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Achieving high-fidelity single-qubit gates in a strongly driven
charge qubit with 1/f charge noise
Yuan-Chi Yang 1, S. N. Coppersmith1 and Mark Friesen 1

Charge qubits formed in double quantum dots represent quintessential two-level systems that enjoy both ease of control and
efficient readout. Unfortunately, charge noise can cause rapid decoherence, with typical single-qubit gate fidelities falling below
90%. Here we develop analytical methods to study the evolution of strongly driven charge qubits, for general and 1/f charge-noise
spectra. We show that special pulsing techniques can simultaneously suppress errors due to strong driving and charge noise,
yielding single-qubit gates with fidelities above 99.9%. These results demonstrate that quantum dot charge qubits provide a
potential route to high-fidelity quantum computation.
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INTRODUCTION
Building high-quality qubits is a key objective in quantum
information processing. Achieving high-fidelity gates requires
both precise control and effective measures to combat decoher-
ence arising from the environment. Semiconductor-based quan-
tum dot charge qubits, for example, suffer from strong coupling to
charge noise that causes voltage fluctuations on the control
electrodes,1–3 which has so far limited gate fidelities to below
90%.4 To be suitable for scalable quantum computation, the
fidelity must be increased to at least 99%.5

One strategy for achieving higher fidelities is to operate the
qubits as fast as possible, for example, by driving them with strong
microwaves. AC driving also mitigates decoherence, by elevating
the relevant noise frequencies to the microwave regime, where
their power is suppressed.6,7 However high-power microwaves
can potentially cause detrimental strong-driving effects, including
Bloch–Siegert shifts of the resonant frequency8–10 and fast
oscillations superimposed on top of Rabi oscillations.11 They can
also expose the qubit to new types of decoherence such as
dephasing caused by noise-induced variations of the Rabi
frequency.6,7 While Bloch–Siegert shifts can be accommodated
by adjusting the driving frequency or gate time, and the induced
decoherence can be suppressed by employing AC sweet spots,12

fast oscillations may be difficult to control, resulting in gate errors.
There are several known approaches for mitigating control errors,
including pulse-shaping methods that suppress oscillations by
engineering the pulse envelopes.11,13,14 However, such schemes
tend to increase the complexity of the control procedure.
Here we propose an alternative control scheme for strong

driving, based on rectangular pulse envelopes engineered to
produce nodes in the fast oscillations at the end of a gate
operation, thereby minimizing their influence. We demonstrate
our method on a double-quantum-dot charge qubit, showing that
high-fidelity gate operations can be achieved in charge qubits
under strong driving, even while 1/f noise is applied to the
double-dot detuning parameter. This noise spectrum is particu-
larly interesting because it has both Markovian and non-

Markovian components. By employing both numerical and
analytical techniques, we identify specific rotations that synchro-
nize Rabi and fast oscillations, yielding a complete set of single-
qubit gates that suppress control errors. We then propose a
protocol for suppressing decoherence caused by charge noise,
yielding gates with fidelities higher than 99.9%, for typical charge
noise magnitudes.1,3,15,16

We also develop an analytical formalism based on a cumulant
expansion, to accurately describe qubit dynamics in the presence
of time-averaged 1/f noise. This formalism allows us explicitly
calculate and distinguish between strong driving control errors
and decoherence occurring in the weak and strong driving limits.

RESULTS
Noise-free evolution
The basis states of a double quantum dot charge qubit, |L〉 and |R〉,
represent the localized positions of an excess charge in the left or
right dot, as indicated in Fig. 1a.4,17,18 We consider ac gating of a
single qubit, with the Hamiltonian Hsys =Hq þHac, where Hq =
−(ε/2)σx− Δσz, the σi are Pauli matrices, ε is the detuning
parameter (defined as the energy difference between the two
dots), and Δ is the tunnel coupling between the dots. Here we
have expressed Hsys in the eigenbasis 0j i ¼ Lj i � Rj ið Þ= ffiffiffi

