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Observation of non-locality sharing among three observers
with one entangled pair via optimal weak measurement
Meng-Jun Hu1,2, Zhi-Yuan Zhou 1,2, Xiao-Min Hu1,2, Chuan-Feng Li1,2, Guang-Can Guo1,2 and Yong-Sheng Zhang 1,2

Bell non-locality plays a fundamental role in quantum theory. Numerous tests of the Bell inequality have been reported as the
ground-breaking discovery of the Bell theorem. Up to now, however, most discussions of the Bell scenario have focused on a single
pair of entangled particles distributed to only two separated observers. Recently, it has been shown surprisingly that multiple
observers can share the non-locality from an entangled pair using the method of weak measurement without post-selection [Phys.
Rev. Lett. 114, 250401 (2015)]. Here we report an observation of double CHSH-Bell inequality violations for a single pair of
entangled photons with strength continuous-tunable optimal weak measurement in a photonic system. Our results shed new light
on the interplay between non-locality and quantum measurements and our design of weak measurement protocol may also be
significant for important applications such as unbounded randomness certification and quantum steering.
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INTRODUCTION
Non-locality, which was pointed out by Einstein, Podolsky and
Rosen (EPR),1 plays a fundamental role in quantum theory. It has
been intensively investigated as the ground-breaking discovery of
Bell theorem by John Bell in 1964.2 Bell theorem states that any
local-realistic theory cannot reproduce all the predictions of
quantum theory and gives an experimental testable inequality3

that later improved by Clauser, Horne, Shimony and Holt (CHSH).4

Numerous tests of CHSH-Bell inequality have been realized in
various quantum systems5–13 and strong loophole-free Bell tests
have been reported recently.14–16

To date, however, most discussions of Bell scenario focus on
one pair of entangled particles distributed to only two separated
observers Alice and Bob.17 It is thus an important and
fundamental question whether or not multiple observers can
share the non-locality from an entangled pair. Using the concept
of weak measurement without post-selection, Silva et al. give a
surprising-positive answer to above question and show a
marvellous physical fact that measurement disturbance and
information gain of a single system are closely related to non-
locality distribution among multiple observers in one entangled
pair.18

In this article, we report an experimental realization of sharing
non-locality among three observers with strength continuous-
tunable optimal weak measurement in a photonic system. We
produce pairs of polarization-entangled photons in our experi-
ment and send it to Alice and Bob1, Bob2 separately, in this case
two Bobs access the same single particle from the entangled pairs
with Bob1 performs weak measurement. The realization of sharing
non-locality is certified by the observed double violations of
CHSH-Bell inequality among Alice-Bob1 and Alice-Bob2. The
reason behind this is that weak measurement performed by
Bob1 can be strong enough to obtain quantum correlations

between Alice and Bob1, and weak enough to retain quantum
correlations between Alice and Bob2. Our results not only shed
new light on the interplay between non-locality and quantum
measurements but also could find significant applications such as
in unbounded randomness certification19,20 and quantum
steering.21,22

RESULTS
As one of the foundations of quantum theory, the measurement
postulate states that upon measurement, a quantum system will
collapse into one of its eigenstates, with the probability
determined by the Born rule. Whereas this type of strong
measurement, which is projective and irreversible, obtains the
maximum information about a system, it also completely destroys
the system after the measurement. Weak measurement, i.e., the
coupling between the system and the probe is weak, however,
can be used to extract less information about the system with less
disturbance. It should be noted that this kind of weak disturbance
measurement combined with post selection usually refers to weak
measurement,23 which has been shown to be a powerful method
in signal amplification,24–26 state tomography27,28 and in solving
quantum paradoxes29 over the past decades. Hereafter, we follow
the definition in ref. 18 where weak measurement just refers to the
measurement with intermediate coupling strength between the
system and the probe. In contrast to strong projective measure-
ment, weak measurement is non-destructive and retains some
original properties of the measured system, e.g., coherence and
entanglement. Because the entanglement is not completely
destroyed by weak measurement, a particle that has been
measured with intermediate strength can still be entangled with
other particles, and therefore, sharing non-locality among multiple
observers is possible.
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Consider a von Neumann-type measurement30 on a spin-1/2
particle that is in the superposition state |ψ〉= α|↑〉+ β|↓〉 with |
α|2+ |β|2= 1, where |↑〉 (|↓〉) denotes the spin up (down) state.
After the measurement, the spin state is entangled with the
pointer’s state, i.e., |ψ〉⊗ |ϕ〉→ α|↑〉⊗ |ϕ↑〉+ β|↓〉⊗ |ϕ↓〉, where |ϕ〉
is the initial state of the pointer and |ϕ↑〉 (|ϕ↓) indicates the
measurement result of spin up (down). By tracing out the state of
the pointer, the spin state becomes

