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Fiber-coupled EPR-state generation using a single temporally
multiplexed squeezed light source
Mikkel V. Larsen 1, Xueshi Guo 1, Casper R. Breum 1, Jonas S. Neergaard-Nielsen 1 and Ulrik L. Andersen 1

A prerequisite for universal quantum computation and other large-scale quantum information processors is the careful preparation
of quantum states in massive numbers or of massive dimension. For continuous variable approaches to quantum information
processing (QIP), squeezed states are the natural quantum resources, but most demonstrations have been based on a limited
number of squeezed states due to the experimental complexity in up-scaling. The number of physical resources can however be
significantly reduced by employing the technique of temporal multiplexing. Here, we demonstrate an application to continuous
variable QIP of temporal multiplexing in fiber: Using just a single source of squeezed states in combination with active optical
switching and a 200m fiber delay line, we generate fiber-coupled Einstein-Podolsky-Rosen entangled quantum states. Our
demonstration is a critical enabler for the construction of an in-fiber, all-purpose quantum information processor based on a single
or few squeezed state quantum resources.
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INTRODUCTION
The realization of quantum computation (QC) with demonstrated
quantum supremacy requires a scalable platform of quantum
resources:1,2 Usually hundreds of logical qubits, or thousands of
physical qubits, are needed to reach this longstanding goal.3 In
one-way measurement-based quantum computation (MBQC),4,5

universal computation is performed with only single-qubit
projective measurements of an entangled cluster state.6 Thereby,
scalability is relaxed to the generation of a cluster state of suitable
size.7 Cluster states of multiple modes of light are readily
accessible in continuous variable optical platforms, but most
demonstrations have been limited by the amount of spatial
resources.8–12 However, by time and frequency multiplexing with
squeezed states of light, large cluster states can be determinis-
tically generated as demonstrated with 60 frequency modes in
refs 13,14 and 106 temporal modes in refs 15,16 This allows for
excellent scalability, thereby rendering the need for spatially
distributed resources unnecessary.
MBQC based on temporally encoded cluster states17,18 from a

single squeezed state resource19 requires optical switching and
passive optical storage (such as an optical delay line) in different
configurations as illustrated in Fig. 1. Multiple time-synchronized
squeezed states can be generated in the network illustrated in
Fig. 1a, allowing two-dimensional cluster state generation from a
single squeezing source.17,18 Moreover, in MBQC, sequential
measurements are performed on the cluster in which each
measurement strategy is adaptively changed based on previous
measurement outcomes. In some cases, switching between
completely different measurement schemes, e.g., homodyne
detection and a non-Gaussian measurement, is required18

(Fig. 1b). As an alternative to switching between Gaussian and
non-Gaussian measurement schemes, one might fix the measure-
ment setting to Gaussian homodyne detection and switch
ancillary non-Gaussian states into selected modes of the cluster

state20 (Fig. 1c). Finally, it is possible to realize MBQC by applying
optical switching in loop-based architectures21,22 as illustrated in
Fig. 1d. No matter which of the strategies is chosen, switching and
delay lines are key functionalities in managing temporal modes in
optical MBQC.
In this article, we demonstrate optical fiber switching combined

with an optical fiber delay in a continuous variable (CV) quantum
setting in the telecom band. This enables us to generate an
Einstein-Podolsky-Rosen (EPR) state23 between two fiber modes
by time multiplexing of a single source of squeezed states of light.
Our demonstration of optical switching and optical delay in a CV,
fiber-integrated and low-loss setting is a critical step towards the
realization of a scalable platform for CV quantum information
processing and ultimately universal quantum computation.

RESULTS
The quadrature entangled EPR-state is an important resource in
numerous quantum information and sensing protocols ranging
from CV teleportation24 and cryptography25 to CV computing.26

The most wide-spread realization of quadrature entanglement is
based on cavity-enhanced spontaneous parametric down-
conversion in an optical parametric oscillator (OPO). Correlations
can be established between different polarization or frequency
modes from a single non-degenerate OPO,27–34 or by combining
the squeezed state outputs of two degenerate OPOs onto a
balanced beam splitter.24,35–37 Here, we use the latter approach of
combining two squeezed states on a beam splitter, but instead of
using two OPOs, we exploit time multiplexing of a single source.

