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Two and three-uniform states from irredundant orthogonal
arrays
Shan-Qi Pang 1, Xiao Zhang1, Xiao Lin1 and Qing-Juan Zhang1

A pure quantum state of N subsystems, each with d levels, is said to be k-uniform if all of its reductions to k qudits are maximally
mixed. Only the uniform states obtained from orthogonal arrays (OAs) are considered throughout this work. The Hamming
distances of OAs are specially applied to the theory of quantum information. By using difference schemes and orthogonal
partitions, we construct a series of infinite classes of irredundant orthogonal arrays (IrOAs), then answer the open questions of
whether there exist 3-uniform states of N qubits and 2-uniform states of N qutrits, and whether 3-uniform states of qudits (d > 2) for
high values of N can be explicitly constructed. In fact, we obtain 3-uniform states for an arbitrary number of N ≥ 8 qubits and 2-
uniform states of N qutrits for every N ≥ 4. Additionally, we provide explicit constructions of the 3-uniform states of N ≥ 8 qutrits,
N= 6 and N ≥ 8 ququarts and ququints, N ≥ 6 qudits having d levels for any prime power d > 6, and N= 8 and N ≥ 12 qudits having
d levels for non-prime-power d ≥ 6. Moreover, we describe an explicit construction scheme for the 2-uniform states of qudits having
d ≥ 4 levels. The proofs of existence of the 2-uniform states of N ≥ 6 qubits are simplified by using a class of OAs. Two special 3-
uniform states are obtained from IrOA(32, 10, 2, 3) and IrOA(32, 11, 2, 3) using the interaction column property of OAs.
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INTRODUCTION
Multi-particle entanglement is an essential component in describing
the possible quantum advantages available to metrology or
information processing. The identification of multipartite quantum
states with the strongest possible quantum correlations is a crucial
question in quantum information theory.1 An important open issue
concerns the construction of genuinely multipartite entangled
states,2 as these have been widely applied to quantum error-
correcting codes (QECCs),3,4 teleportation,5–8 key distribution,9

dense coding, and quantum computation.10 For example, in the
past few years, significant development has been made in the new
area of quantum machine learning, where quantum information
benefits from modern information-processing technologies.11

Quantum entanglement as a resource has been used to experi-
mentally demonstrate various modern quantum technologies.
A pure quantum state of N subsystems with d levels is said to be

k-uniform if all of its reductions to k qudits are maximally mixed.2

An orthogonal array OAðr;N; dn11 dn22 � � � dnll ; kÞ is an r × N matrix,
having ni columns with di levels, i= 1, 2, …, l, l is an integer,
N ¼ Pl

i¼1 ni , and di ≠ dj for i ≠ j, with the property that, in any r × k
submatrix, all possible combinations of k symbols appear equally
often as a row. The orthogonal array is called a mixed orthogonal
array (MOA) if l ≥ 2. Otherwise, the array is called symmetrical.
Additionally, the following Rao bounds hold in OA(r, N, d, k):
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OAs that achieve these bounds are called tight or saturated.12

An OA(r, N, d, k) is said to be an irredundant orthogonal array
(IrOA) if, in any r × (N−k ) subarray, all of its rows are different.2 A
link between an IrOA and a k-uniform state was established by
Goyeneche et al.,2 i.e., every column and every row of the array
correspond to a particular qudit and a linear term of the state,
respectively. For simplicity, the normalization factors are omitted
from this paper. We summarize the link as follows:

Connection 1.1.

2 If L ¼
s11 s12 � � � s1N
s21 s22 � � � s2N
..
. ..
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.

sr1 sr2 � � � srN
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CCCA is an IrOA(r, N, d, k), then the superposition of r product

states, jΦi ¼ js11s12 ¼ s1Ni þ js21s22 ¼ s2Ni þ � � � þ jsr1sr2 ¼ srNi is a k-uniform state.

Many efforts have attempted to find and identify k-uniform
states.2,4 Under the generalizations of the Meyer–Wallach measure
defined in,4 k-uniform states have the largest average entangle-
ment between blocks of qudits and the remaining elements.
There has also been some progress in the construction and
characterization of k-uniform states.1,2,11,13–18 For example, Goye-
neche et al.2 constructed a 3-uniform state of six qubits and a 2-
uniform state of five qubits by the judicial insertion of some minus
signs. The nonexistence of the 3-uniform states of seven qubits is
proved in.14 Using the above connection, Goyeneche et al.2

constructed 2-uniform states for an arbitrary number of N ≥ 6
qubits using known Hadamard matrices. Yu et al.19 constructed a
3-uniform state of eleven qubits via OAs. However, as stated in,2

there are many open issues in multipartite quantum systems.
Huber et al.14 stated that it would be of great interest to settle the
problem of whether N-qubit states exist in which all k-body
reduced density are maximally mixed for k < N
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The aim of the present study was to solve the open issues raised
in2 and the interesting question stated in14 using IrOAs, the states
related to which are useful and necessary in quantum error
correction. The different uniformity of multipartite entangled
states reflects different features. One motivation for searching for
multipartite states of a higher uniformity is that k-uniform states of
qudits offer advantages over k′-uniform states for any 0 < k′ < k.
They are good for increasing the order of the density coding
information rate from dk′ to dk.20 It is interesting that these states
form a natural extension of N-qudit Greenberger-Horne-Zeilinger
states, which are 1-uniform. Moreover, a k-uniform state is also
k′-uniform. As is often the case,21–23 combinatorics can be useful
to quantum information theory, and OAs are fundamental
ingredients in the construction of other useful combinatorial
objects.12 The Hamming distance, difference schemes, and
orthogonal partitions have been applied to many aspects of
constructing OAs.24–27 Recently, many new methods of construct-
ing OAs of strength k, especially mixed OAs, have been presented,
and many new classes of OAs have been obtained.28–33 It is these
new developments in OAs that suggest the possibility of
constructing infinitely many new k-uniform states from IrOAs.
In this work, the Hamming distance and minimal distance (MD)

of OAs are applied to the theory of quantum information. By using
difference schemes and orthogonal partitions, we construct
several infinite series of IrOAs, then consider the open issue in2

of whether there exist 3-uniform states of N qubits and 2-uniform
states of N qutrits, and whether 3-uniform states of qudits having
d > 2 levels for high values of N can be explicitly constructed. In
fact, we present several series of 3-uniform states for an arbitrary
number of N ≥ 8 qubits and 2-uniform states for an arbitrary
number of N ≥ 4 qutrits. Additionally, we provide explicit
constructions of 3-uniform states of N ≥ 8 qutrits, N= 6 and N ≥
8 ququarts and ququints, N ≥ 6 qudits having d levels for any
prime power d > 6, and N= 8 and N ≥ 12 qudits having d levels for
non-prime-power d ≥ 6. Moreover, we explicitly construct 2-
uniform states of N ≥ 4 qudits (d ∉ {2, 6, 10}), N ≥ 5 qudits (d=
6), and N= 4 and N ≥ 6 qudits (d= 10). The proofs of existence of
2-uniform states of N ≥ 6 qubits are simplified by using a class of
OAs. Furthermore, as it has been proved that IrOA(r, 7, 2, 3), IrOA(r,
7, 3, 3), IrOA(r, 6, 3, 3), IrOA(r, 4, 6, 2), IrOA(r, 6, 2, 3), IrOA(r, 4, 2, 2),
and IrOA(r, 5, 2, 2) do not exist, the corresponding uniform states
can not be obtained. However, two special 3-uniform states are
obtained from IrOA(32, 10, 2, 3) and IrOA(32, 11, 2, 3) using the
interaction column property of OAs.
The following notation, concepts, and lemmas are used in

this paper.
Let AT be the transposition of matrix A and (d)= (0, 1, …, d −

1)T. Let 0r and 1r denote the r × 1 vectors of 0s and 1s, respectively.
If A= (aij)m×n and B = (bij)u×v with elements from a Galois field
with binary operations (+ and ⋅), the Kronecker product A ⊗ B and
the Kronecker sum A ⊕ B are respectively defined as A ⊗ B= (aij ⋅
B)mu×nv and A ⊕ B= (aij+ B)mu×nv, where aij+ B represents the u ×
v matrix with entries aij+ brs (1 ≤ r ≤ u, 1 ≤ s ≤ v). A matrix A can
often be identified with a set of row vectors if necessary. Let xd e
denote the least integer not less than x, and let A be an additive
group of d elements.

Definition 1.1. 27 Suppose that a, b, c are three columns in an OA(r,
N, 2, 2). Then, c is called the interaction column between a and b if
c≡ a+ b or c≡ 1r+ a+ b (mod 2).

Definition 1.2. 12 Let Sl= {(v1, …, vl)|vi ∈ S, i= 1, 2, …, l}. The
Hamming distance HD(u, v) between two vectors u= (u1, …, ul), v
= (v1, …, vl) ∈ Sl is defined as the number of positions in which they
differ. The minimal distance of a matrix A, written MD(A), is defined
to be the minimal Hamming distance between its distinct rows. HD
(A) is used to represent all the values of the Hamming distances

between two distinct rows of A. The matrix A is said to have constant
Hamming distance if HD(A) is constant for any two distinct rows.

