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Quantum non-Gaussianity and secure quantum
communication
Jaehak Lee1, Jiyong Park 2 and Hyunchul Nha1

No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure
quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via the communication
channel is above the no-cloning bound (NCB). In quantum communications using continuous-variable (CV) systems, Gaussian
states, more specifically, coherent states have been widely studied as inputs, but less is known for non-Gaussian states. We aim at
exploring quantum communication covering CV states comprehensively with distinct sets of unknown states properly defined. Our
main results here are (i) to establish the NCB for a broad class of quantum non-Gaussian states, including Fock states, their
superpositions, and Schrodinger-cat states and (ii) to examine the relation between NCB and quantum non-Gaussianity (QNG). We
find that NCB typically decreases with QNG. Remarkably, this does not mean that QNG states are less demanding for secure
communication. By extending our study to mixed-state inputs, we demonstrate that QNG specifically in terms of Wigner negativity
requires more resources to achieve output fidelity above NCB in CV teleportation. The more non-Gaussian, the harder to achieve
secure communication, which can have crucial implications for CV quantum communications.
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INTRODUCTION
No-cloning theorem is one of the fundamental quantum
principles also providing a crucial practical basis for quantum
communication—an eavesdropper cannot gain information with-
out disturbing the quantum state carrying information. Numerous
works studied an approximate cloning scheme, making clones
with imperfect quality1–4 and rigorously established as a security
benchmark the no-cloning bound (NCB), above which the output
fidelity of two clones cannot reach.4–9 If a receiver obtains an
output state with fidelity higher than NCB, he can be assured of no
better copy existing elsewhere and extract more information than
Eve—an ultimate security of communication. Such a connection
was specifically made between the optimal cloning and the
security of quantum cryptographic protocols.4,6,10–12

The NCB varies with the set of input states and it is of crucial
importance to identify it for different input states to address
communication security relevant to various protocols. In quantum
communication using continuous variables (CVs), coherent states
are readily available information carriers and have been mostly
employed as input states to many protocols, e.g., quantum
cryptography12 and quantum teleportation.13 Furthermore, it was
recently proved that coherent states are the optimal input states
achieving the ultimate classical capacity of bosonic Gaussian
channels.14,15 The NCB of coherent states was well studied with
some extension to other Gaussian (squeezed) states.7,8,16 On the
other hand, quantum non-Gaussian (QNG) states have recently
drawn much attention as an essential ingredient for quantum
information processing, due to the limited capability of Gaussian
states and operations in some crucial tasks, e.g., entanglement
distillation,17 quantum computation,18 and error correction.19

However, little is known about non-Gaussian states, particularly
their NCBs and the critical role played by their quantum non-
Gaussianity (QNG) in quantum communications. QNG here refers
to the characteristic of non-Gaussian states that cannot be
represented as a mixture of Gaussian states, with its measure
rigorously quantifying distinction between those two sets of
states.20 For instance, some studies investigated several non-
Gaussian input states for CV teleportation,21–23 which however
lacks the analysis of performance in view of ultimate security, with
no access to the NCB benchmark. We need to extend our
approach to deal with a broad class of QNG states and to
rigorously identify NCB and its relation to QNG in quantum
communications. By doing so, we may address some important
issues, e.g., comparing performance and security conditions
between Gaussian and non-Gaussian states in CV quantum
information protocols.24–31