2
p�

,
1j i ¼ Lj i þ Rj ið Þ= ffiffiffi

2
p �

, corresponding to the charge qubit “sweet
spot” ε= 0, where it is first-order insensitive to electrical noise.4

Unless otherwise noted, we assume that the nominal operating
point is ε= 0 throughout the remainder of this work. When a
microwave signal is applied to ε, the driving Hamiltonian is given
byHac ¼ ðAε=2Þσxcosðωdt þ ϕÞ, where Aε is the driving amplitude,
ωd is its angular frequency, and ϕ is the phase at time t= 0, when
the drive is initiated.
First, we follow ref. 11 and obtain exact solutions for strongly-

driven qubits in the absence of noise, up to arbitrary order in the
strong-driving parameter γ= Aε/(16Δ). Expanding the time-
evolution operator order-by-order as U0(t)=

P1
n¼0 γ

nUðnÞ
0 , we
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obtain

Uð0Þ
0 ðtÞ ¼ ei~ωrestcosðΩt=2Þ �ieið~ωrestþϕÞsinðΩt=2Þ

�ie�iϕsinðΩt=2Þ cosðΩt=2Þ

 !
: (1)

[Higher-order terms are provided in Supplementary Section S2,
Eq. (S5)]. Here, we consider only resonant driving, ωd= ~ωres, where
�h~ωres = 2Δ(1+ 4γ2) is the renormalized resonant angular fre-
quency, including Bloch–Siegert corrections, and ħΩ= Aε(1+ γ2)/2
is the renormalized Rabi angular frequency.
In the rotating frame defined by Hrot =

Uy
rotHsysUrot � i�hUy

rotðd=dtÞUrot, with Urot= diag eiωdt=2; e�iωdt=2
� �

,

the ideal evolution term Uð0Þ
0 generates smooth, sinusoidal, Rabi

oscillations, corresponding to rotations about the (cosϕ, −sinϕ, 0)

axis of the Bloch sphere. The Uð1Þ
0 term represents the dominant

fast oscillations associated with strong driving, with amplitude ~γ.
Both drive components can be observed in the top panel of Fig.
1b, where we show that our analytical results (shown here up to O
[γ2]) agree well with the results of numerical simulations of the full
Hamiltonian.
Fast oscillations can cause gate infidelity. For example, if we

consider an Rθ(ϕ) rotation of angle θ about the (cosϕ, −sinϕ, 0)
axis, the fast oscillations may prevent the density matrix element
ρ00 from reaching 0 at the end of a gate period, tπ. We see this
more clearly by plotting the fast and Rabi oscillation components
separately in the top inset of Fig. 1b. On the other hand, we may
adjust the pulse parameters Aε and ϕ to synchronize the fast
oscillations with the slower Rabi oscillations, as shown in the
bottom inset, to obtain an Rθ(ϕ) gate with much higher fidelity.
We characterize the infidelity arising from the fast oscillations

by computing the process fidelity Fθ(ϕ), defined by comparing the
ideal evolution operator Uð0Þ

0 to the actual evolution U0, for Rθ(ϕ) in
the rotating frame. [see Eq. (S2) of Supplementary Section S1 for a
precise definition of the process fidelity]. We find that specific Aε’s
give rotations with perfect fidelity when θ= π, 2π, 3π,… for any ϕ.

More importantly, when ϕ= π/4, 3π/4, 5π/4, …, we obtain

1� FθðϕÞ ¼ 2γ2 1� cos 2θ~ωres=Ωð Þ½ �
þ4γ3 sinθsin 2θ~ωres=Ωð Þ þ O½γ4�; (2)

where, again, γ= Aε/(16Δ). For these values of ϕ, the infidelity due
to strong-driving errors is bounded above by ~4γ2. Moreover, the
oscillations are synchronized, yielding perfect fidelity (up to O[γ4]),
when 2θ~ωres=Ω= Nπ, with N an even integer. Since this condition
can be met for a continuous range of θ by adjusting Ω (i.e., Aε), and
since ϕ= π/4 and 3π/4 represent orthogonal rotation axes, the
rotations {Rθ(π/4), Rθ(3π/4)} therefore generate a complete set of
high-fidelity single-qubit gates. Additional phase control is
provided by adjusting the waiting time between ac pulses. Unless
otherwise noted, we set ϕ= π/4 for the remainder of our analysis.