Experimental set-up
The experimental set-up is sketched in Fig. 2. We inject a single
~7 dB squeezed beam into a fiber switch that alternately guides
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the squeezed beam into two different fibers at a frequency of
500 kHz; thereby delaying one mode by 1 μs with respect to the
other. To compensate for the delay and thus synchronize the two
modes in time, the mode ahead propagates through a 200m fiber
spool. The two modes interfere with a relative phase shift of π/2 in
a balanced fiber coupler, thereby forming a two-mode squeezed
state.
For state characterization, we sample on an oscilloscope the

quadratures of the fiber coupler outputs measured by two
homodyne detection stations, Alice and Bob. Typical time traces
of such measurements are shown in the inset of Fig. 2. A single
dataset consists of 16,000 time traces triggered by the switching
signal. Each time trace is affected by a frequency-dependent
response of the detector giving rise to the negative slope seen in
the inset of Fig. 2, and a noisy oscillatory response of the fiber
switch. Besides this, there is a variation in the slope of each time
trace due to spurious interferences—both effects occur from the
coherent amplitude of the initial bright squeezed state together

with limited detection, switching and feedback bandwidths.
However, since these effects are systematic, repeatable and
synchronized with the switching process, they can be tracked and
compensated in the data processing—see Methods.
We have striven to reduce the loss of all components to maintain

as much of the non-classicality as possible. We used an anti-
reflection coated graded-index lens to couple the squeezed light
into the fiber with an efficiency of 97% (by matching counter-
propagating light in the OPO cavity), we spliced together all fiber
components to minimize fiber-to-fiber coupling losses and by using
the wavelength of 1550 nm, fiber propagation loss was negligible:
Even through the 200m fiber delay (standard SMF-28e+ fiber), the
propagation loss is ≤1%. The largest loss contribution is caused by
the fiber switch (Nanona by Boston Applied Technologies Inc.),
where light is coupled into a bulk electro-optic material and back
into fiber leading to 17% loss. Including OPO escape efficiency,
detection efficiency, and various tapping for phase locks, the total

Fig. 1 Quantum information processing architectures using optical switching and optical delay. a Switching and delay lines applied to a
single squeezed state resource in order to generate multiple time-synchronized squeezed state. b Switching between homodyne detection
and the more demanding cubic-phase gate-teleportation measurement with |χ〉 being an ancillary cubic-phase-state.18 c Example of switching
temporal modes into or out of a cluster state.20 d Loop-based architecture for fully temporally encoded MBQC utilizing switching and delay.21

Fig. 2 Schematics of the experiment. Bright amplitude squeezed states of light are generated using type-0 parametric down-conversion in an
optical resonator (OPO) at the wavelength of 1550 nm, seeded with a coherent beam for phase locks. The squeezed states of light are coupled
into a single mode fiber network (marked by blue lines) in which the generation of two-mode squeezing takes place: Using a fiber switch, two
consecutive temporal modes (marked by green and purple) are guided in different directions. Subsequently, the two modes are synchronized
by a fiber delay of 200m in one of the modes. Finally, the two spatial modes interfere in a 50:50 fiber coupler, thereby forming a two-mode
squeezed state in the output as the phase difference of the two input modes are locked to π/2 (using active feedback to a fiber-stretching
device described in Methods). The quadratures of the two-mode squeezed state are measured with two fiber-based homodyne detection
stations, Alice and Bob. A typical measurement output in time-domain is shown in the inset together with illustrations of the corresponding
states in phase space, alternating between two-mode squeezed states and vacuum states
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transmission from the squeezed state source to the detected
signal becomes η ≈ 68% (for more details see Methods).