Our objective is twofold. First, we intend to establish NCB for
QNG states broadly to gain insight into the non-Gaussian regime.
Second, we intend to identify the role played by QNG for CV
quantum communications. There has recently been a growing
interest in studying QNG as a resource under the framework of
resource theories,20,32,33 with its operational significance largely
unexplored.34 We here find a strong correlation between QNG and
NCB—NCB overall decreases with QNG. Importantly, this does not
mean that achieving ultimate security becomes easier with QNG
states. We show that non-Gaussian input states require more
resources to achieve secure teleportation,13,35,36 even though NCB
is smaller. This implies that the security of CV teleportation can be
most readily attained when employing Gaussian input states.
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RESULTS
To address CV states comprehensively and systematically, we first
define a set of states as Sjψi � fD̂ðαÞjψi 8α 2 Cg, where each set
Sjψi consists of a pure state |ψ〉 arbitrarily displaced in phase space
D̂ðαÞ � eαa

y�α�a (Fig. 1a). The set of coherent states is a special case
with |ψ〉= |0〉 (vacuum). In generalizing CV states this way, we may
examine QNG states comprehensively varying the state |ψ〉 for
each set. Furthermore, displacement operation provides an
important protocol of information encoding for CV communica-
tions. Quantum teleportation of coherent states corresponds to
transmitting information on the unknown displacement in phase
space for a given seed state |0〉. In addition, the ultimate classical
capacity under Gaussian channels uses encoding based on
displacement as an optimal scheme.14,15 A full displacement in
phase space can represent an increasingly large amount of
information.

Covariant cloning machine
We first investigate the cloning of Fock states (prominently QNG)
under displacement, i.e., the sets Sjψi¼jni , which will be extended
to other non-Gaussian states, like superposition of Fock states and
Schrodinger-cat states later. Our goal is to maximize the output
fidelity averaged over all input displacements α for a given set Sjni.
For simplicity, we assume that the distribution of unknown α is
uniform in the whole phase space. For a 1-to-M cloning map T, the
fidelity of the ith clone is expressed as

FðiÞ ¼ Tr TðρinÞρðiÞin
h i

; (1)

where ρðiÞ � 1� � � � � 1� ρ� 1� � � � � 1 has its component ρ on
the ith system, whereas others are given by identity operator 1.
Let us consider a symmetric cloner with identical fidelity for each i.
The optimal cloner can then be given by a covariant cloner,9,37

with the covariance property T(ρ)= Tβ(ρ) regardless of β (see the
“Methods” section), where

TβðρÞ ¼ D̂y�MðβÞT D̂ðβÞρD̂yðβÞ� �
D̂�MðβÞ (2)

is a shifted cloner. If an input state is displaced by β, each output
state is also displaced by the same β. With this covariance, input
and output states must satisfy the relation in terms of the
characteristic function χðξÞ ¼ tr½ρD̂ðξÞ�38 as9,37

χoutðξÞ ¼ χT ðΩξÞχ in
X

i
ξ i

� �
: (3)

Here, Ω is a linear transformation acting as ξi,p→ ξi,x and ξ i;x !P
j≠i ξ j;p with ξ= (ξ1,x, ξ1,p, …, ξM,x, ξM,p) and χT(ξ) is the

characteristic function of a certain M-mode state ρT. That is, our
problem is reduced to finding an optimal state ρT giving a
maximal fidelity through Eq. (1). This ρT can be utilized as a
resource state to construct the optimal cloner9 and the equivalent
telecloning protocol.39 For instance, the optimal 1→ 2 cloner can
be realized using a scheme in Fig. 1b.
Using Eq. (3), the fidelity in Eq. (1) for each n is given, with

details in Supplementary Section 1, by

FðiÞn � f̂ ðiÞn

D E
ρT
¼ ½LnðÔiÞ�2e�Ôi

D E
ρT
; (4)

where Ôi � 1
2 x̂2i þ ðPj≠i p̂jÞ2
h i

with x̂i and p̂i being position and

momentum operators of the ith mode, respectively, and Ln the
Laguerre polynomial of order n. NCB of our interest is given by
considering the case of two clones (M= 2), with the average

fidelity 1
2 ðFð1Þn þ Fð2Þn Þ optimized over a resource state ρT. That is,

NCB corresponds to the maximum eigenvalue of the operator
1
2 ðf̂ ð1Þn þ f̂ ð2Þn Þ [see Supplementary Section 1]. For instance, the
NCB~0.6826 for coherent-state inputs (n= 0) is given by the
maximum eigenvalue of 1