Definition 1.3. 12 An r × c matrix D with elements from A is called a
difference scheme if it has the property that, for all i and j with 1 ≤ i,
j ≤ c, i ≠ j, among the vector differences between the ith and jth
columns, every element of A appears equally often. Such a matrix is
denoted as D(r, c, d).

For instance, if Br is an OA(r, c−1, 2, 2), then [0r, Br] is D(r, c, 2).
Ak , k ≥ 1, denotes the additive group of order dk consisting of all

k-tuples of entries from A with the usual vector addition as the
binary operation. Let Ak

0 ¼ fðx1; x2; ¼ ; xkÞ : x1 ¼ � � � ¼ xk 2 Ag.
Then, Ak

0 is a subgroup of Ak of order d, and its cosets will be
denoted by Ak

i , i= 1, …, dk−1−1.

Definition 1.4. 12 An r × c matrix D based on A is called a difference
scheme of strength k if, for every r × k submatrix, each set Ak

i , i= 0,
1, …, dk−1−1, is represented equally often when the rows of the
submatrix are viewed as elements of Ak . Such a matrix is denoted by
Dk(r, c, d).

For k= 2, this definition is equivalent to Definition 1.3

Definition 1.5. 32 Let A be an OAðr;N; dn11 dn22 � � � dnll ; kÞ. A set {A1,
A2, …, Au} of orthogonal arrays OA r

u ;N; d
n1
1 dn22 � � � dnll ; k1

� �
(k1 ≥ 0) is

defined to be an orthogonal partition of strength k1 of A if
Su

i¼1 Ai ¼
A and Ai \ Aj ¼ ; for i ≠ j. In particular, when k1= 0, Ai can be
considered as an OA r

u ;N; d
n1
1 dn22 � � � dnll ; 0

� �
for each 1 ≤ i ≤ u.

Lemma 1.1. 12 An OA(r, N, 2, 2u) exists for u ≥ 1 if and only if an OA
(r, N+ 1, 2, 2u+ 1) exists.

Lemma 1.2. 27,34 A saturated OA(r, N, d, 2) has a constant
Hamming distance r

d.

Lemma 1.3. (1) 12 If d is a prime and the integers n ≥m ≥ 1, then a
difference scheme D(dn, dn, dm) exists. (2) 35 If d is a prime power,
then a difference scheme D3(d

2, d, d) exists. (3) 35 If d ≥ 2, then a
difference scheme D3(d

2, 4, d) exists. (4) 36 If d 6� 2 ðmod4Þ, then a
difference scheme Dk(d

k−1, k+ 1, d) exists. In particular, D(d, 3, d)
exists.

Lemma 1.4. 12 (1) Let n ≥ 2. Then an OA dn; d
n�1
d�1 ; d; 2

� �
exists for a

prime power d. (2) If d is a prime power and k < d, there is an OA(dk,
d+ 1, d, k).

Lemma 1.5. 30 If Br is an OA(r, N, d, 2) and D(r, c, d) is a difference
scheme, then [Br ⊕ 0d, D(r, c, d) ⊕ (d)] is an OA(rd, N+ c, d, 2).
Especially, for any integer n ≥ 2 and a prime power d, there exists an

OA dnþ1; d
nþ1�1
d�1 ; d; 2

� 	
¼ ½Bdn � 0d;Dðdn; dn; dÞ � ðdÞ� where

Bdn ¼ OA dn; d
n�1
d�1 ; d; 2

� �
.

For simplicity, we introduce further notation:

ðA½1;2;¼ ;u�; rÞ ¼
A1 � 1r
A2 � 1r

..

.

Au � 1r

0
BBB@

1
CCCA and ðr;A½1;2;¼ ;u�Þ ¼

1r � A1

1r � A2

..

.

1r � Au

0
BBB@

1
CCCA for

positive integers u and r.

Lemma 1.6. 32 Let {A1, A2, …, Au} be an orthogonal partition of
strength k1 of OA(r′, N′, d, k′), and {B1, B2, …, Bv} be an orthogonal
partition of strength k2 of OA(r″, N″, d, k″). Let h= l.c.m.{u, v}. Then,

the array M ¼ 1h
u
� A½1;2;¼ ;u�; r

00
v

� �
; 1h

v
� r0

u ; B½1;2;¼ ;v�
� �� 	

is an OA
r0r00h
uv ;N0 þ N00; d; k

� �
, where k ¼ k1 þ k2 þ 1 	 minfk0; k00g.
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Lemma 1.7. 32 Let A and B be orthogonal arrays with d rows of
strength 1. Then C= (A ⊗ 1d, 1d ⊗ B) is an orthogonal array of
strength 1 and there is an orthogonal partition {C1, C2, …, Cd} of C of
strength 1.

Lemma 1.8. If d is a prime power, there exists a difference scheme D
(2d, 2d, d) such that D(2d, 2d, d)T= D(2d, 2d, d).

Lemma 1.9. 37 If the transposition of a difference scheme D(λd, λd,
d) is still a difference scheme, then HD(D(λd, λd, d))= λd−λ, and the
OA(λd2, λd, d, 2)= D(λd, λd, d) ⊕ (d) has two Hamming distances λd
and λd−λ. Especially, if D(2d, 2d, d)T = D(2d, 2d, d), the OA(2d2, 2d,
d, 2)= D(2d, 2d, d) ⊕ (d) has two Hamming distances 2d and 2d−2.

Lemma 1.10. 38 For any positive integer d ≥ 2, the following
properties hold: (1) If d ∉ {2, 6}, then an OA(d2, 4, d, 2) exists. (2) If d
∉ {2, 3, 6, 10}, then an OA(d2, 5, d, 2) exists. (3) If d ∉ {2, 3, 4, 6, 10,
14, 18, 22}, then an OA(d2, 6, d, 2) exists. (4) If d ∉ {2, 3, 4, 5, 6, 10,
14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60, 62}= E, then an OA(d2, 7, d,
2) exists. (5) If d =2 E ∪ f12; 21; 28; 33; 35; 39; 42; 44; 51; 52; 54;
58; 66; 68; 74g, then an OA(d2, 8, d, 2) exists.

Lemma 1.11. 2 If a k-uniform state of N qudits exists, then k 	 N
2.

Lemma 1.12. (1) An OA(r, N, d, k) is irredundant if and only if its
minimal distance is greater than k. An IrOA(r, N, d, k) is an IrOA(r, N′,
d, k′) for N−k+ k′ ≤ N′ ≤ N with 1 ≤ k′ < k. (2) An OA(r, 2k, d, k) is
irredundant if and only if r= dk. (3) An OA(dk+1, 2k+ 1, d, k) is
irredundant if and only if it is of strength k+ 1. (4) If an OA(r, 2k+ 1,
d, k) is irredundant, then r ≤ dk+1.

Lemma 1.13. Suppose Br is an OA(r, r− 1, 2, 2). Then L= (2) ⊕ [0r,
Br] is an OA(2r, r, 2, 3) with minimal distance r

2.

Lemma 1.14. An OA(r, N, d, k) with minimal distance w ≥ k+ 1
implies that an IrOA(r, N′, d, k) exists for N−w+ k+ 1 ≤ N′ ≤ N.

Lemma 1.15. Let {A1, A2, …, Au} be an orthogonal partition of
strength 1 of A=OA(r′, N′, d, k′), and {B1, B2, …, Bv} be an
orthogonal partition of strength 1 of B=OA(r″, N″, d, k″) for r′= du,
r″= dv, u ≤ v and k′,k″ ≥ 2. Suppose MD(A)=w1 and MD(B)=w2.

Let h= l.c.m.{u, v}. If k′, k″ ≥ 3, the matrix M ¼
1h

u
� ðA½1;2;¼ ;u�; dÞ; 1h

v
� ðd; B½1;2;¼ ;v�Þ

� 	
is an OA(d2h, N′+ N″, d,

3). Otherwise, the matrix M is an OA(d2h, N′+ N″, d, 2), and

MDðMÞ �
minfw1 þ w2; N0;N00g; if u ¼ v;

minfN0;w2g; if ujv; u < v;

minfw1;w2g; otherwise:

8><
>:

Lemma 1.16. The minimal distance of an OA(dk, N, d, k) is N− k+ 1
for d ≥ 2 and k ≥ 1.

Lemma 1.17. For any integer d ≥ 2,. (1) If d ∉ {2, 6}, then an IrOA(d2,
4, d, 2) exists. (2) If d ∉ {2, 3, 6, 10}, then an IrOA(d2, N, d, 2) exists for
N= 4, 5. (3) If d ∉ {2, 3, 4, 6, 10, 14, 18, 22}, then an IrOA(d2, N, d, 2)
exists for 4 ≤ N ≤ 6. (4) If d ∉ {2, 3, 4, 5, 6, 10, 14, 15, 18, 20, 22, 26,
30, 34, 38, 46, 60, 62}= E, then an IrOA(d2, N, d, 2) exists for 4 ≤ N ≤
7. (5) If d =2 E ∪ f12; 21; 28; 33; 35; 39; 42; 44; 51; 52; 54; 58; 66;
68; 74g, then an IrOA(d2, N, d, 2) exists for 4 ≤ N ≤ 8.

