms GRAPE in this case.
We have discussed dephasing dynamics along a particular axis

pertaining to Fig. 2, and the results for several other dephasing
axes are shown in the Supplementary Discussion. We conclude
from these results that in most cases, the A3C algorithm is capable
to produce results comparable to those from GRAPE, while in
selected situations (e.g. larger ΔT) A3C may outperform GRAPE.

Fig. 1 Schematics of the reinforcement learning procedure. a the RL
agent-environment interaction as a Markovian decision process. The
RL agent who first takes an action is prescribed by a neural network.
The action is essentially the control field which steers the qubit.
Then, depending on the consequence of the action, the agent
receives a reward. b Schematic flow chart of one training step of the
Actor-Critic algorithm. The hollow arrows show the data flow of the
algorithm, and the dotted arrows show updates of the states and
the neural network. In each time step, the state evolves according to
the action chosen by the neural network, generating a new state
which is used as the input to the network in the next time step. The
loss function (detailed in Methods and the Supplementary Methods)
is used to update the parameters of the neural network so as to
optimize its choice of actions. The procedure is repeated until
actions in all time steps are generated, forming the full evolution of
the state and concluding one training episode
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We now discuss the generalizability of the control sequences for
quantum parameter estimation, a key result of this paper. As the
true value of ω0 is not known a priori, the control sequence has to
be found optimal for a chosen ω0. When such sequence is applied
in situations under other ω0 values, the true value is still measured,
but the resulting QFI is lower than when the optimal control for
true ω0 is used. In order to raise the QFI, one must then perform a
second measurement using control sequences optimized for the
estimated true value of ω0. The entire procedure therefore
involves two steps, using different pulse sequences. This is
fundamentally different than other typical measurements in
quantum control, e.g. evaluation of fidelities of quantum gates,45

for which there is no need for a second pulse sequence or a
second measurement.
The dotted lines in the left column of Fig. 3 show the QFI

resulting from measurements with the optimal control found for
ω0= 1 with GRAPE. Results without control are shown as gray
dashed lines for comparison. The range of ω0 covers a period of
2π/T. As expected, the QFI is largest at ω0= 1, but reduces as ω0

deviates from 1. As ω0 further varies, the QFI increases at some
values of ω0 which may be due to the geometric relationship of
the phase that corresponding to those ω0 values and the phase at
ω0= 1. In any case, these QFI values are consistently lower than
the value at ω0= 1. An obvious way to improve the QFI is to
generate new optimal control sequences for each value of ω0 from
GRAPE, but this is costly as the computational complexity scales as
OðN3Þ. A detailed discussion on the computational complexity can
be found in Supplementary Discussion.
With A3C we have an efficient solution to this problem. We can

train the neural network at ω0= 1, and use this particular network
to generate control sequences for different ω0 values. The neural

network is only trained at ω0= 1. However, the trained neural
network works for a broad range of parameter values. There is no
need to re-train the neural network with the updated estimation
of the parameter. The computational cost is thus simply O Nð Þ so it
is much more efficient than generating new sequences with
GRAPE. These results from A3C are shown in the left column of Fig.
3 as blue solid lines which represents the best-performing
sequence from 100 trials generated from the trained neural
network. For ΔT= 0.1 (Fig. 3a), although the QFI in the training ω0

= 1 is slightly lower for A3C than that of GRAPE, A3C demonstrates
higher generalizability as the QFI deceases slowly when ω0

deviates from 1. For ΔT= 1 (Fig. 3c), the QFI of A3C is consistently
higher than GRAPE except a narrow range of ω0 around 0.65.
To further reveal the generalizability of different methods, we

consider the measurement in an ensemble with ω0 uniformly
distributed in [1− Δω, 1+ Δω]. The performance of the quantum
parameter estimation is therefore given by the average F(T)/T,

hFðTÞ=Ti ¼ 1
2Δω

Z 1þΔω

1�Δω

FðTÞ=Tdω: (6)