2 ðe�
1
2ðx̂21þp̂22Þ þ e�

1
2ðx̂22þp̂21ÞÞ.9,37

Invariance under Gaussian unitaries. Remarkably, NCB is invariant
under Gaussian unitary operations. Namely, NCBs for the two sets
Sjψi and SÛGjψi are identical, where ÛG is an arbitrary Gaussian
unitary (Methods). Thus, all pure Gaussian states attain the same
NCB, which was mentioned for the Gaussian cloners, using only
Gaussian resource states,7,8 but the same is true with general
covariant cloners using non-Gaussian resources for any input
state. For instance, the Fock states and the squeezed Fock states
have the same NCBs, which make our result encompass non-
Gaussian states more broadly.

Gaussian no-cloning bound
Before we deal with the ultimate cloning limit, it is worth
investigating NCB under the constraint of Gaussian operations,
because Gaussian operations are highly feasible in the laboratory.16

ρT in Eq. (2) is then a Gaussian state with χT ðΩξÞ ¼ exp � 1
2 ξ

Tγtξ
� �

and γt ¼ a1M � 12 þ bðEM � 1MÞ � 12 for a symmetric covariant
cloner [see Supplementary Section 3] (1d: d × d identity matrix, Ed :
d × d matrix with ðEdÞi;j ¼ 1 for all i, j). The positivity of the cloning
transformation is fulfilled if and only if a− b ≥ 1 and a+ (M− 1)b ≥
M− 1. We find that the maximum fidelity is achieved, interestingly
regardless of Fock states, at a ¼ 2M�2

M and b ¼ M�2
M , with details in

Supplementary Section 3. For M= 2, we obtain the Gaussian NCB

FðGÞnc0 ¼ 2
3 ’ 0:6667, FðGÞnc1 ¼ 10

27 ’ 0:3704, FðGÞnc2 ¼ 22
81 ’ 0:2716,

and FðGÞnc3 ¼ 490
2187 ’ 0:2241, which rapidly decreases with n.

Ultimate no-cloning bound
Although Gaussian NCB is a useful benchmark, the ultimate NCB
must be obtained by optimizing over all possible physical
operations. The problem is to find the maximum value of
1
2 f̂ ð1Þn þ f̂ ð2Þn

D E
ρT

over all quantum states ρT. We examine the

largest eigenvalue of the corresponding operator in the truncated
Fock-state basis |n1, n2〉 with 0 ≤ n1, n2 ≤ Ntrunc. The density matrix
elements of Eq. (4) can be evaluated using position(momentum)
representation of Fock states [see Supplementary Section 1]. We
numerically obtain the ultimate NCB decreasing with n as
Fnc0 ’ 0:6826, Fnc1 ’ 0:5449, Fnc2 ’ 0:5145, and Fnc3 ’ 0:5033 with
Ntrunc= 300. We have checked that our results are stable with a
negligible change over varied Ntrunc [see Supplementary Fig. 1].

Fig. 1 a A quantum state |ψ〉 is displaced by an unknown amplitude
in phase space, which defines a set of states Sjψi � fD̂ðαÞjψi 8α 2 Cg.
An example of a non-Gaussian state |ψ〉= |2〉 is shown. b Optimal
1→ 2 cloner can be implemented by a nondegenerate parametric
amplifier (NDPA) and 50/50 beamsplitters with an ancilla state ρT
optimized
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Our method also gives the same known NCB for the coherent-
state inputs in ref. 9

For non-Gaussian states, there is a substantial difference
between the ultimate NCB and the Gaussian NCB, whereas the
difference is quite small for Gaussian states. For the coherent-state
input, while each component operator f̂ ðiÞ0 to determine fidelity is

Gaussian, the sum of those two operators 1
2 ðf̂ ð1Þ0 þ f̂ ð2Þ0 Þ ¼

1
2 ðe�

1
2ðx̂21þp̂22Þ þ e�

1
2ðx̂22þp̂21ÞÞ is non-Gaussian, which makes the non-

Gaussian cloning an optimal cloner. For non-Gaussian input states,
on the other hand, each component operator f̂ ðiÞn itself is already
non-Gaussian, not to mention their sum. While Gaussian states
also require non-Gaussian resources for optimal cloning,9 our
result clearly shows that non-Gaussian resources are more
essential to optimally clone non-Gaussian inputs.