ρ ¼ Fρ0 þ ð1� FÞðπ"ρ0π" þ π#ρ0π#Þ; (1)

where ρ0= |ψ〉〈ψ|, π↑= |↑〉〈↑|, π↓= |↓〉〈↓| and F= 〈ϕ↓|ϕ↑〉. The
quantity F is called the measurement quality factor because it
measures the disturbance of the measurement.18 If F= 0, the spin
state is reduced to a completely decoherent state in the
measurement eigenbasis, representing a strong measurement;
otherwise, if F= 1, there is no measurement at all. For other cases,
i.e., F∈ (0, 1), it refers to the measurement with intermediate
strength called weak measurement.
Another important quantity associated with weak measurement

is the information gain G that is determined by the precision of
the measurement.18 In the case of strong measurement, the
probability of obtaining the outcome +1 (−1) that corresponds to
spin eigenstate |↑〉 (|↓〉) can be calculated by the Born rule P(+1)
= Tr(π↑ρ0) (P(−1)= Tr(π↓ρ0)). However, the non-orthogonality of
the pointer states 〈ϕ↑|ϕ↓〉 ≠ 0 in weak measurement results in
ambiguous outcomes. An observer who performs a weak
measurement must choose a complete orthogonal set of pointer
states {|ϕ+1〉, |ϕ−1〉} as reading states to define the outcomes {+1,
−1} corresponding to the spin eigenstates {|↑〉, |↓〉}. The
probabilities of the outcome ±1 in weak measurement then
become P(±1)= Tr(π↑ρ0)|〈ϕ±1|ϕ↑〉|

2+ Tr(π↓ρ0)|〈ϕ±1|ϕ↓〉|
2. Here, |

〈ϕ+1|ϕ↑〉|
2 and |〈ϕ−1|ϕ↓〉|

2 correspond to the probabilities of
obtaining the correct outcomes while |〈ϕ−1|ϕ↑〉|

2 and |〈ϕ+1|ϕ↓〉|
2

correspond to the probabilities of the wrong outcomes. For
simplicity, we consider the case of symmetric ambiguousness in
which |〈ϕ+1|ϕ↑〉|

2= |〈ϕ−1|ϕ↓〉|
2 and |〈ϕ−1|ϕ↑〉|

2= |〈ϕ+1|ϕ↓〉|
2, thus,

the probabilities of the outcomes can be reformulated as

Pð± 1Þ ¼ G � 1
2
½1 ± Trðσρ0Þ� þ ð1� GÞ � 1

2
; (2)

where σ= π↑− π↓ defines the spin observable and G= 1−|〈ϕ−1|
ϕ↑〉|

2−|〈ϕ+1|ϕ↓〉|
2 represents the precision of the measurement

(see more details in Methods). The quality factor F and the
precision G are determined solely by the pointer states and satisfy
the trade-off relation F2+ G2 ≤ 1.18 A weak measurement is
optimal if F2+ G2= 1 is satisfied.

Modified Bell test with weak measurement
In a typical Bell test scenario, one pair of entangled spin-1/2
particles is distributed between two separated observers, Alice

and Bob (Fig. 1a), who each receive a binary input x, y∈ {0, 1} and
subsequently give a binary output a, b ∈ {1, −1}. For each input x
(y), Alice (Bob) performs a strong projective measurement of her
(his) spin along a specific direction and obtains the outcome a (b).
The scenario is characterized by a joint probability distribution P
(ab|xy) of obtaining outcomes a and b, conditioned on measure-
ment inputs x for Alice and y for Bob. The fixed measurement
inputs x and y defines the correlations Cðx;yÞ ¼

P
a;b abPðabjxyÞ.

The CHSH-Bell test is focused on the so-called S value defined by
the combination of correlations

S ¼ Cð0;0Þ þ Cð0;1Þ þ Cð1;0Þ � Cð1;1Þ
�� ��: (3)

Whereas S ≤ 2 in any local hidden variable theory,4 quantum
theory gives a more relaxed bound of 2

ffiffiffi
2

p
.31

Here, we consider a new Bell scenario in which there are two
observers Bob1 and Bob2 access to the same one-half of the
entangled state of spin-1/2 particles (Fig. 1b). Alice, Bob1 and
Bob2 each receive a binary input x, y1, y2 ∈ {0,1} and subsequently
provide a binary output a, b1, b2 ∈ {1, −1}. For each input y1, Bob1
performs weak measurement of his spin along a specific direction,
whereas Alice and Bob2 perform strong projective measurements
for their input x and y2. With the outcome b1, Bob1 sends the
measured spin particle to Bob2. The scenario is now characterized
by joint conditional probabilities P(ab1b2|xy1y2), and an incisive
question is raised whether Bob1 and Bob2 can both share non-
locality with Alice. The answer is surprisingly positive that the
statistics of both Alice-Bob1 and Alice-Bob2 can indeed violate the
CHSH-Bell inequality simultaneously.18

The quantities G and F of weak measurement, respectively,
determine the S values of Alice-Bob1 and Alice-Bob2 in the new
Bell scenario. In the case that the Tsirelson’s bound 2

ffiffiffi
2

p
of the

CHSH-Bell inequality can be attained, the calculation gives (see
more details in Methods)