Charge noise
We introduce charge noise into our analysis through the
Hamiltonian term Hn ¼ hnδεðtÞ, where δε(t) is a random variable
affecting the detuning parameter and hn=−σx/2 is referred to as
the noise matrix.1,3,15,16 The noise is characterized in terms of its
time correlation function S(t1− t2)= 〈δε(t1)δε(t2)〉, where the
brackets denote an average over noise realizations, and the
corresponding noise power spectrum is ~SðωÞ ¼ R1�1dt eiωtSðtÞ.19
Although we obtain analytical solutions for generic noise spectra
in Supplementary Sec. S3, below we focus on 1/f noise, including
in our simulations, due to its relevance for charge noise in
semiconducting devices:20,21

~SðωÞ ¼ c2ε
2π
ωj j ωl � ωj j � ωhð Þ

0 ðotherwiseÞ

(
; (3)

where cε is related to the standard deviation of the detuning

noise, σε, via σε ¼ cε 2 ln
ffiffiffiffiffiffi
2π

p
cε=�hωl

� �� �1=2
,6,22 and ωl (ωh) are low

(high) cutoff angular frequencies. We note that all frequencies
relevant for qubit operation occur between these two cutoffs, so
that the decoherence includes both Markovian and non-
Markovain contributions.
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Fig. 1 Strongly driven charge qubit. a Energy level diagram of a charge qubit. The insets depict a double quantum dot in three regimes of
detuning, ε. (A potential charge noise fluctuation is shown as a dashed line.) Here, filled circles indicate the position of the excess electron in
the ground state, and the barrier between the dots induces a tunnel coupling, Δ. b Time evolution of the density matrix element ρ00 in the
laboratory frame, including numerical simulations (dashed lines), analytical calculations obtained from Eq. (4) (solid black lines), and their
differences (dotted lines). (Here, brackets 〈·〉 denote a noise average.) In all cases, we use {ε, Δ, Aε}/h= {0, 5, 4} GHz, ϕ= π/4 and initial state |0〉.
We assume the charge noise follows the 1/f spectrum of Eq. (3), with frequency cutoffs ωl/2π= 0.193 MHz and ωh/2π= 80.8 GHz, and noise
amplitudes cε as indicated. The insets of b show blow-ups of the evolution near the end of a π-rotation (t= tπ), decomposed into their Rabi
(dark purple) and fast-oscillation components (red). The oscillations are synchronized at tπ when N ¼ ð2θ~ωresÞ=ðπΩÞ is an even integer,
resulting in high-fidelity gates. (The main panels also use N= 10.) Charge noise causes a slight decay of 〈ρ00〉 at the end of the simulation
period (2tπ≃ 0.5 ns), which can be observed more clearly at long times in c. c Time evolution of the density matrix element ρI00 in the
interaction frame, including numerical simulations (dashed gray line) and the simple asymptotic expression from Eq. (5) (solid cyan line) with
corrections to Kφ up to O[γ2] and corrections to KM and KnMnφ up to O[γ], as discussed in Supplementary Sec. S3. The inset shows a short-time
blow-up in the interaction frame; it further includes our full analytical calculations obtained from Eq. (4) (solid black line)
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We now present numerical simulations of a strongly driven,
noisy charge qubit. A typical result is shown in the middle panel of
Fig. 1b, where the suppression of Rabi oscillations is a direct
consequence of the charge noise. To differentiate the effects of
decoherence from those arising from strong driving, we present
the same results in an interaction frame defined by U0, ρI ¼ Uy

0ρU0,
in which the fast oscillations due to strong driving are not
observed. Figure 1c shows the resulting long-time decay of the
density matrix, while the inset shows the short-time behavior on
an expanded scale. Note that the fast oscillations observed here
do not arise directly from strong driving, but rather from non-
Markovian noise terms, as discussed below.