These results are shown in the right column of Fig. 3, which are
averages of the data in the corresponding panels in the left
column. As seen from Fig. 3b (ΔT= 0.1), 〈F(T)/T〉 for GRAPE is high
at small Δω but drops quickly as Δω is increased. On the contrary,
〈F(T)/T〉 for A3C is lower than that for GRAPE at small Δω, but
decays much more slowly. As a consequence, 〈F(T)/T〉 for A3C
exceeds that for GRAPE beyond Δω≳ 0.22. This result indicates
that for measurements involving a reasonably varying parameter,
A3C demonstrates higher generalizability. For ΔT= 1, the results
of A3C always exceed GRAPE as seen from Fig. 3d. The result for

Fig. 2 Quantum parameter estimation under dephasing dynamics with ϑ = π/4, ϕ = 0 using square pulses. a–c results for ΔT = 0.1, T = 5. d–f
results for ΔT = 1, T = 10. a, d show the learning procedure, namely F(T)/T as functions of training epochs. b, e show F(t)/t for one of the best
training results selected from a and d respectively. c and f show the pulse profiles corresponding to b and e
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A3C decays much more slowly than that for GRAPE, in consistency
with the ΔT = 0.1 case.
Intuitively without control and noise, the optimal strategy is

preparing the initial probe state as ðj0i þ j1iÞ= ffiffiffi
2

p
, since this state

has the fastest rate of rotations under the Hamiltonian. Since the
evolution of the state is also affected by dephasing, competitions
exist between the parametrization and the effect of noise. When
the evolution time is short, the parametrization dominates, in
which case the control does not help much. However, in
experimentally relevant situations the evolution time is typically
long enough for noises to dominate. The controls are therefore
useful as they can steer the states to regions where those states
are less affected by the noise, even if such states may have a
slower speed of parametrization. GRAPE and RL-based methods
are both systematical ways to find controls, however, as we have
demonstrated, A3C is more generalizable.

Spontaneous emission
A process involving the spontaneous emission is described by the
Lindblad master equation:11

∂tρ̂ðtÞ ¼ �i ĤðtÞ; ρ̂ðtÞ� �þ γþ σ̂þρ̂ðtÞσ̂� � 1
2 σ̂�σ̂þ; ρ̂ðtÞf g� �

þγ� σ̂�ρ̂ðtÞσ̂þ � 1
2 σ̂þσ̂�; ρ̂ðtÞf g� �

;
(7)

where σ̂± ¼ ðσ̂1 ± iσ̂2Þ=2 and Ĥ is defined as Eq. (5). The
relaxation rates are taken as γ+= 0.1, γ−= 0 throughout our
discussion.
Figure 4 shows numerical results on QFI with spontaneous

emission. Figure 4a–c are for ΔT= 0.1, T= 10, and Fig. 4d–f show

calculations with a larger time step ΔT= 1, T= 20. Figure 4a, d [left
column] show the A3C training processes, in which the results
from GRAPE are indicated as orange dotted line for reference. We
see that “A3C+ PPO” converges faster, and both A3C and “A3C+
PPO” saturate to values slightly lower than GRAPE. Again, one of
the best-performing control is picked out and the corresponding F
(t)/t and pulse profiles are shown in the middle and right column
respectively. From Fig. 4b, e we see that for the best result from
A3C, the QFI is lower than, but comparable to results from GRAPE.
As in the case of dephasing dynamics, we consider the