Secure teleportation and QNG
We now demonstrate that the smaller NCB does not merely
mean “easy to achieve” by examining an important commu-
nication protocol—CV quantum teleportation.13 The output
state of CV teleportation can be described by χout(ξ)= χin(ξ)
χAB(ξ*, ξ) where χAB(ξ1, ξ2) is the characteristic function of the
two-mode resource state.30,40 Let us consider a typical resource,
i.e., two-mode squeezed state (TMSV) to illustrate a general
trend. The teleportation fidelity is then given by F ¼
1
π

R
d2ξχ inð�ξÞχ inðξÞe�e�2r jξj2 with an r-squeezing parameter. Both

the mean photon number and the entanglement of TMSV
increase with r, which can be used as a measure of the required
resource. We investigate the critical value of r to achieve secure
teleportation above the NCB for each case.

(i) Fock-state inputs—interestingly, the output fidelity above
the Gaussian NCB can be achieved with the same squeezing
r ¼ tanh�1 1

3 regardless of Fock states |n〉. In this case, the
correlated quadratures of TMSV become

Δ2 x̂A�x̂Bffiffi
2

p
� �D E

¼ Δ2 p̂Aþp̂Bffiffi
2

p
� �D E

¼ 1
2 V0, where V0 is the vacuum

fluctuation. This result reflects the feature of Gaussian
cloners,7 where the optimal cloning is achieved when the
added noise is the half of vacuum fluctuation. To achieve
the fidelity corresponding to the ultimate NCB, resource
requirement r is of course higher than that for the Gaussian
NCB. In Fig. 2, we see that higher squeezing r is needed for a
larger n, even though the NCB itself is smaller.

One may wonder if our finding varies with the type of
resource state used for teleportation, as we have used a
Gaussian resource, TMSV, even for the teleportation of non-
Gaussian states. It was shown that the teleportation fidelity can
be improved by employing non-Gaussian resources under
the energy constraint for coherent-state inputs.31 In
Supplementary Section 6, we perform a similar analysis for
non-Gaussian input states to draw the same conclusion, i.e.,
teleportation of non-Gaussian input states requires more
resources to overcome the NCB, even when optimal non-
Gaussian entangled resources are employed.

As a remark, the output state via teleportation with TMSV
is given by χoutðξÞ ¼ χ inðξÞe�e�2r jξj2 , which is equivalent to
the output under Gaussian noise-added channels. Thus, our
result also represents the robustness of security under
Gaussian channels, which is the strongest when Gaussian
input states are employed.

It is also an interesting issue how Alice and Bob can
actually confirm security in teleportation, as the output
fidelity above NCB should be verified with respect to
unknown input states. In a typical teleportation experi-
ment,41 there exists a third party who provides an input
state to Alice and who also checks the output fidelity
afterward to assess the performance quality. On the other
hand, if Alice and Bob themselves want to do the security
analysis, they may execute a trial teleportation for a subset
of sample states. That is, Alice herself prepares some states
(selected from the set of unknown states they are supposed
to teleport) and performs the teleportation protocol with
Bob who can check the fidelity with the information Alice
gives. This procedure is somewhat similar to the security test
in quantum key distribution,10–12 using sample data out of
raw correlated data established between Alice and Bob,
which enables them to analyze the properties of the
channel they use and bound the information Eve possesses.