Experimental results
To perform partial tomography of the generated two-mode
squeezed states, we measure the quadratures qA(θ) ± qB(−θ) and
qA(θ) ± qB(θ− π/2) as a function of the local oscillator phase θ.
Here, qi(θ)= xi cosθ+ pi sinθ where xi is the amplitude and pi the
phase quadrature at Alice (i= A) and Bob (i= B). The resulting
noise variances at the 3 and 10MHz side band frequencies are
shown in Fig. 3 together with theoretical predictions. We observe
a maximum shot noise suppression of 3.8 dB. The very small
discrepancy of the measurements at 3 MHz results from technical
noise of the seed beam as well as additional noise added in the
delay line—both noise effects are discussed and analyzed below
and in supplementary information section 3.
The variances of qA(θ) ± qB(−θ),

ΔðqAðθÞ þ qBð�θÞÞ2
D E

¼ 2 Δx21
� �

cos2 θþ Δx22
� �

sin2 θ
� �

;

ΔðqAðθÞ � qBð�θÞÞ2
D E

¼ 2 Δp22
� �

cos2 θþ Δp21
� �

sin2 θ
� �

;
(1)

associated with the maximally squeezed and anti-squeezed
quadratures, respectively, are seen to be constant with θ,
indicating symmetric two-mode squeezing. This is expected as
the individual single mode squeezed states in the direct (x1, p1)
and delay (x2, p2) line originate from the same squeezing source,
that is hΔx21i ¼ hΔx22i and hΔp21i ¼ hΔp22i. From the datasets at θ=
0° and 90°, entanglement can be verified by the inseparability
criterion,38 which reads

ΔðxA þ xBÞ2
D E

þ ΔðpA � pBÞ2
D E

¼ 1:72V0<4V0 ; (2)

at 3 MHz, and 2.42V0 < 4V0 at 10 MHz. Here, V0 is the variance of
the vacuum state.
When measuring the variances of

qAðθÞ± qBðθ� π=2Þ ¼ xA cos θ± xB sin θþ pA sin θ ∓ pB cos θ (3)

as a function of θ, we trace out one specific projection that in
particular realizes the squeezed and anti-squeezed quadratures.

Maximum squeezing and anti-squeezing are measured at θ= 45°
where correlations are strongest, corresponding to the measure-
ments of qA(θ) ± qB(−θ). At θ= 0° and 90° we expect no
correlations and measure the variances
Δx21
� �þ Δp21

� �þ Δx22
� �þ Δp22

� �� �
=2 corresponding to the added

noise of thermal states at Alice and Bob when tracing out
one mode.
From the partial tomography, we reconstruct the covariance

matrix of the two-mode squeezed state at the 3 MHz side band
frequency:39

γ ¼ V0

4:36 � �3:84 0:36

� 4:43 0:45 3:92

�3:84 0:45 4:17 �
0:36 3:92 � 4:26

0
BBB@

1
CCCA : (4)

Here, the entries with ‘-’ were not measured as it would require a
more elaborate measurement scheme, but they should in
principle be zero due to the symmetry of the states. However,
due to uncertainties in the phase control and non-perfect phase-
space alignments, the values will in practice be slightly different
from zero. This is also clear from the off-diagonal correlation terms
〈xApB〉 and 〈xBpA〉, which in practice are non-zero as seen in the
measured co-variance matrix but in theory should be zero for a
perfectly aligned system (see supplementary information
section 4). Finally, from the covariance matrix we determine the
conditional variances between Alice and Bob’s measurements
from which we test the EPR-criterion:40

Δ2
inf:xAjB � Δ2

inf:pAjB ¼ 0:69V2
0 <V2

0 ;

Δ2
inf:xBjA � Δ2

inf:pBjA ¼ 0:64V2
0 <V2

0 ;
(5)

where Δ2
inf:qijj ¼ ming Δðqi � gqjÞ2

D E
¼ Δq2i

� �� qiqj
� �2

= Δq2j
D E

is

the conditional uncertainty in predicting qi when measuring qj.
Since both conditional variance products are below V2

0 , the
generated states are EPR entangled in both directions.
As seen from Eq. (1) for θ= 0° and 90°, the measured two-mode

squeezing is equivalent to the squeezing of the single mode states
in the direct and delayed paths, respectively. The spectra of such