SA�B1 ¼ 2
ffiffiffi
2

p
G; SA�B2 ¼

ffiffiffi
2

p
ð1þ FÞ: (4)

Realization of optimal weak measurement in a photonic system
To observe significant double violations of the CHSH-Bell inequal-
ity, the realization of optimal weak measurement is a key and
necessary requirement. In the original scheme proposed in ref. 18

the spatial degree of freedom of particle is used as the pointer.
However, the particle with common used spatial distributions, e.g.
Gaussian distribution, only realizes sub-optimal weak measure-
ment, i.e., F2+ G2 < 1. Here, we propose and realize optimal weak
measurement in a photonic system by using discrete pointer, i.e.,
path degree of freedom of photons instead of continuous
pointer.32 It should be noted here that whether or not the pointer
is continuous or discrete do not change any results discussed
above.
Before illustration of the experimental realization, it should be

emphasized first that weak measurement is mathematically
equivalent to positive operator valued measures (POVMs)
formalism33 and this becomes our basis of experimental design.
For the spin system discussed above, if Bob1 performs weak
measurement and obtains outcome ±1, the states of measured
system will accordingly collapse into

jΨ± 1is ¼ αhϕ± 1jϕ"ij "i þ βhϕ± 1jϕ#ij #i (5)

with probability P(±1)= Tr(|Ψ±1〉s〈Ψ±1|). The weak measurement of
Bob1 is actually to realize a two-outcome POVMs with Kraus
operators34

M± 1 ¼ hϕ± 1jϕ"ij "ih" j þ hϕ± 1jϕ#ij #ih# j (6)

corresponding to outcome ±1.
In our realization of weak measurement of Bob1 with photonic

elements as shown in Fig. 2a, the measured photons are in
polarization state and the path degree of freedom of photons is

Alice BobSource

a=+1 or -1

x=0 or 1

b=+1 or -1

y=0 or 1

Alice Bob1Source

a=+1 or -1

x=0 or 1

b1=+1 or -1

y1=0 or 1

Bob2

b2=+1 or -1

y2=0 or 1

a

b

Fig. 1 Bell test. a Typical Bell scenario in which one pair of
entangled particles is distributed to only two observers: Alice and
Bob. b Modified Bell scenario in which Bob1 and Bob2 access the
same single particle from the entangled pair with Bob1 performs a
weak measurement
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used as pointer. In order to perform weak measurement in specific
polarization basis {|φ〉, |φ⊥〉} with defined observable σφ= |φ〉〈φ|
− |φ⊥〉〈φ⊥|, we first transform the measured basis {|φ〉, |φ⊥〉} to
basis {|H〉, |V〉} via half wave plate (HWP1), then realize weak
measurement of observable σH= |H〉〈H|− |V〉〈V| via optical
elements between HWP1 and HWP4, HWP5 and finally transform
back to {|φ〉, |φ⊥〉} basis via HWP4 and HWP5. HWP1, HWP4 and
HWP5 are rotated by the same angle φ/2.
The key part of our setup is the realization of weak

measurement of observable σH and this is achieved by
interference between calcite beam displacers (BDs) (Fig. 2).
Consider photons with polarization state |Φ〉= α|H〉+ β|V〉 to be
measured, after interaction, the composite state of photons
becomes |ψ〉= α|H〉|ϕH〉+ β|V〉|ϕV〉 with |ϕH〉 (|ϕV〉) is the corre-
sponding pointer state. The reading states {|ϕ+1〉, |ϕ−1〉} in our
realization are chosen as states of two separated paths 0 and 1
(Fig. 2a) denoted by |0〉 and |1〉. By rotating HWP2 and HWP3
between BDs at θ/2 and π/4− θ/2 degrees respectively, the
pointer states become

jϕHi ¼ cosθj0i þ sinθj1i;
jϕVi ¼ sinθj0i þ cosθj1i (7)

with 0 ≤ θ ≤ π/2. The quality factor and information gain in our
case are F= 〈ϕH|ϕV〉= sin2θ and G= 1− |〈1|ϕH〉|

2− |〈0|ϕV〉|
2=

cos2θ. The condition of optimal weak measurement F2+ G2= 1 is
satisfied.
In practical experiment, we use the setup shown in Fig. 2b

instead of that shown in Fig. 2a. The setup shown in Fig. 2b can
realize the same optimal weak measurement as that in Fig. 2a and
the only difference is that specific outcome can be selected by
rotating HWP1 and HWP4. When Bob1 performs weak measure-
ment of observable σφ with HWP1 and HWP4 rotated at φ/2 (or π/
4− φ/2) degree, photons comes out of setup have state |Ψ+1〉=
M+1|Φ〉 (or |Ψ−1〉=M−1|Φ〉) corresponding to outcome +1 (or
−1). Here, M+1= cosθ|φ〉〈φ|− sinθ|φ⊥〉〈φ⊥|, M−1= sinθ|φ〉〈φ|−
cosθ|φ⊥〉〈φ⊥| are Kraus operators and Bob1 extracts his measure-
ment outcomes by final coincidence detection given that the
rotation angles of HWP1 and HWP4 are known to him. It should be
emphasized here that the outcomes of Bob1 are actually obtained
by Bob2 in our photonic experiment. This is because that the
measurement of Bob1 is realized by coupling polarization of

photons to its path and the outcomes are encoded in the path
after measurement.