(ii) General pure-state inputs—We now want to discuss the relation
between QNG and NCB for secure quantum communication
more rigorously. A faithful measure of QNG was introduced in
ref. 20 using a convex-roof extension of non-Gaussianity
defined by the relative entropy δ(ρ)≡ S(ρ|τ)= S(τ)− S(ρ)42,43

for a given state ρ with respect to its reference Gaussian state τ
having the same first and second moments (S: von Neumann
entropy). For a pure state, QNG is simply given by the entropy
of the reference Gaussian state S(τ). We here consider two
general non-Gaussian states, a superposition of Fock states
and cat states, with the results in Fig. 3a showing NCB versus
QNG. The procedures to obtain NCB for general input states
are described in Supplementary Section 1. For superposition
states c0|0〉+ c1|1〉, c0|0〉+ c2|2〉, and c1|1〉+ c2|2〉, we have
calculated each quantity by changing the coefficients
gradually. For a comprehensive analysis, we have also
generated the superposition of |0〉, |1〉, and |2〉 randomly 9 ×
103 times (gray dots). For an even or odd cat state,

N ±
α ðjαi± j � αiÞ with N ±

α ¼ 2 ± 2e�2α2
� ��1=2

normalization

factor, we obtain NCB and QNG by changing α from 0 to 2.
For a fixed QNG, different input states show a very close

value of NCB and we find an overall trend—NCB decreases
with QNG. We also note that the NCBs for all non-Gaussian
states are below that of Gaussian states, 0.6826.

We also plot the critical squeezing rc required to
achieve NCB in Fig. 3b. rc varies with a class of input
states at a fixed QNG, however, it shows a monotonic
behavior within the same class. The difference might be
further reduced when one employs resource states opti-
mized for each input state. Our result shows that it becomes
more demanding to achieve secure teleportation with a larger

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2
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r

F

Fig. 2 Teleportation fidelity using TMSV as a resource [Supplemen-
tary Eq. (32)] and squeezing requirement to achieve NCB. Solid
curves represent the fidelity for n= 0 (red), 1 (green), 2 (blue), and 3
(brown) from top to bottom. Horizontal dashed (dotted) lines
represent the ultimate (Gaussian) NCB and the vertical dashed
(dotted) lines, the required squeezing to achieve each NCB

J. Lee et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2019)    49 



QNG of input states. We recall that the NCB is invariant under
Gaussian unitaries, which means our result covers a broader
class of non-Gaussian states, including squeezed non-
Gaussian states. QNG δ is also invariant under Gaussian
unitaries,20 which supports our conclusion in relation to QNG
and NCB more broadly.

(iii) Mixed-state inputs—So far, we have considered pure-state
inputs as an ideal information carrier. We intend to further
extend this approach to mixed-state inputs to more
rigorously identify which source of QNG is a critical factor
affecting secure communication. For mixed-state inputs, we
adopt a trace method to quantify the overlap of two states in
Eq. (1) instead of the usual fidelity measure. The overlap Tr
{ρτ} may be operationally interpreted as the expectation
value of the output state τ over the observable ρ.44 In another
perspective, it represents the overlap of the Wigner functions
in phase space, i.e., Trfρτg ¼ π

R
d2αWρðαÞWτðαÞ. This quasi-

probability overlap can also be readily measured experimen-
tally by mixing two states ρ and τ at a 50:50 beam splitter
and then observing the number parity of one output state.