generalizability of different methods in a situation involving ω0

that distributes uniformly in a range. Again, we use GRAPE to
obtain optimal control sequences for ω0= 1 and apply that to
other values. For A3C, we trained the neural network at ω0= 1; the
resulting sequence is then used to obtain an estimate of the true
ω0 value. A new sequence is then generated using the neural
network already trained at ω0= 1 with the estimated ω0. The best-
performing results out of 100 A3C outputs are shown as the blue
solid lines in Fig. 5, while the results from GRAPE are shown as the
orange dotted lines. The left column of Fig. 5 shows F(T)/T as
functions of ω0 for two ΔT values. In both cases, the GRAPE
method outperforms A3C in a narrow neighborhood around ω0=
1, but its QFI decreases substantially as ω0 further deviates. On the
other hand, A3C exhibits great generalizability: for ΔT= 0.1 the
QFI does not decrease until ω0 is reduced to ω0≲ 0.6, while for ΔT
= 1 the QFI remains approximately the same for the entire range
of ω0 considered. The average F(T)/T in the range [1− Δω, 1+ Δω]
are shown in the right column of Fig. 5. In Fig. 5b, A3C

Fig. 3 Generalizability of the control under dephasing dynamics. a, c F(T)/T vs ω0 for three different methods. Note that the results from the
GRAPE method are obtained using the pulses generated for ω0= 1 only, while those from A3C are obtained using a neural network trained at
ω0= 1. b, d average F(T)/T in a range [1−Δω, 1+Δω] corresponding to the results of a and c respectively. a, b ΔT= 0.1, T= 5; c, d ΔT= 1, T =
10
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outperforms GRAPE when Δω≳ 0.22, while in Fig. 5d, A3C
outperforms GRAPE in an even larger range Δω≳ 0.07.
Overall we conclude that in the case of spontaneous emission,

the A3C algorithm provides comparable results to GRAPE,
although it cannot give higher QFIs. Nevertheless, A3C has much
greater generalizability, as is consistent with the case concerning
the dephasing dynamics.

Sequences with Gaussian pulses
For all results shown above, the control sequences involve square
pulses only. In practical experiments, shaped pulses are some-
times used. Therefore in this section we consider Gaussian pulses
as an example. The total time T is still divided into smaller pieces
with ΔT. However, at the jth piece the piecewise constant pulse is
replaced by a Gaussian centering on that piece and truncated on
the ends:

uðjÞðtÞ ¼ AðjÞexp � t � tðjÞ
� �

=σg;ðjÞ
h i2� �

; (8)

where A(j) indicates the amplitude and σg,(j) the flatness of the
pulse. We demonstrate here that with A3C method it is natural to
accommodate non-boxcar pulses.
In Fig. 6 we show A3C results using Gaussian pulses and

compare them to GRAPE results using square pulses. Figure 6a–c
show results under dephasing dynamics with ϑ= π/4, and Fig.
6d–f show results under the spontaneous emission. In both cases
ΔT= 1, T= 10. For dephasing dynamics, our best results from A3C
outperform GRAPE, as is also the case for square pulses generated
by A3C. For spontaneous emission, our best-performing result has
a QFI value slightly lower than those from GRAPE with square
pulses, but their values are very close. These results indicate that

A3C method can naturally accommodate pulses other than square
shape. We note that our use of Gaussian pulses is theoretical, and
in practical situations, experimentally more relevant ones such as
the Blackman pulses45 should be used. These shaped pulses are
implemented by introducing constraints to the gradient in
GRAPE46 or by modifying the action from the RL agent directly.

DISCUSSION
The generalizability of RL, or sometimes called “generalization” in
the literature, is an actively studied topic in computer science, for
example on problems related to game playing where the RL agent
trained under one level of the game can be used to clear other
levels.47–50 While the reason why RL is generalizable is not
completely clear, one suggestion has it that it likely arises from the
underfitting by the neural network to the training data,51 which is
supported by studies showing that reducing overfitting improves
generalizability.50

The generalizability in fact has a much wider scope than what
has been studied here. In the so-called “transfer learning”,52

experiences gained from one training of the RL agent can be used
to improve its performance on different but related tasks by, for
example, minimal updates of the network parameters. In contrast,
our method does not alter network parameters while only
generalizes the neural network in new RL environments with
different parameters to estimate. We therefore believe that RL can
be made even more generalizable by further studies involving
more sophisticated algorithms.
To summarize, RL, in particular the A3C algorithm, is capable of

finding the control protocol that enhances QFI in a way
comparable to the traditionally used GRAPE method, and is in
certain situations superior than GRAPE, e.g. for pulse sequences