Experimental observation of double Bell inequality violations
In our Bell test experiment (Fig. 3), polarization-entangled pairs of
photons in state ðjHijVi � jVijHiÞ= ffiffiffi

2
p

are generated by pumping
a type-II apodized periodically poled potassium titanyl phosphate
(PPKTP) crystal to produce photon pairs at a wavelength of
798 nm. A 4.5 mW pump laser centered at a wavelength of 399 nm
is produced by a Moglabs ECD004 laser, and a PPKTP crystal is
embedded in the middle of a Sagnac interferometer to ensure the
production of high-quality, high-brightness entangled pair.35,36

The maximum coincidence counting rates in the horizontal/
vertical basis are ~3200 s−1. The visibility of coincidence detection
for the maximally entangled state is measured to be 0.997 ± 0.006
in the horizontal/vertical polarization basis {|H〉, |V〉} and 0.993 ±
0.008 in the diagonal/antidiagonal polarization basis
fðjHi± jViÞ= ffiffiffi

2
p g, achieved by rotating the polarization analyzers

for two photons.
Alice, Bob1 and Bob2 each have two measurement choices, and

for each choice, two trials are needed, corresponding to two
different outcomes. For each fixed θ, which determines the
strength of the weak measurement F= sin2θ, we have imple-
mented 64 trials for calculating SA−B1 and SA−B2. To ensure that the
Tsirelson’s bound 2

ffiffiffi
2

p
can be approached, Alice chooses

measurement along direction Z or X, while Bobs choose
measurement along ð�Z þ XÞ= ffiffiffi

2
p

or �ðZ þ XÞ= ffiffiffi
2

p
direction. In

this experiment, HWP6 is set at (0°, 45°) or (22.5°, 67.5°),
corresponding to Alice’s measurement along the Z or X direction,
while HWP1 and HWP5, representing measurements of Bob1 and
Bob2, are set at (−11.25°, 33.75°) or (11.25°, 56.25°), corresponding
to the ð�Z þ XÞ= ffiffiffi

2
p

or �ðZ þ XÞ= ffiffiffi
2

p
direction, respectively. For

instance, if HWP1, HWP4 and HWP5 are rotated at −11.25°
and HWP6 is fixed at 0°, the three-variable joint conditional
probability P½a ¼ 1; b1 ¼ 1; b2 ¼ 1jx ¼ Z; y1 ¼ ð�Z þ XÞ= ffiffiffi

2
p

; y2 ¼
ð�Z þ XÞ= ffiffiffi

2
p � is obtained by the final coincidence detection. The

other joint conditional probabilities can be detected via similar
various combination of HWP1, HWP4, HWP5 and HWP6.
Five different angles θ= {4°, 16.4°, 18.4°, 20.5°, 28°} are chosen

from which the values of θ= {16.4°, 18.4°, 20.5°} are located in the
region where double violations are predicted to be observed. In

HWP1 HWP2

HWP3

0 45

45 45

45

HWP4

HWP5

HWP1 HWP2

HWP3

HWP4

45

path 1

path 0

a

b

Fig. 2 Optimal weak measurement realized in a photonic system. a HWP2 and HWP3 are rotated at θ/2 and π/4− θ/2 degree determining the
strength of measurement F= sin2θ. Photons with vertical polarization state |V〉 transmit calcite beam displacer (BD) without change of its path
while photons with horizontal polarization state |H〉 suffer a shift away from its original path. HWP1, HWP4 and HWP5 are rotated at the same
degree φ/2 to realize weak measurement of polarization observable σφ= |φ〉〈φ|− |φ⊥〉〈φ⊥|. The measurement outcome +1(−1) is encoded in
path 0(1) separately. b The setup, used in actual experiment, realizes same optimal weak measurement as shown above. The only difference is
that specific outcome +1(−1) can be selected by rotating HWP1 and HWP4. In the measurement of observation σφ with HWP1 and HWP4
rotated at φ/2 degree, outcome +1 is obtained when photons comes out of the setup and outcome −1 is obtained when HWP1 and HWP4
rotated at φ/2+ π/4. Note that measurement outcome values are extracted in the final coincidence detection
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particular, the balanced double violations SA−B1= SA−B2= 2.26 are
presented under optimal weak measurement when F= 0.6,
corresponding to θ= 18.4°. Our final results are shown in Fig. 4,
where double violations are clearly displayed at θ= {16.4°, 18.4°,
20.5°} with ~10 standard deviations. Specifically, when θ= 18.4°
we obtain SA−B1= 2.20 ± 0.02 and SA−B2= 2.17 ± 0.02. Considering
the possible statistical error, systematic error and imperfection of
our apparatus, these experimental results fit well within the
theoretical predictions.