Analytical solutions, with charge noise
Several theoretical techniques have been applied to noisy, driven
two-level systems, including master equations,6,7,23–27 dissipative
Lander-Zener-Stückelberg interferometry,28,29 and treatments of
spin-Boson systems.30–32 In Supplementary Sec. S3, we solve the
dynamical equation in the interaction frame via a cumulant
expansion,33,34 truncated at O[(δε/ħΩ)2]. The time evolution can be
written in the form rI(t)= exp[K(t)]rI(0) by expressing

ρI
	 
 ¼ 1=2 I2 þ rIxσx þ rIyσy þ rIzσz

� �
. Here, I2 is the 2 × 2 identity

matrix, rI ¼ rIx; r
I
y ; r

I
z

� �
is the Bloch vector, and K(t) is a 3 × 3

evolution matrix, given by

½KðtÞ�ij ¼ � 4

�h2
X
ω1;ω2

�αj;ω1αi;ω2 þ δij
X3
k¼1

αk;ω1αk;ω2

" #
Iðt;ω1;ω2Þ;

(4)

where we have expand the noise matrix in the interaction frame
into Fourier components hInðtÞ � Uy

0hnU0 ¼
P

i;ω αi;ωeiωt , and

defined Iðt;ω1;ω2Þ �
R t
0dt1

R t1
0 dt2e

iω1t1eiω2t2S t1 � t2ð Þ. Since U0

can be expressed order-by-order in γ, the same is also true of
αi,ω, allowing us to distinguish the effects arising in the weak-drive
limit, O[γ0], from the strong-driving limit, O[γn], for n ≥ 1. The
accuracy of this cumulant approach is evident in Fig. 1b, c, where
the theoretical results (solid black line) are seen to capture all the
fine structure of the simulations. Indeed, the bottom panel of Fig.
1b indicates that the analytical and numerical solutions differ by
<10−3 over the entire range plotted.
The physics of noise-averaged qubit dynamics is encoded in

K(t), which can be decomposed into a sum of Markovian terms KM,
and non-Markovian terms. The latter may be further divided into
pure-dephasing terms Kφ,

26,35,36 and non-Markovian-non-
dephasing terms KnMnφ. Pure-dephasing terms are conventionally
associated with the integral I(t, ω1= 0, ω2= 0) ~ t2 ln(1/ωlt).

26,35,36

However, since K is defined in a rotating frame, “pure dephasing”
has a different meaning than in the laboratory frame:7,26 here, the
leading order contributions to Kφ are proportional to γ2, and are
therefore attributed to strong driving. Markovian terms are
associated with the integral Re[I(t, ω, −ω)], corresponding to
short correlation times [see Supplementary Eq. (S34)], and
exponential decay (~e−Γt). The dominant non-Markovian-non-
dephasing terms are associated with the integral Im[I(t, ω, −ω)]],
yielding slow oscillations in the rotating frame, as well as the fast
oscillations in the inset of Fig. 1c. Since it is common in the
literature to treat the dephasing and depolarizing channels
separately,26 it is significant that our method encompasses both
phenomena (and other behavior, including KnMnφ) within a
common framework, allowing us to compare and contrast their
effects.

Asymptotic solutions
We can compute the asymptotic behavior of rI(t) analytically, using
the cumulant expansion. In the limit t � 1=ω, where ω is any

characteristic qubit frequency, many terms drop out, yielding the
leading-order solution in γ:

rIðtÞ ¼ e�Γz tffiffiffi
2

p sin ΓnMnφt
� �

; sin ΓnMnφt
� �

;
ffiffiffi
2

p
cos ΓnMnφt
� �h i

; (5)

for the initial state |0〉. Here, the decoherence is dominated by the
integral Iðt;ω;�ωÞ � ~SðωÞt=2þ ~SimagðωÞt, whose imaginary part is
given by ~SimagðωÞ � c2ε 2i=ωð Þln ω=ωlj j. The real part describes
exponential decay, giving the Markovian decoherence rate for
driven evolution, Γz= 1=16�h2