Lemma 1.18. Let {A1, A2, …, Au} be an orthogonal partition of
strength 1 of OA(r′, N′, d, k′), and {B1, B2, …, Bu} be an orthogonal
partition of strength 0 of OA(u, N″, d, k″) for r′= du and k′ ≥ 2, k″ ≥
2. Suppose the minimal distances of the two arrays OA(r′, N′, d, k′)
and OA(u, N″, d, k″) are w1 and w2, respectively. Then the matrix M
= ((A[1,2,…,u], 1), (d, B[1,2,…,u])) is an OA(r′, N′+ N″, d, 2) and its
minimal distance satisfies w ≥min{w1+w2, N′}.

These lemmas will form the backbone of our main theorems
and results. Especially, Lemmas 1.6, 1.15, and 1.18 play an essential
role in finding infinite classes of uniform states. In the ‘Discussion’
section, we discuss the main results and some uniform states that
could have fewer terms or qudits. In the “Methods” section, we
describe the central idea of the construction method. We present
some examples of 2 and 3-uniform states, summarize the
constructed IrOAs, and present the proofs of some lemmas in
the appendix (see Supplementary Information for a detailed
description of the examples, IrOAs and proofs).

RESULTS
The main results are summarized in Table 1.
Very interestingly, not only can 2 and 3-uniform states of qubits

be constructed using IrOAs, but the states of high-dimensional
quantum systems (qudits) can also be obtained. We now address
the open issue proposed by Goyeneche et al.2. There is a
reciprocal link between k-uniform states of N qudits and ((N, 1, k+
1))d QECCs.3 The newly constructed uniform states might be
applied in quantum information protocols, quantum secret
sharing,39 and holographic codes.
Using difference schemes and orthogonal partitions, we

propose a recursive construction method for OAs. By exploring
the Hamming distances of OAs, especially newly constructed OAs,
we explicitly construct a finite set of IrOA(r, N, d, k) for n ≤ N ≤m.
The recursive nature of the method allows us to generate infinite
classes of IrOAs (see Table 1). Relying on Connection 1.1, we prove
the existence of the uniform states in Table 1. Some examples are
presented.
First, we describe the construction of 3-uniform states

from IrOAs.

Table 1. Existence of k-uniform states of N qudits (d ≥ 2) and IrOA(r, N, d, k)

k d k-uniform states of N qudits IrOA(r, N, d, k) Ref.

k= 3 d= 2 N ≥ 8 N= 8 and N ≥ 10 Th. 2.1 N= 9 (Supplementary Ex. 4)

d= 3 N ≥ 8 N ≥ 8 Th. 2.4

d= 4, 5 N= 6 and N ≥ 8 N= 6 and N ≥ 8 Th. 2.6

d > 6 is a prime power N ≥ 6 N ≥ 6 Th. 2.7

d ≥ 6 is not a prime power N= 8 and N ≥ 12 N= 8 and N ≥ 12 Th. 2.8

k= 2 d= 2 N ≥ 5 N ≥ 6 Th. 2.11

d= 6 N ≥ 5 N ≥ 5 Th. 2.14

d= 10 N= 4 and N ≥ 6 N= 4 and N ≥ 6 Th. 2.16

d ≥ 2, d∉ {2, 6, 10} N ≥ 4 N ≥ 4 Ths. 2.12, 2.13, 2.15 & 2.17

S.-Q. Pang et al.
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Construction of 3-uniform states of N ≥ 8 qubits
By using the minimal distance and other properties of OAs, we

can obtain an IrOA(r, N, 2, 3) and 3-uniform states of N qubits for
N= 8 and N ≥ 10. We also find a 3-uniform state of 9 qubits by
adding some unimodular complex numbers in Appendix A (see
Supplementary Example 4). Hence, we have 3-uniform states of N
qubits for every N ≥ 8.

Theorem 2.1. There exists an IrOA(r, N, 2, 3) for N= 8 and every N ≥
10 and 3-uniform states of N qubits for every N ≥ 8. Proof. Suppose
that n ≥ 3. It follows from Lemma 1.4 and Lemma 1.13 that an OA
(2n+1, 2n, 2, 3) exists. From Lemmas 1.13 and 1.14 we can construct
an IrOA(2n+1, Nn, 2, 3) for 2

n−1+ 4 ≤ Nn ≤ 2n. Obviously, 2n+ 4 ≤
Nn+ 1 ≤ 2n+ 1. Therefore we can obtain N3= 8, 12 ≤ N4 ≤ 16, 20 ≤
N5 ≤ 32, etc. On the other hand, starting from the OA(12, 11, 2, 2)
and using Lemma 1.5, we can obtain an OA(2n−1 × 3, 2n−1 × 3−1,
2, 2) for n ≥ 3. Then an OA(2n × 3, 2n−1 × 3, 2, 3) exists with the
form as in Lemma 1.13. From Lemmas 1.13 and 1.14 we can also
construct an IrOAð2n ´ 3;N0

n; 2; 3Þ for 2n�2 ´ 3þ 4 	 N0
n 	 2n�1 ´ 3.

Thus we can respectively obtain 10 	 N0
3 	 12, 16 	 N0

4 	 24,
28 	 N0

5 	 48, and so on. And it can be easily seen that 2n−2 × 3+
4 ≤ 2n and 2n+ 4 < 2n−1 × 3 when n ≥ 4. Therefore, we can obtain
an IrOA(r, N, 2, 3) for N = 8 and N ≥ 10. Every row of the IrOA(r, N,
2, 3) is put in kets, summed, and normalized to produce the
desired 3-uniform states of N qubits for N= 8 and N ≥ 10. The 3-
uniform state of N= 9 qubits will be presented in Appendix A (see
Supplementary Example 4).

This theorem suggests there is an infinite class of entangled
states of N-party systems such that, tracing out any N−3 sub-
systems, the remaining three subsystems have associated a
maximally mixed state. Therefore, this plays an important role in
completely settling the question on the existence of 3-uniform
states of N qubits. It is also of vital importance to generalize qubits
to high-dimensional quantum systems (qudits) because of the
many advantages they offer over qubit-based applications.
Construction of 3-uniform states of N ≥ 8 qutrits (d= 3)
By studying the minimal distance of the symmetrical OAs

constructed from the orthogonal partition methods in,32 we can
obtain an IrOA(r, N, 3, 3) and 3-uniform states of N qutrits for every
N ≥ 12. By constructing OA(81, 10, 3, 3) and OA(243, 11, 3, 3) and
computing their minimal distances, we have an IrOA(r, N, 3, 3) for
N= 8, 9, 10, 11. Therefore, an IrOA(r, N, 3, 3) and 3-uniform states
of N qutrits can be obtained for every N ≥ 8.

Theorem 2.2. There exists an IrOA(3n, Nn, 3, 3) and 3-uniform states
of Nn qutrits for 9 ⋅ 2n−5+ 4 ≤ Nn ≤ 9 ⋅ 2n−4 with n ≥ 5. Proof. First by
using mathematical induction, we prove that there exists an OA
(3n, 9 ⋅ 2n−4, 3, 3) having minimal distance 9 ⋅ 2n−5 and an
orthogonal partition fB1; B2; ¼ ; B3n�1g of strength 1 for any
integer n ≥ 5. When n= 5, we can obtain an OA(81, 9, 3, 3)=
D3(27, 9, 3) ⊕ (3) with minimal distance 5 from the following
difference scheme:

D3ð27; 9; 3Þ ¼

p1

p2

..

.

p27

0
BBBB@

1
CCCCA

¼

000000000000000000000000000

012201120201120012120012201

021210102102021210210102021

012201120012201120012201120

012012012120120120201201201

000222111111000222222111000

000000000111111111222222222

000111222000111222000111222

012012012012012012012012012

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

T

:

Since Ai= Ρi ⊕ (3) is an OA of strength 1 for each 1 ≤ i ≤ 27, {A1,
A2, …, A27} is an orthogonal partition of strength 1 of the OA(81, 9,

3, 3). By Lemma 1.6, we can obtain an

OAð243; 18; 3; 3Þ ¼ ððA½1;2;¼ ;27�; 3Þ; ð3;A½1;2;¼ ;27�ÞÞ:
It follows from Lemma 1.15 that MD(OA(243, 18, 3, 3))= 9. From
Lemma 1.7, there exists an orthogonal partition {Ai1, Ai2, Ai3} of
strength 1 of OA (Ai ⊗ 13, 13 ⊗ Ai) for each 1 ≤ i ≤ 27. Then there
also exists an orthogonal partition {B1, B2, …, B81} of strength 1 of
the OA(243, 18, 3, 3). Assume that when n=m there exists an OA
(3m, 9 ⋅ 2m−4, 3, 3) with minimal distance 9 ⋅ 2m−5 and an
orthogonal partition fC1; C2; ¼ ; C3m�1g of strength 1. When n=
m+ 1, by induction and Lemmas 1.6 and 1.15, we can obtain an

OAð3mþ1; 9 � 2m�3; 3; 3Þ ¼ ððC½1;2;¼ ;3m�1�; 3Þ; ð3; C½1;2;¼ ;3m�1�ÞÞ
whose minimal distance is 9 ⋅ 2m−4. From Lemma 1.7, an
orthogonal partition {Ci1, Ci2, Ci3} of strength 1 of OA (Ci ⊗ 13,
13 ⊗ Ci) exists for 1 ≤ i ≤ 3m−1, so does an orthogonal partition
fD1;D2; ¼ ;D3mg of strength 1 of the OA(3m+1, 9 ⋅ 2m−3, 3, 3).
From Lemma 1.14, we can obtain an IrOA(3n, Nn, 3, 3) for 9 ⋅ 2n−5

+ 4 ≤ Nn ≤ 9 ⋅ 2n−4 with n ≥ 5. The desired 3-uniform states follow
from Connection 1.1.