Fig. 3 Partial tomography of the generated two-mode squeezed state. We plot the noise variance (normalized to the shot noise variances) of
the quadratures qA(θA) ± qB(θB) with θA restricted to θA= θ and θB restricted to θB=−θ (blue and red), and θB= θ− π/2 (green and black). Each
point corresponds to one dataset of 16,000 processed time traces as in Fig. 5. To extract the 3 and 10MHz frequency modes, each time trace is
digitally mixed with a 3 or 10 MHz sine curve and integrated to one value. The noise is then the variance of these 16,000 values, added/
subtracted for Alice and Bob. With the time trace length of about 900 ns, the frequency mode bandwidth is around 1MHz. The solid and
dashed line shows theoretical noise predicted from measured efficiency, OPO bandwidth, pump power, and fitted phase fluctuations in Fig. 4.
The predictions include 1.7° phase offset. The inset illustrates the measured quadratures in a phase-space diagram
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measurements are shown in Fig. 4. The squeezing spectra are
Lorentzian and resemble that of the OPO cavity. Furthermore, the
anti-squeezing is seen to be symmetric, while the squeezing has
degraded slightly in the delay line due to additional phase noise.
To characterize this, we measure the seed spectrum by blocking
the pump to the squeezing cavity. The low-frequency noise that
can be observed in the direct line results from technical noise of
the seed beam. Even more low-frequency noise is apparent in the
squeezed state of the delay line. We believe it originates from
phase noise generated by the 200 m fiber and amplitude noise
from the fiber switch, which is most prominent at 5–6 MHz.
To infer the phase fluctuations, σi, associated with the direct

(i= 1) and delay (i= 2) line, the squeezing spectra including a
normal distributed phase with σi standard deviation, approximated
to Δx2i

� �
cos2ðθþ σiÞ þ Δp2i

� �
sin2ðθþ σiÞ for θ= 0 and π/2,41 is

fitted with σi as the only fitting parameter. Here, following42 with
additional seed noise coupled into the OPO and V0= 1/2,

Δq2i
� � ¼ 1

2
∓

2εγη

ðγ ± εÞ2 þ ω2
þ Kq
ðγ ± εÞ2 þ ω2

; q ¼ x; p; (6)

where ε is the pump rate, γ is the total OPO decay rate, η is the
overall efficiency and ω is the angular frequency, while Kq ¼
4γγsηið Δq2s

� �� 1=2Þ with γs being the decay rate due to the seed
beam coupling mirror and Δq2s

� �
is the seed beam quadrature

noise before injection into the OPO (for detailed derivation see
supplementary information section 3.1). We find a decay rate of γ/
2π= 8.1 MHz by measuring the OPO intracavity losses (0.55%), the
cavity length (320 mm) and the transmissivity of the coupling
mirror (10%), and we estimate the pump rate to ε/2π= 5.2 MHz for
a pump power of 350 mW and a measured OPO threshold power
of 833 mW. Kq is estimated as Kq ¼ ðγ2 þ ω2Þð Δq20

� �� 1=2Þ where
Δq20
� �

is the quadrature noise measured with no pump (ε= 0, gray
points in direct line of Fig. 4). Finally, to include excess noise of the
delay line, the seed noise difference of the direct and delay line is
added to the fit in the delay line. The fit is shown as hollow points
in Fig. 4, and is seen to fit very well with the measured data. The
resulting phase fluctuations obtained from the fit are σ1= 1.9 ±
1.2° and σ2= 4.1 ± 0.6° with uncertainties estimated as the 95%
confidence interval. These values are included in the theoretical
model used for Fig. 3.

From the theoretical model with fitted phase fluctuations, the
solid lines in Fig. 4 indicate the expected squeezing spectra if the
seed beam were shot noise limited and no additional noise
existed in the delay line. In that case, we can expect more than
4 dB two-mode squeezing. The phase fluctuation in the delay line,
σ2= 4.1 ± 0.6°, is more than double that in the direct line, σ1=
1.9 ± 1.2°. This is mainly due to limited phase control bandwidth of
the fiber delay and low signal-to-noise ratio of the feedback signal.
Finally, the dotted line in Fig. 4 shows the squeezing spectrum we
would expect if we had perfect phase control, and thus the
optimum squeezing we may measure with the given efficiency.