� �
4~S ~ωresð Þ�

+ ~S ~ωres þ Ωð Þ+
~S ~ωres � Ωð Þ� as observed in Fig. 1c, which can also be derived
from Bloch-Redfield theory.26,27 The imaginary part corresponds to a
non-Markovian-non-dephasing noise-induced rotation with fre-
quency ΓnMnφ ¼ �i=8�h2

� �
~Simag �~ωres þ Ωð Þ þ ~Simag ~ωres þ Ωð Þ� �� �

,
originating from the integrated low-frequency (“quasistatic”) portion

of the noise spectrum,
R ω
ωl
dω0Sðω0Þ=π

h i1=2
¼ cε 2lnðω=ωlÞ½ �1=2.

Besides these lowest-order results, which are the only important
terms under weak driving, we can also compute higher-order
corrections to these terms that become important under strong
driving. Such high-order results are presented in Supplementary
Section S3.
We can define a figure of merit (FOM), fRabi/ΓRabi, corresponding

to the number of coherent R2π(π/4) rotations within a Rabi decay
period TRabi= 1/ΓRabi (not including strong-driving control errors),
where the Rabi decay rate ΓRabi is determined from Eq. (5) such
that ρI00 t ¼ 1=ΓRabi

� �	 
 � ð1þ e�1Þ=2. By exploring a range of
control parameters in Fig. 2, we first confirm that the FOM is
strongly enhanced at the sweet spot ε= 0 (lower inset). Increasing
the tunnel coupling Δ and the driving amplitude Aε both enhance
the FOM, as shown in the main panel. By increasing Δ and Aε
simultaneously, as shown in the upper inset, we find that the FOM
can exceed 700 for a physically realistic charge noise amplitude of
cε= 0.5 μeV (σε= 3.12 μeV).1,3,15,16
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Fig. 2 Figure of merit (FOM) of gates of a strongly driven charge
qubit. Analytical calculations of the FOM fRabi/ΓRabi of a strongly
driven charge qubit, as a function of the tunnel coupling Δ and
driving amplitude Aε, at ε= 0 and ϕ= π/4, based on the asymptotic
formula in Eq. (5), with corrections to Kφ up to O[γ2] and corrections
to KM and KnMnφ up to O[γ], as discussed in Supplementary Sec. S3.
Here, fRabi is the Rabi frequency, ΓRabi is the Rabi decay rate, and the
1/f noise spectrum is given in Eq. (3), with cε= 0.5 μeV, ωl/2π= 1 Hz,
and ωh/2π= 100 THz. The upper inset shows a line-cut along Aε=Δ
in the main figure (blue dashed line), revealing a FOM as high as
700. In the lower inset, we fix Δ/h= 5 GHz and Aε/h= 4 GHz (cyan
star), but allow ε to vary, confirming that the FOM is maximized at
the sweet spot, ε= 0, where the qubit is first-order insensitive to
detuning noise
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Rπ(π/4) gate fidelity
We now compute process fidelities for Rπ(π/4) gates, using the χ-
matrix method described in Supplementary Sec. S1. Control errors
due to strong driving are investigated by considering Uð0Þ

0 as the
ideal evolution. The results of both numerical and analytical
calculations are shown in Fig. 3. For no noise (cε= 0), the
simulations are essentially identical to Eq. (2), revealing “dips” of
low infidelity, enabled by synchronized oscillations. For ϕ= π/4,
the dip minima are proportional to γ4, while their widths are
proportional to γ2 [see Supplementary Eq. (S13)], suggesting
potential benefits of working at large Aε ∝ γ. As cε increases, the
infidelity also grows, including both Markovian (KM), and non-
Markovian contributions (Kφ and KnMnφ). Initially, the envelope of
the infidelity oscillations decreases with Aε, because fast gates
have less time to be affected by noise; it then increases, due to the
combinantion of strong-driving effects and the decoherence
induced by strong driving. For smaller Aε, the simulations deviate
slightly from the analytical results when the high-order noise
terms become non-negligible. In all cases, the infidelity is locally
minimized when Aε is positioned at a dip.
For the noise levels considered in Fig. 3a, which are consistent