For example, using Theorem 2.2 we can obtain an IrOA(243, N,
3, 3) for 13 ≤ N ≤ 18 from the OA(243, 18, 3, 3), an IrOA(729, N, 3, 3)
for 22 ≤ N ≤ 36 from an OA(729, 36, 3, 3) and an IrOA(2187, N, 3, 3)
for 40 ≤ N ≤ 72 from an OA(2187, 72, 3, 3), etc.

Theorem 2.3. There exists an IrOAð3n;N0
n; 3; 3Þ and 3-uniform states

of N0
n qutrits for 9 � 2n�6 þ 8 	 N0

n 	 9 � 2n�5 þ 4 with n ≥ 6. Proof.
We can obtain an OA(27, 4, 3, 3)= D3(9, 4, 3) ⊕ (3) with an
orthogonal partition {A1, A2, …, A9} of strength 1. From Theorem
2.2, there exists an IrOA(3n−1, Nn−1, 3, 3) for 9 ⋅ 2n−6+ 4 ≤ Nn−1 ≤
9 ⋅ 2n−5 and its an orthogonal partition fB1; B2; ¼ ; B3n�2g of
strength 1 for n ≥ 6. As 9 < 3n−2 and 9|3n−2, from Lemma 1.6 we
can obtain an matrix M ¼ ð13n�4 � ðA½1;2;¼ ;9�; 3Þ; ð3; B½1;2;¼ ;3n�2�ÞÞ:
It is an OAð3n;N0

n; 3; 3Þ since Nn′= Nn−1+ 4. By the case of u|v, u <
v in Lemma 1.15, we have MDðOAð3n;N0

n; 3; 3ÞÞ ≥ min {4, MD(IrOA
(3n−1, Nn−1, 3, 3))}= 4. Hence it is an IrOAð3n;N0

n; 3; 3Þ for 9 ⋅ 2n−6

+ 8 ≤ Nn′ ≤ 9 ⋅ 2n−5+ 4.

From Theorem 2.3, we can obtain an IrOA(729, N, 3, 3) for 17 ≤
N ≤ 22. We can also obtain an IrOA(2187, N, 3, 3) for 26 ≤ N ≤
40, etc.

Theorem 2.4. There exists an IrOA(r, N, 3, 3) and 3-uniform states of
N qutrits for every N ≥ 8. Proof. By Theorems 2.2 and 2.3, we have
an IrOA(3n, Nn, 3, 3) for 9 ⋅ 2n−6+ 8 ≤ Nn ≤ 9 ⋅ 2n−4 with n ≥ 6. Since
9 ⋅ 2n−5+ 8 ≤ Nn+1 ≤ 9 ⋅ 2n−3 and 9 ⋅ 2n−5+ 8 < 9 ⋅ 2n−4 for n ≥ 6,
we can obtain an IrOA(r, N, 3, 3) for N ≥ 17. Taking n= 5 in
Theorem 2.2, we can have an IrOA(35, N, 3, 3) for 13 ≤ N ≤ 18. By
removing a column from the OA(81, 9, 3, 3) in Theorem 2.2, we
can obtain an OA(81, 8, 3, 3) with minimal distance w2 ≥ 4. By
using Lemmas 1.6 and 1.7 and the case of u|v, u < v in Lemma 1.15,
from the two arrays OA(27, 4, 3, 3) and OA(81, 8, 3, 3) we can
construct an OA(243, 12, 3, 3) with minimal distance w ≥min{4,
w2}= 4. So we can obtain an IrOA(243, 12, 3, 3). Taking

C ¼

10000111111
01011011011
00111111111
01000111222
10012012012

0
BBBB@

1
CCCCA

5 ´ 11

, by the method in40 we have an OA

(243, 11, 3, 3) with minimal distance 4. So we can get an IrOA(243,
11, 3, 3). From the construction of an OA(d4, d2+ 1, d, 3) in,12 we
obtain an OA(81, 10, 3, 3) whose minimal distance is 6. So we can
obtain an IrOA(81, N, 3, 3) for N= 8, 9, 10. The desired conclusion
follows from Connection 1.1.
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Interestingly, this theorem explicitly constructs a class of 3-
uniform states that do not contain any terms with complex phase
weights. And every subsystem of N′ ≤ 3 qutrits contains the same
physical information. Orthogonal partitions of OAs play a key role
in the proof of this theorem. Starting from a judiciously selected
difference scheme and using a similar method, we obtain a
general result.

Theorem 2.5. If there exists a Dk(r, c, d) with c ≥ k+ 1 for k ≥ 2 such
that the minimal distance of L=OA(rd, c, d, k)= Dk(r, c, d) ⊕ (d) is
at least c

2


 �
, then we have an IrOA(m, N, d, 3) and 3-uniform states

of N qudits for c+ 4 ≤ N ≤ 2c and every N ≥ c+ 8, and we also have
an IrOA(m, N, d, 2) and 2-uniform states of N qudits for c+ 3 ≤ N ≤
2c and every N ≥ c+ 6. Proof. When k ≥ 3, by using Lemmas 1.6
and 1.7 and the case of u= v in Lemma 1.15, starting from L we
can recursively construct a class of OAs OA(rdn+1, 2nc, d, 3) with
minimal distance 2n−1c for any integer n ≥ 1. Then we can obtain
an IrOAðrdnþ1;N0

n; d; 3Þ for 2n�1c þ 4 	 N0
n 	 2nc. When n= 1, we

have IrOA(rd2, N, d, 3) for c+ 4 ≤ N ≤ 2c. By using Lemmas 1.6 and
1.7 and the case of u|v, u < v in Lemma 1.15, from the arrays OA(rd,
4, d, k)= Dk(r, 4, d)⊕ (d) and IrOAðrdnþ1;N0

n; d; 3Þ we can construct
OAðrdnþ2;N00

nþ1; d; 3Þ for 2n�1c þ 8 	 N00
nþ1 	 2nc þ 4 with

MDðOAðrdnþ2;N00
nþ1; d; 3ÞÞ � minf4;MDðIrOAðrdnþ1;N0

n; d; 3ÞÞg ¼ 4
since N00

nþ1 ¼ N0
n þ 4. They are IrOAs. Hence an OAðrdnþ1;N00

n ; d; 3Þ
exists for 2n�2c þ 8 	 N00

n 	 2n�1c þ 4 with n ≥ 2. Then an OA(rdn
+1, Nn, d, 3) exists for 2

n−2c+ 8 ≤ Nn ≤ 2nc with n ≥ 2. Since 2n−1c
+ 8 ≤ Nn+ 1 ≤ 2n+1c and 2nc ≥ 2n−1c+ 8, we can obtain an IrOA(m,
N, d, 3) for any integer N ≥ c+ 8. Similarly, when k ≥ 2, we also
have an IrOA(m, N, d, 2) and 2-uniform states of N qudits for c+
3 ≤ N ≤ 2c every N ≥ c+ 6.

Based on Theorem 2.5, we further consider the cases of qudits
(d ≥ 4).
Construction of 3-uniform states of N= 6 or N ≥ 8 ququarts and

ququints (d= 4, 5)
By analyzing the minimal distances of the symmetrical OAs

constructed from Theorem 2.5, we obtain two infinite classes of
IrOA(r, N, 4, 3) and IrOA(r, N, 5, 3) and 3-uniform states of N
ququarts and ququints for N= 6 and every N ≥ 8.

Theorem 2.6. There exists an IrOA(r, N, d, 3) for d= 4, 5 and
3-uniform states of N ququarts and ququints for N= 6 and every N ≥
8. Proof. Consider the case d= 4. By Lemma 1.16 we can obtain
the OA(64, 6, 4, 3)= D3(16, 6, 4) ⊕ (4) with minimal distance 4,
where

D3ð16; 6; 4Þ ¼

0000000000000000

0123230132101032

0231132020133102

0231201331021320

0000111122223333

0123012301230123

0
BBBBBBBB@

1
CCCCCCCCA

T

:

Then an IrOA(64, N, 4, 3) exists for N= 6. It follows from Theorem
2.5 that starting from the D3(16, 6, 4) we have an IrOA(r, N, 4, 3) for
10 ≤ N ≤ 12 and every N ≥ 14. Now we prove the existence of an
IrOA(r, N, 4, 3) for N= 8, 9, 13. From the OA(64, 6, 4, 3) we can
easily have two arrays OA(64, 5, 4, 3) and OA(64, 4, 4, 3) with
minimal distances 3 and 2. We proceed our proof by using
Lemmas 1.6, 1.7 and 1.15. From the OA(64, 4, 4, 3) we can obtain
OA(256, 8, 4, 3). From the arrays OA(64, 4, 4, 3) and OA(64, 5, 4, 3)
we can obtain OA(256, 9, 4, 3). Moreover, from the two arrays OA
(64, 5, 4, 3) and OA(256, 8, 4, 3) we can construct an OA(1024, 13,
4, 3). They all have minimal distances ≥ 4. Then three arrays IrOA
(256, 8, 4, 3), IrOA(256, 9, 4, 3) and IrOA(1024, 13, 4, 3) exist.
Therefore, we have an IrOA(r, N, 4, 3) and 3-uniform states of N

ququarts for N= 6 and every N ≥ 8. Similarly, when d= 5, from the
D3(25, 6, 5) in

35 we also have an IrOA(r, N, 5, 3) and 3-uniform
states of N ququints for N= 6 and every N ≥ 8.