DISCUSSION
The fast switching frequency of 500 kHz demonstrated here is
suitable for encoding temporal modes of megahertz bandwidth
and is thus applicable in the optical schemes in Fig. 1. Similarly,
the low loss of the 200 m fiber allows for an efficient delay of
almost 1 μs, compatible with the temporal modes defined by the
switching. However, the 17% loss of the particular switch used
here, as well as the phase fluctuations of 4° standard deviation in
the fiber delay, leads to decoherence and results in some
limitations when used in quantum settings: For cluster state
generation from a temporal multiplexed source, as in Fig. 1a, or
when switching modes in and out of a cluster state, as in Fig. 1c,
the switching loss and phase fluctuation leads to limited
entanglement even when large amount of initial squeezing is
available. Yet, it does not accumulate through the cluster state as
the loss and phase fluctuation on each mode is local, and so it
does not limit the cluster state size. It will be more detrimental in
loop-based architectures, as in Fig. 1d, where a temporal mode
passes through the same switch and delay line multiple times, and
so the switch efficiency and delay phase fluctuations limit the
number of passes possible and thereby the computation depth.
High-efficient fast switching is demonstrated in free-space,43

while one can imagine more compact fiber-coupled switching
based on Mach-Zehnder interferometry. However, in either case
care must be taken not to compromise the high switching
frequency, as this leads to longer delay lines necessary and
thereby larger phase fluctuations. In work towards temporal

Fig. 4 Spectrum of squeezing. Noise spectrum of x1 ¼ ðxA þ xBÞ=
ffiffiffi
2

p
, p1 ¼ ðpA þ pBÞ=

ffiffiffi
2

p
, x2 ¼ ðpA � pBÞ=

ffiffiffi
2

p
and p2 ¼ ðxA � xBÞ=

ffiffiffi
2

p
relative to

shot noise. Solid points correspond to the average of Fourier transformed time traces in the measured datasets qA(θ) ± qB(−θ) for θ= 0° and
90°. Here, colored points are with pumped OPO, while gray points are the seed noise when blocking the pump. Hollow points are the result of
fitting a squeezing spectrum with phase fluctuations σ1 and σ2 in the direct and delay line, respectively. From the fit, the solid lines indicates
the expected squeezing when compensating for seed noise, while the dashed lines indicates the expected squeezing in case of no phase
fluctuation, and thus the best squeezing achievable with the given efficiency
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encoded optical quantum information processing, faster switching
is preferable as it minimizes the required delay lengths and
increases the computational speed. Thus, the ideal switch, besides
being efficient, is as fast as the detection or squeezing source
bandwidth.
In conclusion, using a single squeezing source with optical

switching and delay, we have successfully generated in-fiber EPR-
states with nearly 4 dB of two-mode squeezing, characterized by
fiber-coupled homodyne detection. Our set-up has great scal-
ability potentials: Adding an additional delay line, it is possible to
extend the set-up to generate one-dimensional cluster states,15,16

and by adding a multi-port switch and more delay lines, two-
dimensional cluster states17,18 can be generated from a single
squeezing source. Moreover, by inserting the switch inside a loop,
as in Fig. 1d, combined with dynamical control, various entangled
states can be generated and in principle universal quantum
computation can be realized. Since all switches and delay lines are
fiber components, the set-up remains very small and flexible
despite the increasing complexity in generating more complex
states. Moreover, since fiber propagation losses are extremely low
at the operating wavelength of 1550 nm, decoherence is not a big
issue despite the increasing number of fiber delays. The largest
decoherence source in the current set-up is the optical switch,
which introduces a loss of 17%. However, with future develop-
ments of the optical switch, we expect that the in-fiber temporal
multiplexing technique demonstrated here will play a significant
role in reducing the resources in future large-scale photonic
circuits for continuous variable quantum information processing,
including quantum computing,7 quantum teleportation,44 distrib-
uted sensing,45 and multi-partite quantum key distribution.

METHODS
Squeezing source
The experimental set-up is outlined in Fig. 2. As squeezing source, we use
an optical parametric oscillator (OPO) based on a periodically poled
potassium titanyl phosphate (PPKTP) crystal in a bowtie shaped cavity,
locked by a counter-propagating coherent beam. A pump beam at a
wavelength of 775 nm is used to drive the parametric process and thus
produce squeezed light at 1550 nm via type-0 phase matching. The OPO
has a bandwidth of γ/π= 16MHz. Stable phase locking at different stages
of the experiment is facilitated by an excitation of the squeezed state,
realized by injecting a bright seed beam into the OPO. To lock the phase of
the input pump beam to the deamplification point of the parametric

process, thereby producing amplitude squeezed states, we tap off and
detect 1% of the excited squeezed beam for feedback to a piezo-mounted
mirror in the pump beam. This, as well as all other feedback controls in the
experiment, is realized by the open-source software package PyRPL46

running on Red Pitaya boards that integrate an FPGA system-on-chip with
fast analog-to-digital and digital-to-analog converters.