DISCUSSION
In conclusion, we have observed double violations of the CHSH-
Bell inequality for the entangled state of photon pairs by using a

strength continuous-tunable optimal weak measurement. Our
experimental results verify the non-locality distribution among
multiple observers and shed new light on our understanding of
the fascinating properties of non-locality and quantum measure-
ment. The weak measurement technique used herein can find
significant applications in unbounded randomness certifica-
tion,19,20 which is a valuable resource applied from quantum
cryptography37,38 and quantum gambling39,40 to quantum simula-
tion.41 Here, the S value of the correlation between Alice and Bob2
is determined by the quality factor of Bob1’s weak measurement,
implying that Bob1 can control the non-local correlation of Alice
and Bob2 by manipulating the strength of his measurement. This
result provides tremendous motivation for the further quantum
steering research.21,22

Note added. After we have posted this work online we noticed
that double Bell inequality violations was also observed using
similar method in ref. 42 though they did not realize optimal weak
measurement.

METHODS
Weak measurement on a spin-1/2 particles
Consider a typical measurement of spin observable σz of a spin-1/2 particle
with eigenstates satisfy σz|↑〉= |↑〉 and σz|↓〉=−|↓〉. The initial pointer
state |ϕ〉 is entangled with spin system after measurement interaction

Ûðϱ� jϕihϕjÞÛy ¼ π"ϱπ" � jϕ"ihϕ"j þ π#ϱπ# � jϕ#ihϕ#j
þπ"ϱπ# � jϕ"ihϕ#j þ π#ϱπ" � jϕ#ihϕ"j;

(8)

where ϱ represents the initial state of spin system, π↑≡ |↑〉〈↑|, π↓≡ |↓〉〈↓|
are the projectors on the eigenstates of σz and |ϕ↑〉, |ϕ↓〉 are the evolved
pointer states corresponding to |↑〉, |↓〉, respectively.
The state of spin system, after tracing out pointer, becomes

ρ ¼ π"ϱπ" þ π#ϱπ# þ π"ϱπ# � hϕ#jϕ"i þ π#ϱπ" � hϕ"jϕ#i: (9)

To quantify the disturbance of measurement to the spin system, a
quantity F called quality factor of measurement can be defined18

F � hϕ"jϕ#i: (10)

Usually, F is a complex value. Without loss of generality, here we take it
as a real number for the simplicity of discussion. The Eq. (9) thus can be

0 5 10 15 20 25 30
θ (degree) 

1.5

2

2.5

2.8

S

Measured SA-B1
Measured SA-B2

Classical Bound

Fig. 4 Experimental results. The yellow and green curves represent
the theoretical predictions for SA−B1 and SA−B2, respectively, whereas
the red circles and blue rhombus indicate the practical measured
results for SA−B1 and SA−B2, corresponding θ= {4°, 16.4°, 18.4°, 20.5°,
28°}. Double violations are observed in θ= {16.4°, 18.4°, 20.5°} with
~10 standard deviations. The error bars are calculated according to
Poissonian counting statistics

laser

HWP4 HWP5

HWP6

HWP2

HWP3

PPKTP

HWP1

BD1 BD2

HWP
@399&798nm

HWP
@399 nm

Dichroic
Mirror

HWP
@798 nm

QWP
@399 nm

PBS
@798 nm

PBS
@399&798nm

Alice

Bob2Bob1
State Preparation

45

a=±1

b2=±1

b1=±1
coincidence

Fig. 3 Measurement setup. Polarization-entangled pairs of photons are produced by pumping a type-II apodized periodically poled
potassium titanyl phosphate (PPKTP) crystal placed in the middle of a Sagnac-loop interferometer with dimensions of 1mm× 2mm× 20mm
and with end faces with anti-reflective coating at wavelengths of 399 nm and 798 nm. The photon emitted to Alice is measured via a
combination of HWP6 and PBS. The green area shows the weak disturbance measurement setup of Bob1. During the experiment, HWP2,
HWP3 are rotated by θ/2, π/4− θ/2 according to the experimental requirement. HWP1 is used for Bob1’s measurement, and HWP4 is rotated
by the same angle as HWP1 to transform the photons polarization state back to the measurement basis after the photon passes through two
beam displacers (BDs). The photon passing through HWP4 is then sent to Bob2 for a strong projective measurement with HWP5 and PBS. In
the final stage, two-photon coincidences at 6 s are recorded by avalanche photodiode single-photon detectors and a coincidence counter
(ID800)
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reformulated as