Construction of 3-uniform states of N qudits with d ≥ 6 levels
Starting from the difference schemes D3(d

2, d, d) and D3(d
2, 4, d)

respectively and exploring the minimal distances of OAs, we will
construct an IrOA(r, N, d, 3) and the 3-uniform states of N qudits for
every N ≥ 6 with any prime power d > 6 levels, and an IrOA(r, N, d,
3) and the 3-uniform states of N qudits for N= 8 and every N ≥ 12
with any non-prime-power d ≥ 6 levels.

Theorem 2.7. For any prime power d > 6, there exists an IrOA(r, N, d,
3) and 3-uniform states of N qudits for every N ≥ 6. Proof. By
Lemmas 1.4 and 1.16, we can get an OA(d3, d+ 1, d, 3) with
minimal distance d−1, so we have an IrOA(d3, N, d, 3) for 6 ≤ N ≤ d
+ 1 from Lemma 1.14. It follows from Lemmas 1.3 and 1.16 that a
difference scheme D3(d

2, d, d) exists and the minimal distance of
OA(d3, d, d, 3)= D3(d

2, d, d) ⊕ (d) is d − 2. Then an OA(d3, N3, d, 3)
exists with minimal distance ≥ 2 for 4 ≤ N3 ≤ d. From the OA(d3, N3,
d, 3) (4 ≤ N3 ≤ d) and Lemmas 1.6 and 1.7 and the case of u= v in
Lemma 1.15, we can construct an OA(d4, N, d, 3) with minimal
distance d ≥ {2+ 2, 4, 4}= 4. They are all IrOA(d4, N, d, 3) for 8 ≤
N ≤ 2d. By Theorem 2.5 and from the D3(d

2, d, d), we can obtain an
IrOA(r, N, d, 3) for every N ≥ d+ 8. Since 7 < d+ 1 and d+ 7 ≤ 2d,
we can obtain an IrOA(r, N, d, 3) for every N ≥ 6. From Connection
1.1, we can obtain an IrOA(r, N, d, 3) and 3-uniform states of N
qudits for every N ≥ 6.

Using similar arguments, we can construct 3-uniform states with
any non-prime-power d ≥ 6 levels.

Theorem 2.8. For any non-prime-power d ≥ 6, there exists an IrOA(r,
N, d, 3) and 3-uniform states of N qudits for N = 8 and every N ≥ 12.
Proof. From Lemma 1.3, a difference scheme D3(d

2, 4, d) exists for
any d ≥ 2. It follows from Lemma 1.16 that the minimal distance of
OA(d3, 4, d, 3)= D3(d

2, 4, d) ⊕ (d) is 2. Therefore, we have an IrOA
(r, N, d, 3) for N= 8 and every N ≥ 12 by Theorem 2.5. By
Connection 1.1, we can obtain 3-uniform states of N qudits for N
= 8 and every N ≥ 12.

The existence of maximally entangled states lies at the
intersection of quantum theory and discrete mathematics, and
determining their mathematical structure is extremely technical.
The characterization and classification of such entanglement have
now become issues of great interest. The constructed states with
higher dimensions offer an increase in the channel capacity for
quantum communication, and provide a higher error rate
tolerance and enhanced security in quantum key distribution.41

High-dimensional entanglement offers great potential for applica-
tions in quantum information, particularly in quantum
communications.
However, the states of higher dimensions are significantly

different from the trivial extension of those of lower dimensions. A
key problem in the construction of 3-uniform states of a non-
prime-power dimension is the shortage of proper mathematical
tools. For example, in non-prime-power dimensions the Galois
fields do not exist. Therefore, studying these states is even more
challenging than in the case of prime-power dimensions. In
practice, the available experimental data are usually quite limited,
such that devising effective ways for characterizing high-
dimensional entanglement is very challenging. Interestingly, the
states of any dimensions can be consistently obtained using the
proposed methods.
It is interesting that 3-uniform states are a natural extension of

1-uniform states. They are useful for increasing the order
of density coding information rate from d1 to d3.20 Moreover, a
3-uniform state is also 2-uniform.
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We continue to use our method for 2-uniform states.
New results of construction of 2-uniform states of N ≥ 5 qubits
For N ≥ 6, there exist 2-uniform states of N qubits that can be

constructed from two infinite classes of Hadamard matrices based
on the Hadamard matrices H2 and H12 of orders 2 and 12.2

However, we simplify the construction of these 2-uniform states
using only the known class of orthogonal arrays OA(2n, 2n−1, 2, 2)
with n ≥ 3.

Theorem 2.9. A saturated orthogonal array OA(r, r−1, 2, 2) for r ≥ 8
implies the existence of an IrOA(r, N, 2, 2) and 2-uniform states of N
qubits for r

2 þ 2 	 N 	 r � 1. Proof. It follows from Lemma 1.2 that
the OA(r, r−1, 2, 2) has constant Hamming distance r

2. Then we
have an IrOA(r, N, 2, 2) for r

2 þ 2 	 N 	 r � 1 from Lemma 1.14. By
Connection 1.1, we can obtain 2-uniform states of N qubits for
r
2 þ 2 	 N 	 r � 1.

Example 2.1. By Theorem 2.9, we can obtain an IrOA(8, N, 2, 2) and
2-uniform states of N qubits for 6 ≤ N ≤ 7, an IrOA(12, N, 2, 2) and 2-
uniform states of N qubits for 8 ≤ N ≤ 11 and an IrOA(20, N, 2, 2) and
2-uniform states of N qubits for 12 ≤ N ≤ 19 from OA(8, 7, 2, 2), OA
(12, 11, 2, 2) and OA(20, 19, 2, 2), respectively.

Theorem 2.10. If Br
2
is an OA r

2 ;
r
2 � 1; 2; 2

� �
for r ≥ 16 and 8|r, then

the array L ¼ ½Br
2
� 02; ð0r

2
; Br

2
Þ � ð2Þ� allows us to obtain an IrOA(r,

Nr, 2, 2) for r
4 þ 3 	 Nr 	 r � 1. Proof. If Br

2
is an OA, then L is an OA

(r, r− 1, 2, 2) by Lemma 1.5. Let L1 ¼ Br
2
� 02, L2 ¼ ð0r

2
; Br

2
Þ � ð2Þ. It

follows from Lemma 1.2 that the Hamming distances HD, HD1,
HD2 of L, L1, L2 statisfy HD ¼ r

2, HD1 	 r
4, HD2 � r

4. Consequently,
we can obtain an IrOA(r, Nr, 2, 2) for r

4 þ 3 	 Nr 	 r � 1 by
respectively deleting j 0 	 j 	 3

4 r � 4
� �

columns from the L. In fact,
if 0 	 j 	 r

2 � 1, by deleting arbitrary j columns in L1, we can
obtain an IrOA(r, Nr, 2, 2) for r

2 	 Nr 	 r � 1. If r
2 � 1< j 	 3

4 r � 4, by
deleting all columns in L1 and arbitrary j � r

2 � 1
� �

columns in L2,
we can obtain an IrOA(r, Nr, 2, 2) for r

4 þ 3 	 Nr< r
2. We complete

the proof.

Example 2.2. By Theorem 2.9 and an OA(24, 23, 2, 2), we can obtain
an IrOA(24, N, 2, 2) and 2-uniform states of N qubits for 14 ≤ N ≤ 23.
However, from the OA(24, 23, 2, 2) satisfying the condition in
Theorem 2.10 we can obtain more IrOA(24, N, 2, 2) with 9 ≤ N ≤ 13
than from Theorem 2.9. Thus we have 9 ≤ N ≤ 23. Hence more 2-
uniform states can be obtained.

Theorem 2.11. An IrOA(r, N, 2, 2) for N ≥ 6 can be obtained from a
known class of OA(2n, 2n −1, 2, 2) with n ≥ 3 and 2-uniform states of
N qubits exist for every N ≥ 5. Proof. In Theorem 2.10, let B2n ¼
OAð2n; 2n � 1; 2; 2Þ which exists for every n ≥ 3 from Lemma 1.5.
Then we can obtain an IrOAð2nþ1;N2nþ1 ; 2; 2Þ for
2n�1 þ 3 	 N2nþ1 	 2nþ1 � 1, which does not include the Hada-
mard conjecture. So we have 2n þ 3 	 N2nþ2 	 2nþ2 � 1. And it
can be easily proved that 2n+1−1 > 2n+ 3 when n ≥ 3. Then we
can get an IrOA(r, N, 2, 2) for every N ≥ 7. In particular, when n = 3,
using the OA(8, 7, 2, 2) again we have IrOA(8, 6, 2, 2) by Theorem
2.9 Therefore, there exists an IrOA(r, N, 2, 2) for every N ≥ 6. On the
other hand, we have a 2-uniform state |Ψ5〉 of N= 5 qubits as
follows:. |Ψ5〉= |11111〉+ |00110〉+ |01100〉+ |10101〉− |10000〉
+ |01001〉−|00011〉+ |11010〉. Another expression of a 2-uniform
state of five qubits can been found in.2. Hence, there exist 2-
uniform states of N qubits for N ≥ 5. We finish the proof.