That is, Wρðα1ÞWτðα2Þ�!BS W 0
12ðα1; α2Þ ¼ Wρðα1þα2ffiffi

2
p ÞWτðα1�α2ffiffi

2
p Þ,

from which the parity of mode 2 is given by
π
2W

0
2ðα2 ¼ 0Þ ¼ π

2

R
d2α1W 0

12ðα1; 0Þ ¼ π
R
d2αWρðαÞWτðαÞ. This

method was used, e.g., to detect entanglement by measur-
ing local and global purities Tr{ρ2} after preparing two
identical states.45 This overlap measure applied to mixed
states may involve an undesirable feature. For instance,
given ρ= 0.75|0〉〈0|+ 0.25|1〉〈1|, a different state τ= 0.9|0〉
〈0|+ 0.1|1〉〈1| may yield a higher overlap than ρ itself, i.e.,
Tr{ρτ} > Tr{ρ2}, an issue related to mixedness of each state.
Nevertheless, with more details in Supplementary Section 7,

our overlap measure is relevant to capture the essence of
quantum cloning and the related problems.

Importantly, when both of the NCB and the performance quality
of teleportation are assessed and compared using the same
measure (fidelity or state overlap), our analysis is fair: by its
construction, the NCB derived in terms of trace in Eq. (1) (state
overlap in phase space) indicates that no pair of two cloned copies
can possess the value above the bound in terms of the same
measure. Therefore, for a given mixed-input state ρin, if the
condition Trfρteleρing>Max 1

2 Trfρclone1ρing þ Trfρclone2ρing½ �, where
the latter maximum is our NCB benchmark, is verified importantly
in ensemble sense averaged over unknown amplitudes α in the
entire phase space, we can say that there does not exist a copy
possessing better state overlap than the teleported state with the
original state.
To begin with, we need to make a distinction between QNG and

simple non-Gaussianity. Even a finite mixture of Gaussian states
can be a non-Gaussian state, which however is not regarded as
genuinely quantum non-Gaussian.46–53 To illustrate that our
conclusion only refers to QNG, not simply non-Gaussianity, we
compare the even-cat state Nþ

α ðjαi þ j � αiÞ and the coherent-
state mixture 1

2 ðjαihαj þ j � αih�αjÞ. Figure 4a shows the resource
requirement to beat NCB for those two cases. The QNG for a pure-
cat state increases with α, whereas the mixed-cat state has no
QNG, regardless of α. The critical squeezing for even-cat states
increases with QNG, while that for coherent-state mixtures hardly
changes.

Fig. 3 a QNG in terms of δ (main text) versus NCB for quantum non-
Gaussian states. b QNG versus critical squeezing to achieve secure
quantum teleportation

Fig. 4 a Critical squeezing rc to achieve secure quantum teleporta-
tion with respect to α for even-cat states (black crosses) and for
coherent-state mixtures (orange triangles). b Critical squeezing rc
versus logarithmic Wigner negativity WN. Each point corresponds to
a randomly chosen mixed state in the Fock space |0〉, |1〉, and |2〉
(red dot: vacuum state)
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To understand the critical source of QNG more deeply, we
investigate mixed-input states residing in the Hilbert space
spanned by |0〉, |1〉, and |2〉, which cover positive and nonpositive
Wigner functions. We then compare the logarithmic Wigner
negativity WN � log½Rd2αjWðαÞj�32,33 of the input state with its
resource requirement rc to beat NCB in Fig. 4b. We find an overall
monotonic relation between rc and WN. We also note that the
critical squeezing is not substantially varied among states when
WN is absent (values along the y axis in Fig. 4b). We thus draw the
conclusion that QNG in terms of WN critically determines the
resource requirement to beat NCB. This tendency is somewhat
related to the point that higher Fock-state components in the
resource state are needed to better teleport the non-Gaussian
structure of the Wigner function. For those states with a positive
Wigner function, such a non-Gaussian structure is much simpler,
leading to a less-demanding resource requirement.