ρ ¼ Fϱþ ð1� FÞðπ"ϱπ" þ π#ϱπ#Þ (11)

as that ρ= π↑ρπ↑+ π↓ρπ↓+ π↑ρπ↓+ π↓ρπ↑.
If F= 0, the spin-up state |↑〉 and spin-down state |↓〉 can be

distinguished definitely through the orthogonal pointer states |ϕ↑〉 and |
ϕ↓〉. The state of spin system ρ is thus reduced to a state of completely
decohered in the eigenbasis of σz and the measurement in this case is
called a strong measurement in which we can obtain the maximum
information about the system. There is no measurement at all if F= 1, i.e.,
the pointer state is the same for spin up or spin down. The measurement is
called weak when F ∈ (0, 1) in which we can obtain partial information of
the spin states with partial disturbance on it. It is obvious from Eq. (11) that
a weak measurement can be considered as the combination of a strong
measurement and none of measurement operationally. The quality factor F
thus reflects the strength of measurement and the disturbance of
measurement.
The measurement of a spin-1/2 system only have two outcomes +1 and

−1 corresponding to eigenstates |↑〉 and |↓〉, respectively. If the
measurement is strong, the probability of obtaining outcome +1 (or −1)
can be easily determined by the Born rule that P(+1)= Tr(π↑ρ) (or P(−1)=
Tr(π↓ρ)). However, in weak measurement the non-orthogonality of pointer
states F= 〈ϕ↑|ϕ↓〉 ≠ 0 brings the uncertainty ambiguity. In practice, an
observer, who performs weak measurement, has to choose a complete
orthogonal set of pointer states |ϕ+1〉, |ϕ−1〉 as reading states of pointer to
define outcomes +1, −1 corresponding to the spin eigenstates |↑〉, |↓〉. To
calculate the probability of outcome +1 (or −1), the state of pointer after
measurement have to be considered. Tracing out the spin degree of
freedom in Eq. (8), we obtain the post-measurement state of the pointer

ρp ¼ Trðπ"ϱÞ � jϕ"ihϕ"j þ Trðπ#ϱÞ � jϕ#ihϕ#j: (12)

The probability of outcome +1 (or −1) now becomes the probability of
obtaining the state |ϕ+1〉 (or |ϕ−1〉) of pointer. The probability of outcome
±1 becomes

Pð±1Þ ¼ Trðπ"ϱÞjhϕ±1jϕ"ij2 þ Trðπ#ϱÞjhϕ±1jϕ#ij2: (13)

If the pointer states are considered in position representation, the
observer can associate positive positions to outcome +1 and negative
positions to outcome −1. In general, the reading states of pointer |ϕ+1〉, |
ϕ−1〉 should be chosen that the maximum of |〈ϕ+1|ϕ↑〉|

2 and |〈ϕ−1|ϕ↓〉|
2

are achieved. If the reading states ensure that |〈ϕ+1|ϕ↑〉|
2= |〈ϕ−1|ϕ↓〉|

2, i.e.,
the probabilities of obtaining correct outcomes are equal for spin up and
spin down, the measurement is called unbiased. Here we only focus on
unbiased measurement and assume that the reading states satisfy
conditions |〈ϕ+1|ϕ↑〉|

2= |〈ϕ−1|ϕ↓〉|
2 and |〈ϕ+1|ϕ↓〉|

2= |〈ϕ−1|ϕ↑〉|
2. In this

case, the probability P(±1) can be reformulated as

Pð±1Þ ¼ G � 1
2
½1 ± TrðσzϱÞ� þ ð1� GÞ � 1

2
; (14)

where σz= π↑− π↓ is the spin observable and G= 1− |〈ϕ+1|ϕ↓〉|
2− |〈ϕ−1|

ϕ↑〉|
2= 1− 2|〈ϕ+1|ϕ↓〉|

2 defines the precision of measurement. The
precision of measurement G indicates the correctness or the extent of
unambiguity of outcomes.
The state of the spin system, after the observer obtains outcome ±1,

becomes

ρ± 1 ¼ hϕ±1jÛϱ� jϕihϕjÛyjϕ± 1i
¼ π"ϱπ"jhϕ±1jϕ"ij2 þ π#ϱπ#jhϕ± 1jφ#ij2

þπ"ϱπ#hϕ± 1jϕ"ihϕ#jϕ±1i þ π#ϱπ"hϕ±1jϕ#ihϕ"jϕ± 1i:
(15)

Since that jhϕþ1jϕ"ij2 ¼ 1þG
2 ; jhϕþ1jϕ#ij2 ¼ 1�G

2 and
hϕþ1jϕ#ihϕ"jϕþ1i ¼ hϕþ1jϕ"ihϕ#jϕþ1i ¼ F

2, Eq. (15) can be reformulated
as (unnormalized)

ρ± 1 ¼
F
2
ϱþ 1 ±G� F

2
π"ϱπ" þ 1 ∓G� F

2
π#ϱπ#: (16)

The quality factor F and the precision G satisfy the trade-off relation18

F2 þ G2 � 1: (17)

A weak measurement is optimal if F2+ G2= 1, otherwise it is sub-
optimal.