Example 2.3. By Theorem 2.9, we can obtain an IrOA(16, N, 2, 2) and
2-uniform states of N qubits for 10 ≤ N ≤ 15 from any OA(16, 15, 2,
2). However, from the OA(16, 15, 2, 2) satisfying the condition in
Theorem 2.11 we can obtain more IrOA(16, N, 2, 2) and 2-uniform
states of N qubits than for 7 ≤ N ≤ 15 from Theorem 2.9.

Remark 1. Let n= 4 in Theorem 2.11 Then we have IrOA(32, 31, 2,
2) for 11 ≤ N32 ≤ 31. Further, we can obtain 9 ≤ N32' ≤ 31 by using
the property of interaction columns (see Example 2.4).

Example 2.4. The existence of an IrOA(32, N, 2, 2) and 2-uniform
states of N qubits for 9 ≤ N ≤ 31.

By Theorem 2.9, we can obtain an IrOA(32, N, 2, 2) and 2-
uniform states of N qubits for 18 ≤ N ≤ 31 from any OA(32, 31, 2, 2).
However, from the OA(32, 31, 2, 2) satisfying the condition in
Theorem 2.11 we can obtain IrOA(32, N, 2, 2) and 2-uniform states
of N qubits for 11 ≤ N ≤ 31. Let B16=OA(16, 15, 2, 2)= (a1, b1, c1;
a2, b2, c2;…; a5, b5, c5) and OA(32, 31, 2, 2)= [B16 ⊕ 02, (016, B16)⊕
(2)]. Then the Hamming distance of the OA [016, B16] ⊕ (2) is
greater than or equal to 8. And the OA(16, 15, 2, 2) has 6 columns
(a4, b4, c4; a5, b5, c5) such that ci is the interaction between ai and
bi for i= 4, 5. The Hamming distance between the rows in the
columns (a4, b4, c4; a5, b5, c5) is less than or equal to 4. Then by
respectively removing (a4, b4, c4; a5, b5, c5) ⊕ (2) and (c3; a4, b4, c4;
a5, b5, c5) ⊕ (2) from [016, B16] ⊕ (2), one can obtain two arrays
IrOA(32, 10, 2, 2) and IrOA(32, 9, 2, 2).
High-dimensional entanglement is different from two-level

entanglement. Furthermore, general quantum states could be
multilevel. They break the generic classical constraints and provide
a new perspective for quantum mechanics.
Construction of 2-uniform states of N ≥ 4 qutrits
We can derive an IrOA(r, N, 3, 2) and 2-uniform states of N

qutrits for every N ≥ 4 by the property and the minimal distances
of OAs and difference schemes.

Theorem 2.12. There exists an IrOA(r, N, 3, 2) and 2-uniform states
of N qutrits for every N ≥ 4. Proof. We first prove that there exists an
IrOA(3n+1, Nn, 3, 2) for 3n�1 þ 3 	 Nn 	 3nþ1�1

2 with n ≥ 1. When n
= 1, any OA(9, 4, 3, 2) is an IrOA(32, N1, 3, 2) satisfying 4 ≤ N1 ≤ 4.
When n ≥ 2, Lemmas 1.3 and 1.4 imply the existence of
OA 3n; 3

n�1
2 ; 3; 2

� �
and D(3n, 3n, 3). For a given n, let

B3n ¼ OA 3n; 3
n�1
2 ; 3; 2

� �
, L1 ¼ B3n � 03 and L2 = D(3n, 3n, 3) ⊕

(3). Then, L = [L1, L2] is an OA 3nþ1; 3
nþ1�1
2 ; 3; 2

� 	
from Lemma 1.5.

It follows from Lemma 1.2 that the Hamming distances HD, HD1,
and HD2 of L, L1, and L2 satisfy HD= 3n, HD1 ≤ 3n−1 (HD1= 0, 3n−1),
HD2 ≥ 2 ⋅ 3n−1. Consequently, we can obtain an IrOA(3n+1, Nn, 3, 2)
for 3n�1 þ 3 	 Nn 	 3nþ1�1

2 by deleting 0 	 j 	 7
2 ð3n�1 � 1Þ col-

umns from L. In fact, by deleting any 0 	 j 	 3n�1
2 columns in L1,

we obtain an IrOA(3n+1, Nn, 3, 2) for 3n 	 Nn 	 3nþ1�1
2 . For

3n�1
2 < j 	 7

2 ð3n�1 � 1Þ, deleting all the columns in L1 and any j �
3n�1
2

� �
columns in L2 gives IrOA(3

n+1, Nn, 3, 2) for 3
n−1 + 3 ≤ Nn <

3n. It can easily be shown that 3n�1 þ 3 	 Nn 	 3nþ1�1
2 ,

3n þ 3 	 Nnþ1 	 3nþ2�1
2 , and 3n þ 3< 3nþ1�1

2 for n ≥ 2. When n =
2, 3, 4,…, we can respectively obtain an IrOA(3n+1, Nn, 3, 2) for 6 ≤
N2 ≤ 13, 12 ≤ N3 ≤ 40, 30 ≤ N4 ≤ 121, and so on. Thus, we can
obtain an IrOA(r, N, 3, 2) for N = 4 and every N ≥ 6. When N = 5,
taking

OAð18; 7; 3; 2Þ ¼ ða1; a2; ¼ ; a7Þ ¼

012012012012012012

012012120201120201

012120012201201120

012201201012120120

012120201120012201

012201120120201012

000000111111222222

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

T

;

we can obtain an IrOA(18, 5, 3, 2) = (a1, a2,…, a5) that leads to a 2-
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uniform state of five qutrits. By Connection 1.1, we can obtain 2-
uniform states of N qutrits for every N ≥ 4.

For these states, every matrix in which the density is reduced to
two qutrits is proportional to the identity I32 . This theorem settles
the question of the 2-uniform states of N qutrits.2 Note that the
OAs L in this theorem can be recursively constructed starting from
OA(9, 4, 3, 2).
Construction of 2-uniform states of N ≥ 4 qudits with a prime

power d ≥ 4 levels
For a prime power d ≥ 4, we can obtain an IrOA(r, N, d, 2) and 2-

uniform states of N qudits for every N ≥ 4 from the property and
minimal distances of OAs and some special difference schemes.

Theorem 2.13. For a prime power d ≥ 4, there exists an IrOA(r, N, d,
2) and 2-uniform states of N qudits for an arbitrary number of N ≥ 4.
Proof. For a prime power d and an integer n ≥ 2, Lemmas 1.3, 1.4,
and 1.5 imply that there exists an OA

L ¼ OA dnþ1;
dnþ1 � 1
d � 1

; d; 2

� �
¼ ½Bdn � 0d;Dðdn; dn; dÞ � ðdÞ�

where Bdn ¼ OA dn; d
n�1
d�1 ; d; 2

� �
. Let L1 ¼ Bdn � 0d and L2= D(dn,

dn, d) ⊕ (d). Then, L = [L1, L2]. It follows from Lemma 1.2 that the
Hamming distances HD, HD1, and HD2 of L, L1, and L2 satisfy HD=
dn, HD1 ≤ dn−1, and HD2 ≥ (d − 1) ⋅ dn−1. Consequently, we can
obtain an IrOA(dn+1, Nn, d, 2) for dn�1 þ 3 	 Nn 	 dnþ1�1

d�1 by
deleting 0 	 j 	 1

d�1 ½ðd2 � d þ 1Þdn�1 � 3d þ 2� columns from L
in the same way as in Theorem 2.12. When n= 1, we can obtain
IrOA(d2, N1, d, 2) for 4 ≤ N1 ≤ d + 1 from a known OA(d2, d + 1, d,
2). When n ≥ 2, we have dn�1 þ 3 	 Nn 	 dnþ1�1

d�1 ,

dn þ 3 	 Nnþ1 	 dnþ2�1
d�1 . It can easily be proved that

dn þ 3 	 dnþ1�1
d�1 , so we obtain IrOA(r, N, d, 2) for N ≥ d+ 3. To

cover the gap N= d + 2, consider the difference scheme D(2d, 2d,
d) satisfying D(2d, 2d, d)T= D(2d, 2d, d), which exists by Lemma
1.8. Let L′= D(2d, 2d, d) ⊕ (d). Then, L′ is an OA. It follows from
Lemma 1.9 that L′ has two Hamming distances, 2d−2 and 2d.
Hence, we can obtain IrOA(2d2, N'd, d, 2) for 5 ≤ N'd ≤ 2d from
Lemma 1.14. As d+ 1 ≥ 5 and 2d > d+ 3, there exists an IrOA(r, N,
d, 2) for N ≥ 4, which leads to the desired 2-uniform states.

Example 2.5. Let d= 4. When n= 1, 2, 3, …, it follows from Theorem
2.13 that we have an IrOA(42, N1, 4, 2) for 4 ≤ N1 ≤ 5, an IrOA(43, N2,
4, 2) for 7 ≤ N2 ≤ 21, an IrOA(44, N3, 4, 2) for 19 ≤ N3 ≤ 85, and so on.
In addition, we can obtain an IrOAð32;N0

4; 4; 2Þ for 5 	 N0
4 	 8.