In-fiber phase control
For locking the π/2 relative phase difference when interfering the two
beams of bright squeezed states in a balanced fiber coupler for EPR-state
generation, 1% is tapped off one of the fiber coupler output arms, and fed
back to a homemade fiber stretcher in the delay line based on ref. 47 Here,
using a piezoelectric actuator, a phase shift is induced by stretching the
fiber. For more details, see the supplementary information section 2. The
optical transmission efficiency is near unity, as it simply depends on the
fiber, which has negligible loss at 1550 nm wavelength. This allows high-
efficient in-fiber phase control, and the same design is used for phase
control of the local oscillators in the homodyne detection.

Fiber-coupled homodyne detection
To detect quadratures of the in-fiber generated EPR-state, we developed a
fiber-coupled homodyne detector (HD) where signal and local oscillator
(LO) is interfered in a balanced fiber coupler before detection. For
schematics and details, see supplementary information section 2. This has
the benefit of being mobile, and the visibility between signal and LO is
easily optimized to near unity due to the single mode nature of the
fiber used.
The fiber coupler is not exactly symmetric, but has a coupling ratio of

~48:52. To compensate for this, the HD is balanced by attenuation in the
fiber coupler output arm of stronger LO by inducing bending losses. With
an asymmetry of 4% in the fiber coupler, after balancing this leads to
4% loss.
Finally, to couple and focus light from the fiber onto the HD photo

diodes of 100 μm diameter (Laser Components Nordic AB), anti-reflective
coated graded-index (GRIN) lens are used in front of the diode, leading to a
free-space waist diameter of 13 μm at 5mm from the GRIN lens facet. The
quantum efficiency is measured to be 97%, and so together with 4% loss
from balancing and 99% visibility, the total HD efficiency achieved is 91%.

Overall efficiency
With the OPO escape efficiency of 95%, and 1% tapping for gain lock, the
efficiency in free-space before fiber coupling is 94%. In fiber, including 97%
fiber coupling efficiency, 17% loss in the fiber switch and 1% tapping for
phase control, the efficiency is 80%. Finally, with 91% detection efficiency,

Fig. 5 Temporal filtering by data processing. (left) Temporal histogram of a dataset with 16,000 time traces associated with amplitude
quadratures of a two-mode squeezed state at Alice (red) and Bob (blue) compensated for slope variations and decaying detector response.
The solid lines show the dataset average time trace indicating the remaining repeating oscillations from the switching process. (right)
Temporal histogram of the dataset in (left) compensated for any systematic and repeatable noise responses from the switching process. Here,
the solid lines indicate a single pair of synchronized time traces (at Alice and Bob) in which quadrature anti-correlations are visible (note the
inverted axis on Bob)
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the overall efficiency becomes

η ¼ 0:94 � 0:80 � 0:91 ¼ 68% : (7)

Temporal data processing
To recover two-mode squeezing from the acquired time traces affected by
a frequency-dependent detector response (leading to a negative slope),
spurious interference (leading to slope variations) and an oscillating
response from the switch, we use the statistic of 16,000 time traces in a
dataset synchronized with the switching process. To compensate for the
negative and varying slope of each time trace, linear regression lines (as
the dashed lines in the inset of Fig. 2) are subtracted from each individual
trace of the dataset. The result is shown in Fig. 5 (left). Here, the repeatable
oscillating noise is visible, and compensated for by subtracting the average
time trace of the dataset from every single time trace. The final processed
dataset is seen in Fig. 5(right) with a constant temporal histogram and a
single time trace at Alice and Bob showing anti-correlations as in ref. 48 For
detailed discussion on the data processing, see supplementary information
section 2.1.

DATA AVAILABILITY
Experimental data and analysis code is available on request.
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