Fig. 4 Quantum parameter estimation under spontaneous emission using square pulses. a–c results for ΔT= 0.1, T= 10. d–f results for ΔT= 1,
T= 20. a, d show the learning procedure. b and e show F(t)/t for one of the best training results selected from a and d respectively. c and f
show the pulse profiles corresponding to b and e
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with larger time steps. Moreover, RL can naturally accommodate
non-boxcar pulse shapes. Nevertheless, the key advantage
afforded by RL is the generalizability, namely the neural network
trained for one estimated parameter value can efficiently generate
pulse sequences that provide reasonably enhanced QFI for a
broad range of parameter values, while in order to achieve the
same level of QFI the GRAPE algorithm has to be applied in full
each time with a new parameter estimation. Our results therefore
suggest that RL-based methods can be powerful alternatives to
commonly used gradient-based ones, capable to find control
protocols that could be more efficient in practical quantum
parameter estimation.

METHODS
In this section we describe the RL framework shown in Fig. 1. We also
provide an expansive review of the RL methods and the detail on
implementation in the Supplementary Methods.
Figure 1a shows the RL agent who takes an action as prescribed by a

neural network. In our problem, the action is essentially the control field
which steers the qubit according to the master equation, Eq. (2), and the
resulting state of the evolution determines the reward the agent receives.
In practice, the reward encodes the QFI, i.e. higher reward will be obtained
when greater QFI is given by the control.
The action taken by the agent implies a time evolution of the quantum

state according to Eq. (2) with the control field, uk(t). All possible actions
therefore form a continuous set. We solve this problem using the Actor-
Critic algorithm,21 as shown in Fig. 1b. Such algorithm is particularly
suitable to our problem as it can treat continuous actions. The key of the
algorithm is that the neural network is not only updated using the reward,
but also a state value, the latter of which greatly improves the efficiency of
the training procedure. At certain time step, the neural network takes the
density matrix of the quantum state as an input, and outputs both an

action, and a state value which assesses how likely the state will lead to a
larger QFI. The state is then evolved using the output action, obtaining the
new state and QFI, which is then implemented into the reward. The reward
and state value combines into a so-called “loss function” that provides
feedback, by updating the neural network, for the RL agent to make better
decisions. The RL agent takes the new quantum state to repeat the above
step until time T is reached, concluding one “episode” of training. After
that, the quantum state is reset for the next episode to begin with. A
completed episode outputs a pulse profile by sequencing the actions
taken in each time step.
In order to improve the efficiency of computation, we used a parallel

version of the Actor-Critic algorithm called Asynchronous Advantage
Actor-Critic (A3C) algorithm.43 In this case, several copies of the agent and
environment (called local agents and environments) run in parallel, and as
each of them finishes one episode, the solution is delivered to a global
agent for further optimization. The optimal policy among these results is
then regarded as the output from one “epoch” of training, i.e. one epoch
involves several episodes of training from different local agents. Since
different local agents deliver their results at different times, the procedure
is asynchronous. The details of both the Actor-Critic and the A3C algorithm
are described in the Supplementary Methods, as well as the pseudo-code
describing the implementation of the algorithm.

DATA AVAILABILITY
The datasets generated during this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
The code used to generate data is available from the corresponding author upon
reasonable request.

Fig. 5 Generalizability of the control under spontaneous emission. a, c F(T)/T vs ω0 for three different methods. Note that the results from the
GRAPE method are obtained using the pulses generated for ω0= 1 only, while those from A3C are obtained using a neural network trained at ω0
= 1. b, d average F(T)/T in a range [1−Δω, 1+Δω] corresponding to the results of a and c respectively. a, b ΔT= 0.1, T= 10; c, d ΔT= 1, T= 20
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