Therefore, there exists an IrOA(r, N, 4, 2) and 2-uniform states of N
ququarts for every N ≥ 4.

Construction of 2-uniform states of N qudits with a non-prime-
power d ≥ 4 levels
By computing the minimal distance of symmetrical OAs

constructed from the orthogonal partition methods in,32 we
derive the following results.
When d = 6, there exists an IrOA(r, N, 6, 2) and 2-uniform states

of N qudits for N ≥ 5.
When d > 6 ðd 6� 2 ðmod4ÞÞ is not a prime power, we can

obtain an IrOA(r, N, d, 2) and 2-uniform states of N qudits for N ≥ 4.
When d > 6 (d≡ 2 (mod 4)) is not a prime power, since every

IrOA(r, N′, d, 3) is also an IrOA(r, N, d, 2), we can obtain an IrOA(r, N,
d, 2) and 2-uniform states of N qudits for N= 7, 8 and N ≥ 11 from
IrOA(r, N′, d, 3) for N'= 8 and N′ ≥ 12 in Theorem 2.8. We also have
an IrOA(r, N, d, 2) for N= 4, 6, 9, 10. Then, there exists an IrOA(r, N,
d, 2) and 2-uniform states of N qudits for N= 4 and N ≥ 6. In
particular, when d ≥ 14 (d≡ 2 (mod 4)) is not a prime power, there
exists an IrOA(d2, 5, d, 2) and 2-uniform states of N qudits for N ≥ 4.

Theorem 2.14. There exists an IrOA(r, N, 6, 2) and 2-uniform states
consisting of N six-level systems for every N ≥ 5. Proof. We can obtain
an OA(72, 6, 6, 2)= D(12, 6, 6) ⊕ (6) in which D(12, 6, 6) is given
by.42 As the minimal distance of the OA(72, 6, 6, 2) is 4, we can
generate two arrays, IrOA(72, 6, 6, 2) and IrOA(72, 5, 6, 2). By,43 L=
[(6)⊕ 012, D(12, 6, 6)⊕ (6)] is an OA with minimal distance at least
4. Thus, we have an IrOA(72, 7, 6, 2). Using Lemmas 1.6 and 1.7
and the case u= v in Lemma 1.15, OA(72, 5, 6, 2) and any three of
its columns, say OA(72, 5, 6, 2) and OA(72, 3, 6, 2), give an OA(432,
8, 6, 2) with minimal distance 3. Thus, we have IrOA(432, 8, 6, 2).
Additionally, by Theorem 2.5 and from D(12, 6, 6), we obtain an
IrOA(r, N, 6, 2) for every N ≥ 9. Therefore, the desired IrOAs and 2-
uniform states exist.

Theorem 2.15. For any non-prime-power d > 6 and d 6� 2 ðmod4Þ,
there exists an IrOA(r, N, d, 2) and 2-uniform states of N qudits for
every N ≥ 4. Proof. By Lemma 1.3, a difference scheme D(d, 3, d)
exists for any d ≥ 3 and d 6� 2 ðmod4Þ and a D3(d

2, 4, d) exists for
any d ≥ 2. Take L = D(d, 3, d) ⊕ (d). It follows from Lemma 1.16
that MD(L) = 2. Using the D(d, 3, d) and Theorem 2.5, we obtain an
IrOA(r, N, d, 2) for any integer N ≥ 9. By Lemma 1.17(3), we have
three arrays IrOA(d2, 6, d, 2), IrOA(d2, 5, d, 2), and IrOA(d2, 4, d, 2).
From OA(d3, 4, d, 3) = D3(d

2, 4, d) ⊕ (d), IrOA(d2, 4, d, 2), and
Lemma 1.18, we obtain an OA(d3, 8, d, 2) with minimal distance at
least 4. Therefore, we have two arrays IrOA(d3, 8, d, 2) and IrOA(d3,
7, d, 2). Thus, we have an IrOA(r, N, d, 2) for N ≥ 4. The desired 2-
uniform states follow from Connection 1.1.

Theorem 2.16. For any non-prime-power d > 6 and d≡ 2 (mod 4),
there exists an IrOA(r, N, d, 2) and 2-uniform states of N qudits for N
= 4 and N ≥ 6. Proof. It follows from Theorem 2.8 that an IrOA(r, N′,
d, 3) exists for N'= 8 and N′ ≥ 12. From Lemma 1.12, we obtain an
IrOA(r, N, d, 2) for N= 7,8 and N ≥ 11. By Lemmas 1.3 and 1.16, an
D3(d

2, 4, d) exists for any d ≥ 2. Thus, we have an OA(d3, 4, d, 3)=
D3(d

2, 4, d) ⊕ (d) with minimal distance 2. From the OA(d3, 4, d, 3)
and the case u= v in Lemma 1.15, we can construct an OA(d4, 8, d,
3) with minimal distance at least 4. Furthermore, from the OA(d4,
8, d, 3) and the OA(d3, 4, d, 3) and Lemma 1.18 we have an OA(d4,
12, d, 2) with minimal distance at least 6. Hence we can obtain an
IrOA(d4, N, d, 2) for 9 ≤ N ≤ 12. From the two arrays OA(d3, 4, d, 3)
and OA(d2, 2, d, 2) and Lemma 1.18, we have an OA(d3, 6, d, 2) with
minimal distance at least 3. Hence, it is an IrOA(d3, 6, d, 2). It
follows from Lemma 1.17(1) that the IrOA(d2, 4, d, 2) exists. Thus,
we have the desired results.

Theorem 2.17. For any non-prime-power d ≥ 14 and d≡ 2 (mod 4),
there exists an IrOA(r, N, d, 2) and 2-uniform states of N qudits for
every N ≥ 4. Proof. This is an immediate consequence of Lemma
1.17(2) and Theorem 2.16.

Entanglement is an outstanding property of multiparty
quantum systems that has been identified as an essential
component in many fields of the theory of quantum information.
In recent years, there has been considerable interest in generating
entangled states of high dimensions. Such states can, in principle,
contain a great deal of entanglement, which makes them more
complicated but offer promising perspectives for quantum
applications. Therefore, they are important to quantum
communication.
We constructed 3-uniform states before 2-uniform states

because we needed to use some results from the former case.
That the newly constructed 3-uniform states are 2-uniform follows
immediately from the strength of their corresponding IrOAs. We
hope that our method for 2- and 3-uniform states will also
contribute to demonstrating the existence of k-uniform states for
k ≥ 4 in the homogeneous case.
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DISCUSSION
The present work not only answers the question proposed by
Goyeneche et al.2 and provides a positive answer to the
interesting problem stated by Huber et al.,14 but also presents
more general results. In Tables 2 and 3, for any given d ≥ 2, we
summarize the precise existence of the states for every value of N.
In the tables, “a” denotes that a state can be constructed from an
IrOA, whereas “b” represents that a state can be constructed with
some judicially inserted minus signs. The symbol “–” means that
such a state cannot exist by Lemma 1.11, whereas “?” indicates
that we have not yet solved the problem.
Tables 2 and 3 indicate that for any given d ≥ 2 (prime power or

non-prime-power), we exhaustively solve the problem regarding
an explicit construction of the 2 and 3-uniform states of every N
qudits from IrOAs, except for at most five values of N. They are
closely related to QECCs, multi-unitary permutation matrices, and
mutually orthogonal quantum Latin squares and cubes.1 Further-
more, for the k-uniform states with symbol “?” in Tables 2 and 3,
we consider the following five cases:

(1) The nonexistence of 3-uniform states of seven qubits and 2-
uniform states of four qubits has already been proved.2,13 In
Theorem 3.1, we prove the nonexistence of IrOA(r, 7, 2, 3)
and IrOA(r, 4, 2, 2).

(2) The existence of 3-uniform states of six qubits and 3-
uniform states of N qutrits for N= 6, 7 has been presented
in,44 whereas the nonexistence of IrOA(r, 6, 2, 3), IrOA(r, 6, 3,
3), and IrOA(r, 7, 3, 3) has been proved in Theorem 3.1.

(3) Interestingly, the existence of 2-uniform states of four qudits
(d= 6) is unknown. It cannot be derived from IrOAs, because
there is no IrOA(r, 4, 6, 2) by Theorem 3.1. However, 2-
uniform states of five qudits (d= 6) can be constructed from
IrOA(72, 5, 6, 2) by Theorem 2.14.

(4) The 3-uniform state of seven ququints exists,44 although the
existence of IrOA(r, 7, 5, 3) is unknown.

(5) The existence of IrOA(r, 7, 4, 3), IrOA(r, 5, 10, 2), and IrOA(r, N,
d, 3) for N= 6, 7, 9, 10, 11 and non-prime-power d ≥ 6 and
their corresponding states remains unresolved.