DISCUSSION
Our study reveals that QNG is an important characteristic to
consider for secure quantum communication. Overall, the NCB
benchmark decreases with QNG, while the resource requirement
to achieve secure communication becomes more demanding with
QNG. To draw our conclusion, we have extensively investigated
QNG states, both pure and mixed, and remarkably found that the
role of QNG is prominent when Wigner function is nonpositive,
pointing out the WN as a critical factor.
While more detailed investigation, e.g., distribution of input

states with a finite variance,54 will be necessary in the future, our
finding already has a crucial implication for CV quantum
communication. For instance, if our goal is to send information
securely in the form of continuous amplitudes, our result shows
that the resource requirement is minimal with coherent-state
inputs. So far, coherent states have been mostly used, because
they are readily available CV states. Our result demonstrates that
they actually have a merit for secure communication in a rigorous
sense. In addition, the NCB studied here can be importantly used
for the security analysis of communication for a broad class of
QNG states. There are other interesting and critical issues to
address for CV quantum informatics, and we hope our work could
provide a useful insight into future works.

METHODS
Optimality of a covariant cloner
We here prove the optimality of covariant cloners by showing that, for an
arbitrary cloner T, one can always construct a covariant cloner ~T resulting
in the same fidelity. Let us define a cloning map ~T by averaging over
shifted cloners Tβ of the given T, defined in Eq. (2), in the whole phase
space, i.e., ~TðρÞ ¼ R

d2βpðβÞTβðρÞ with a flat distribution p(β). Obviously, ~T
is a covariant map satisfying invariance under shifting ~T ¼ ~Tγ for all γ. The
fidelity of the ith clone in Eq. (1) under ~T , with an average over all input
states jψαi � D̂ðαÞjψi, is expressed as

R
d2αpðαÞTr ~T jψαihψαjð ÞjψαihψαjðiÞ

h i

¼ R
d2αd2βpðαÞpðβÞ

´ Tr T D̂ðβÞjψαihψαjD̂yðβÞ� �
D̂iðβÞjψαihψαjðiÞD̂y

i ðβÞ
h i

¼ R
d2αd2βpðαÞpðβÞ

´ Tr T jψαþβihψαþβj
� �jψαþβihψαþβjðiÞ

h i

¼ R
d2α0pðα0ÞTr T jψα0ihψα0jð Þjψα0ihψα0jðiÞ

h i
;

(5)

which is identical with the average fidelity under a given cloner T. Thus, the
optimal cloning fidelity can always be obtained by considering covariant
cloners only.

Gaussian invariance
We here demonstrate the invariance of NCB under Gaussian unitary
operations ÛG including displacement, squeezing, and phase rotation. For
any cloner T on the set of states Sjψi, we can find a cloner TUG on the set of
states SÛG jψi yielding the same average fidelity, which is given by

TUG ðρÞ ¼ Û�M
G TðÛy

GρÛGÞÛy�M
G . Operationally, TUG first performs the inverse

Gaussian unitary Ûy
G on an input and then applies the same cloning map T

followed by the Gaussian operation ÛG on the cloned copies.
The same fidelity under the two cloners can be shown as follows. An

arbitrary ÛG makes a linear transformation between input and output
operators (Bogoliubov transformation), which yields Ûy

GD̂ðαÞÛG ¼ D̂ð~αÞ, i.e.,
a displacement operator is transformed into another displacement
operator. This gives a variant covariance property of the map TUG as

TUG D̂ðαÞÛGρÛ
y
GD̂

yðαÞ
� �

= ðD̂ðαÞÛGÞ�MTðρÞðÛy
GD̂

yðαÞÞ�M, where we have

used the covariance property of the map T. We then find

Tr TUG D̂ðαÞÛGρÛ
y
GD̂

yðαÞ
� �

D̂ðiÞðαÞÛðiÞ
G ρðiÞÛyðiÞ

G D̂yðiÞðαÞ
h i

¼ Tr TðρÞρðiÞ� �
;

(6)

using the invariance of trace under operator reordering and ÛyÛ ¼ I. That
is, finding an optimal cloner T on Sjψi is equivalent to finding an optimal
TUG on SÛGjψi. In Fig. 1b, the cloning scheme for TUG corresponds to that for

T by additionally implementing Ûy
G on the input state and ÛG on the output

clones, respectively.
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