with recent experiments,1,3,15,16 we obtain Fmax≲ 99%, which is
insufficient for achieving high-fidelity gates. However, the follow-
ing procedure can be used to suppress both control errors and
decoherence. First, Aε is tuned to a dip. Then, Δ and Aε are
simultaneously increased while holding γ= Aε/16Δ (and thus N)
fixed. In this way, we remain in a dip, while increasing the gate
speed to suppress noise effects. The results are shown in Fig. 3b.
Here, when cε= 1 μeV (σε= 6.36 μeV), we obtain fidelities >99%
when Δ > 40 μeV, and >99.9% when Δ > 120 μeV. The correspond-
ing qubit frequencies, 2Δ/h= 29.3 GHz and 58.0 GHz, are compar-
able to the qubit frequency of the quantum dot spin qubit in
ref. 37, and the Rabi frequencies ≃4Δ/hN are generally lower. We
note that this protocol is applicable for any rotation angle θ, as
shown in Supplementary Section S5.

DISCUSSION
We have developed a new scheme for effectively harnessing
strong driving to perform high-fidelity gates in quantum double-
dot charge qubits, even in the presence of realistic 1/f noise. Our
protocol, and our analytical formalism, are both applicable to
other solid-state systems, including superconducting flux
qubits38,39 and quantum-dot singlet-triplet qubits,15,40,41 and can
be extended to systems with multiple levels, including quantum-

dot hybrid qubits3,11,42–46 and charge-quadrupole qubits.47,48

Phonon-induced decoherence can be also analyzed in this
formalism, after first averaging the phonons over the correspond-
ing thermal distribution.34,49–51 However, the effectiveness of the
protocol may be reduced compared to case of charge noise, since
the power spectral density of phonons typically increases with the
frequency.
A possible challenge for implementing this proposal is the

requirement of large tunnel couplings, which could results in fast
qubits that are difficult to control. However, by employing high-
order synchronized oscillations (e.g. N ~ 10), we can reduce gate
speeds to be compatible with current experiments. Improvements
in ac control technology and materials with lower charge noise
can also mitigate the technical challenges. On the other hand, the
phonon-induced relaxation rate increases strongly with tunnel
coupling,52–54 which will set an upper bound on the qubit
coherence. Moving forward, we note that the phase, ϕ, represents
an important control knob in our proposal, and can be viewed as a
simple pulse-shaping tool. In future work, it should be possible to
combine the methods described here with conventional pulse
shaping techniques, which would be expected to further improve
the gate fidelities.11,13,14

METHODS
Numerical Simulation
We numerically simulate the Schrodinger equation of a strongly driven,
noisy charge qubit, i�hdρ=dt ¼ ½Hsys þHn; ρ�, where the time sequences
for δε(t) are obtained by generating a white noise sequence, then scaling
its Fourier transform by an appropriate spectral function,55 such as Eq. (3).
We then average the density matrix 〈ρ(t)〉 over noise realizations. Details of
these procedures are provided in Supplementary Sec. S4.

Analytical formalism
We analytically solve the dynamical equation i�hdρI=dt ¼ δεðtÞLρI in the
interaction frame, where LρI � ½hIn; ρI� and hIn ¼ Uy

0hnU0. We then average
over the noise via a cumulant expansion,33,34 truncated at O[(δε/ħΩ)2],

yielding ρIðtÞ	 

= exp � 1

�h2
R t
0 dt1

R t1
0 dt2Lðt1ÞLðt2ÞSðt1 � t2Þ

h i
ρIð0Þ, where

we have assumed that the noise is stationary, with zero mean (〈δε〉= 0).
Details of the calculations are provided in Supplementary Sec. S3.

DATA AVAILABILITY
The data and numerical codes that support the findings of this study are available
from the corresponding author upon reasonable request.
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