Theorem 3.1. IrOA(r, 7, 2, 3), IrOA(r, 7, 3, 3), IrOA(r, 6, 3, 3), IrOA(r, 4,
6, 2), IrOA(r, 6, 2, 3), IrOA(r, 4, 2, 2), and IrOA(r, 5, 2, 2) do not exist.
Proof. Assume that there exists an IrOA(r, 7, 2, 3). Then, r ≤ 16 by
Lemma 1.12. However, this contradicts the fact that neither OA(16,
7, 2, 4) nor OA(r, 7, 2, 3) exists for r < 16 (ref. 45). By the same
argument, IrOA(r, 7, 3, 3), IrOA(r, 6, 3, 3), and IrOA(r, 4, 6, 2) do not
exist. Assume there exists an IrOA(r, 7, 3, 3). Then, r ≤ 81, but this
contradicts the fact that neither OA(81, 7, 3, 4) nor OA(r, 7, 3, 3)
exists for r < 81. Assume that IrOA(r, 6, 3, 3) and IrOA(r′, 4, 6, 2)
exist. Then, r= 27 and r'= 36, but this contradicts the fact that
neither OA(27, 6, 3, 3) nor OA(36, 4, 6, 2) exists. Similarly, IrOA(r, 6,
2, 3), IrOA(r, 4, 2, 2) and IrOA(r, 5, 2, 2) do not exist.

It is tempting to believe that some of the states obtained in this
paper will be good for experimental purposes and help to
quantify46 the level of entanglement in some multipartite system.
The states are also ideal candidates for quantum information
protocols and quantum secret sharing. It is expected that
remarkable progress will be made in the field of QECCs by
application of the results presented herein. As stated in,2 there are
many open issues to solve regarding the construction and
characterization of entanglement in multipartite quantum sys-
tems. The results presented in this paper will establish a
foundation for solving other open problems, such as the
construction of k-uniform states of N qudits (d ≥ 2) for k ≥ 4,
including the problem stated by Huber et al.,14 and hetero-
geneous multipartite systems,17 since the proposed construction
methods can be suitable for IrOAs of any strength k ≥ 4 and
irredundant mixed orthogonal arrays (IrMOAs).17,32,33

In the construction process, we often encounter the problem
that some uniform states could have fewer terms or qudits. If the
Hadamard conjecture is considered, Theorems 2.9 and 2.10 state
that the number of terms in many 2-uniform states could be
reduced. Moreover, the following three theorems indicate that
some 2-uniform states can have fewer terms. Furthermore, from
Lemmas 1.13 and 1.14, there exist some 3-uniform states with
fewer terms than those obtained by Theorem 2.1 (for instance, the
two 3-uniform states obtained from IrOA(40, 16, 2, 3) and IrOA(48,
16, 2, 3) by Lemmas 1.13, 1.14, and Theorem 2.1, respectively).
Additionally, the states obtained by Theorem 3.5 have fewer qubits.

Theorem 3.2. There exist 2-uniform states of N qudits with 10 levels
for N= 6, 7, 9, 10 that have fewer terms than the states given by
Theorem 2.16. Proof. Let OA(200, 6, 10, 2)= [D(20, 5, 10) ⊕ (10),
(10) ⊕ 020], where D(20, 5, 10) can be found in.42 Then, the
minimal distance of the OA is 3. Therefore, it is an IrOA(200,
6, 10, 2). By exchanging the 16th and 17th rows of the D(40, 6, 10)
in,42 we obtain the difference scheme D′(40, 6, 10) and an OA(400,
7, 10, 2) = [D′(40, 6, 10) ⊕ (10),(10) ⊕ 040] with minimal distance
3. Hence, this is IrOA(400, 7, 10, 2). Utilizing Lemmas 1.6 and 1.7
and the case u = v in Lemma 1.15, we can construct OA(2000, 10,
10, 2) with minimal distance 4 from the OA(200, 5, 10, 2) = D(20, 5,
10) ⊕ (10) with minimal distance 2. Then we obtain an IrOA(2000,
10, 10, 2) and an IrOA(2000, 9, 10, 2). However, from Theorem 2.16,
we can only obtain IrOA(103, 6, 10, 2), IrOA(104, 7, 10, 2), IrOA(104,
9, 10, 2), and IrOA(104, 10, 10, 2). Thus, the theorem holds.

Theorem 3.3. For N = 6, 9, 10, there are 2-uniform states of N qudits
with 14 levels that have fewer terms than those given by Theorem
2.16. Proof. By exchanging the 26th and 27th rows in the D(28, 5,
14) from,42 we obtain the difference scheme D′(28, 5, 14) and an

Table 3. Existence of 3-uniform states of N subsystems with d ≥ 2 levels

N 2 ≤ N ≤ 5 6 7 8 9 10 11 N ≥ 12

d

d= 2 – ? ? a b a a a

d= 3 – ? ? a a a a a

d= 4 – a ? a a a a a

d= 5 – a ? a a a a a

d > 6 is a prime power – a a a a a a a

d ≥ 6 is not a prime power – ? ? a ? ? ? a

Table 2. Existence of 2-uniform states of N subsystems with d ≥ 2 level

N 2 ≤ N ≤ 3 4 5 N ≥ 6

d

d= 2 – ? b a

d= 3 – a a a

d= 4 – a a a

d= 5 – a a a

d= 6 – ? a a

d= 7 – a a a

d= 8 – a a a

d= 9 – a a a

d= 10 – a ? a

d ≥ 11 – a a a
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OA(392, 6, 14, 2) = [D′(28, 5, 14) ⊕ (14),(14) ⊕ 028] with minimal
distance 3. Hence, this is IrOA(392, 6, 14, 2). Furthermore, from an
OA(392, 5, 14, 2) = D(28, 5, 14) ⊕ (14) with minimal distance 2,
Lemmas 1.6 and 1.7, and the case u = v in Lemma 1.15, we can
construct an OA(5488, 10, 14, 2) with minimal distance 4. Then, we
obtain IrOA(5488, 10, 14, 2) and IrOA(5488, 9, 14, 2). These IrOAs
have fewer rows than IrOA(143, 6, 14, 2), IrOA(144, 9, 14, 2), and
IrOA(144, 10, 14, 2) obtained by Theorem 2.16. Therefore, the result
follows from Connection 1.1.

Theorem 3.4. Some uniform states obtained by Lemma 1.17 have
fewer terms than those given by Theorems 2.15 and 2.16 for N = 7, 8.
Proof. This follows from the fact that some IrOA(d2, N, d, 2)
obtained by Lemma 1.17 have fewer rows than that given by
Theorems 2.15 and 2.16 for N = 7, 8.

Remark 2. The following theorem and Theorems 2.10 and 2.11
indicate that we can find more IrOA(n, N, 2, 2) than that suggested
by Theorem 2.9 using the construction methods for OA(n, n − 1, 2,
2). Therefore, we can consider the lowest value of N such that k-
uniform states exist for fixed r, d, and k.

Theorem 3.5. If an OA(r, r − 1, 2, 2) is obtained from an MOA
ðr; l þ u; d11 � � � d1l 2u; 2Þ by using the expansive replacement method
and OA(di, di − 1, 2, 2), where di ≥ 4 for i= 1, …, l, then for any 1 ≤ j
≤ l, there exists an OA(r, r−1 − [(d1 − 1) + ⋯+ (dj−1)], 2, 2) with a
minimal distance that is at least 1

2 ½r � ðd1 þ d2 þ � � � þ djÞ�. Proof. It
follows from Lemma 1.2 that the Hamming distances of the OA(r, r
−1, 2, 2), OA(di, di − 1, 2, 2) (i = 1, …, l) are r

2,
di
2 , respectively, since

they are saturated. For any 1 ≤ j ≤ l, deleting the corresponding d1
− 1 + d2 − 1 + ⋯ + dj − 1 columns obtained by the expansive
replacement method in12 from OA(r, r − 1, 2, 2), we can obtain the
desired OA(r, r − 1 − [(d1 − 1) + ⋯ + (dj − 1)], 2, 2).

For instance, if B32 is an OA(32, 31, 2, 2), then from the OA(64,
63, 2, 2) = [B32 ⊕ 02,(032, B32) ⊕ (2)] and using Theorem 2.10, we
can obtain an IrOA(64, N, 2, 2) for 19 ≤ N ≤ 63. However, from an
OA(64, 21, 87214, 2) and Theorem 3.5 and by deleting the seven 8-
level columns, we have OA(64, 14, 2, 2) with minimal distance at
least 4. Thus, an IrOA(64, N, 2, 2) exists for 13 ≤ N ≤ 63.
In the future, we will study the optimal problems of the uniform

states from IrOAs. At first, we will investigate the optimal problems
of IrOAs, as they play an important role in uniform states. For some
given N, d, k, we consider an IrOA(r, N, d, k) in which r attains its
minimum, while we can also consider the lowest value of N such
that an OA(r, N, d, k) exists for fixed r, d, k. For some given r, N, d,
we consider an IrOA(r, N, d, k) in which k attains its maximum, and
we can also consider the highest value of d such that an OA(r, N, d,
k) exists for fixed r, N, k.

METHODS
By means of the construction methods of OAs, we can investigate the
properties of the required IrOAs (see “Introduction” section). Using
difference schemes, orthogonal partitions, and the Hamming distance,
we creatively construct several infinite series of IrOAs. From these IrOAs,
we then obtain the 2 and 3-uniform states of almost every N qudits for any
given number of levels d ≥ 2 by means of the link between an IrOA and a k-
uniform state, which was established by Goyeneche et al.2 In particular, a
key construction of uniform states of non-prime-power dimensions is due
to the orthogonal partition method for recursively constructing OAs, which
is new development in combinatorial designs (see ‘Results’ section).
Starting with some special difference schemes and IrOAs, or exploring the
expansive replacement method, we can then obtain some uniform states
having fewer terms or qudits (see ‘Discussion’ section).
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