Relation between weak measurement and Bell non-locality
The connection between weak measurement and non-locality can be
shown in the new Bell scenario that one pair of entangled spin-12 particles
are delivered to Alice, Bob1 and Bob2, here Bob1 and Bob2 access to the
same particle shown in Fig. 1 of main text. Contrary to Bob2 who performs
the strong measurement, Bob1 performs the weak measurement before
Bob2. After the measurement of Bob1, the particle will be sent to Bob2
who has no idea of Bob1’s existence. Suppose that the entangled pair is in
the singlet state

jΨi ¼ 1ffiffiffi
2

p ðj "ij #i � j #ij "iÞ: (18)

Similar to the standard Bell scenario, Alice, Bob1 and Bob2 each receives
a binary input x, y1, y2∈ {0, 1} and accordingly performs measurement of
their spin along the corresponding direction ~λx ;~μy1 ;~νy2 respectively. The
outcomes of their measurement are labelled by a, b1, b2 ∈ {+1, −1}. To
study correlations between Alice and Bobs, we need to calculate the
conditional probability distributions P(ab1b2|xy1y2) that can be simplified
by using no-signalling condition

Pðab1b2jxy1y2Þ ¼ PðajxÞPðb1jxy1aÞPðb2jxy1y2ab1Þ: (19)

The probability of obtaining outcome a conditioned on x for Alice can
be easily shown to be PðajxÞ ¼ 1

2 as that any strong measurement on one-
half of singlet state gives outcomes with equal probability. After the
measurement of Alice, the spin state of another particle sent to Bob1 will
collapse into the state that in an opposite spin direction with respect to
Alice’s post-measurement state

ρjxa ¼ π�a~λx
¼ 1

2
ðI � a~λx �~σÞ; (20)

where π�a~λx
represents the spin projector along the direction �a~λx and I;~σ

are identity operator and Pauli operator, respectively. The measurement of
Bob1 is weak, the probability Pðb1jxy1aÞ is determined by Eq. (14) and

Pðb1jxy1aÞ ¼ G � Trðπb1~μy1 ρjxaÞ þ ð1� GÞ � 12
¼ 1�Gab1~λx �~μy1

2 ;
(21)

where Tr πb1~μy1 ρjxa
� �

¼ 1�ab1~λx �~μy1
2 and G is the precision of Bob1’s weak

measurement. The spin state of Bob1’s particle after weak measurement,
according to Eq. (16), becomes

ρjxy1ab1 ¼ F
2 ρjxa þ 1þb1G�F

2 π~μy1 ρjxaπ~μy1
þ 1�b1G�F

2 π�~μy1 ρjxaπ�~μy1
(22)

with its norm trace Tr ρjxy1ab1
� �

¼ P b1jxy1að Þ and F is quality factor of the

weak measurement. The probability of obtaining outcome b2 for Bob2’s
strong measurement is

Pðb2jxy1y2ab1Þ ¼ Tr πb2~νy2 ~ρjxy1ab1
� �

¼ 1
Pðb1 jxy1aÞ

F
4 1� ab2~λx �~νy2
� �n

þ 1�F
4 1� ab2 ~λx �~μy1

� �
~μy1 �~νy2

� �h i

þ b1G
4 b2~μy1 �~νy2 � a~λx �~μy1
� �o

;

(23)

where ~ρjxy1ab1 ¼ 1
Pðb1 jxy1aÞ ρjxy1ab1 is a normalized state.

Now we can calculate conditional probabilities P(ab1b2|xy1y2) according
to Eq. (12)

Pðab1b2jxy1y2Þ ¼ F
4

1�ab2~λx �~νy2
2

� �

þ 1�F
4

1�ab2ð~λx �~μy1 Þð~μy1 �~νy2 Þ
2

� �

� b1G
4

a~λx �~μy1�b2~μy1 �~νy2
2

� 	
:

(24)

As probability lies between 0 and 1, if ~λ0 ¼~Z;~μ0 ¼ �~X and ~ν0 ¼
~Zsinθ�~Xcosθ are chosen, we obtain

Pð1� 11j000Þ ¼ Fsinθþ Gcosθ � 1 (25)

along with outcomes a= b2= 1 and b1=−1. This is the expression of a
tangent to the unit circle F2+ G2= 1 and obviously the optimal pointer
saturates this constraint.
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The non-local correlation of Alice and Bobs’s can be shown by
calculating S value defined as

SAlice�Bobn ¼ Cn
ð0;0Þ þ Cn

ð0;1Þ þ Cn
ð1;0Þ � Cn

ð1;1Þ
��� ���; (26)

where n ∈ {1, 2} and Cn
ðx;ynÞ defines correlation of Alice and Bob’s

measurement outcomes

Cn
ðx;ynÞ ¼ Tr ρnσ~λx � σ~μyn

� �
¼

X
a;bn

abnPðabnjxynÞ (27)

with ρn is the state of the spin-12 entangled pair possessed by Alice and
Bobs, σ~λx ; σ~μyn represent the spin observables corresponding to directions
~λx and ~μyn , respectively.

Since that Pðab1jxy1Þ ¼ PðajxÞPðb1jxy1aÞ ¼ 1�Gab1~λx �~μy1
4 , the correlation

Cðx;y1Þ of Alice and Bob1 is Cðx;y1Þ ¼ �G~λx �~μy1 and thus we have

SA�B1 ¼ G � j~λ0 �~μ0 þ~λ0 �~μ1 þ~λ1 �~μ0 �~λ1 �~μ1j: (28)

Similarly

Pðab2jxy2Þ ¼
P
b1 ;y1

Pðab1b2jxy1y2Þ

¼ F
4

1�ab2~λx �~νy2
2

� �

þ 1�F
4

P
y1

1�ab2 ~λx �~μy1ð Þ ~μy1 �~νy2ð Þ
2

	� � (29)

and

Cðx;y2Þ ¼ � F
2
~λx �~νy2 �

1� F
2

X
y1

~λx �~μy1
� �

~μy1 �~νy2
� �

: (30)

The S value of Alice and Bob2 is calculated as

SA�B2 ¼ F
2 ð~λ0 �~ν0 þ~λ0 �~ν1 þ~λ1 �~ν0 �~λ1 �~ν1Þ
���
� 1�F

2

P
y1

ð~λ0 �~μy1 Þð~μy1 �~ν0Þ þ ð~λ0 �~μy1 Þð~μy1 �~ν1Þ
h

þð~λ1 �~μy1 Þð~μy1 �~ν0Þ � ð~λ1 �~μy1 Þð~μy1 �~ν1Þ
i���:

(31)

In the case that quantum bound 2
ffiffiffi
2

p
is obtained, i.e., Alice measures in

the directions ~Z or ~X according to her inputs 0 or 1, whereas Bob1 and

Bob2 measure in the directions �ð~Zþ~XÞffiffi
2

p or �~Zþ~Xffiffi
2

p for their respective inputs 0

or 1, we obtain

SA�B1 ¼ 2
ffiffiffi
2

p
G

SA�B2 ¼
ffiffiffi
2

p ð1þ FÞ; (32)

which implies that the non-locality correlation of Alice and Bob1 and
correlation of Alice and Bob2 are totally determined by the weak
measurement performed by Bob1. Double violations happen when quality
factor F and precision G of weak measurement satisfy F 2 ð ffiffiffi

2
p � 1; 1� and

G 2
ffiffi
2

p
2 ; 1

� i
. Restricted by the general condition F2+ G2 ≤ 1, the area that

double violations exist is limited. In the case that optimal weak
measurement is realized, which means F2+ G2= 1, double violations can

be observed only when F 2 ffiffiffi
2

p � 1;
ffiffi
2

p
2

� �
. If F= 0.6 and G= 0.8 are

chosen, we obtain the optimal double violations SAlice−Bob1= SAlice−Bob2 ≈
2.26.

Demonstration of entangled photons source in experiment
In our experiment, high-quality polarization-entangled photon source is
produced by pumping a type-II apodized periodically poled potassium
titanyl phosphate (PPKTP) crystal inside a Sagnac-loop interferometer. The
PPKTP has dimensions of 1 mm× 2mm× 20mm and the end faces are
anti-reflective coated at wavelengths of 399 nm and 798 nm. The
temperature of the crystal is controlled by using a home-made
temperature controller with stability of ±2mK. The ultraviolet (UV) pump
beam is generated from a commercial Moglabs ECD004 laser. One UV
quarter wave plate (QWP) and one UV half wave plate (HWP) are placed at
the input port of the interferometer for controlling the power and relative
phase of pump beam inside the Sagnac-loop interferometer. Polarization
orthogonal pump beams are separated by a dual wavelength polarized
beam splitter (DPBS). The vertical polarized pump beam is rotated to
horizontal polarization by using a dual wavelength HWP before interact
with the PPKTP crystal for spontaneous parametric down-conversion

(SPDC). Orthogonal polarized photon pairs are generated in two counter
propagating directions combined at the DPBS. The photon emitted to Alice
is first separated from the pump beam by using a dichromatic mirror (DM)
and then measured projectively via combination of HWP and PBS by Alice.
The photon sent to Bob, first passes through the weak measurement setup
of Bob1 and is subsequently sent to Bob2 for projective measurement.
The state of photon pair output from the interferometer can be

expressed as

jψi ¼ 1ffiffiffi
2

p ðjHijVi þ eiϑjVijHiÞ; (33)

where the relative phase ϑ is determined by the relative position of QWP
and HWP at the input port. In our experiment, the phase ϑ is tuned to π
such that the singlet state is produced

jϕ�i ¼ 1ffiffiffi
2

p ðjHijVi � jVijHiÞ: (34)

The quality of our source is characterized by using a two-photon
polarization interference shown in Fig. 5. The 399 nm wavelength pump
beam’s power is fixed at 4.5 mW and the coincidence windows is set in
2 ns. The single counts in 6 s is about 375,000 and 275,000 and the
maximum coincidence is about 19,000. The raw visibilities in 0°/90° and
45°/−45° are (99.70 ± 0.06) percent and (99.32 ± 0.08) percent, respectively.
Therefore high visibilities guarantee the large violation of Bell-CHSH
inequality.
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