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Transforming Bell’s inequalities into state classifiers with
machine learning
Yue-Chi Ma1 and Man-Hong Yung1,2,3

In quantum information science, a major challenge is to look for an efficient means for classifying quantum states. An attractive
proposal is to utilize Bell’s inequality as an entanglement witness, for classifying entangled state. The problem is that entanglement
is necessary but not sufficient for violating Bell’s inequalities, making these inequalities unreliable in state classification.
Furthermore, in general, classifying the separability of states, even for only few qubits, is resource-consuming. Here we look for
alternative solutions with the methods of machine learning, by constructing neural networks that are capable of simultaneously
encoding convex sets of multiple entanglement witness inequalities. The simulation results indicated that these transformed Bell-
type classifiers can perform significantly better than the original Bell’s inequalities in classifying entangled states. We further
extended our analysis to classify quantum states into multiple species through machine learning. These results not only provide an
interpretation of neural network as quantum state classifier, but also confirm that neural networks can be a valuable tool for
quantum information processing.
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INTRODUCTION
Quantum machine learning is an emerging field of research in the
intersection between quantum physics and machine learning,
which has profoundly changed the way we interact with data. It
represents a new paradigm of processing information, which, at
the fundamental level, is still governed by the laws of quantum
mechanics. In addition, there is also a real “demand” of using
advanced data-processing techniques for gate-fidelity bench-
marking and data analysis for the state-of-the art quantum
experiments. Therefore, understanding the connection between
quantum information science and machine learning is a matter of
fundamental and practical interest.
So far, there are several ways where research in quantum

machine learning has become fruitful. One way is to design
quantum algorithms to speed up classical machine learning.1,2 On
the other hand, the other approach in quantum machine learning
is to apply machine-learning methods to study problems in
quantum physics and quantum information science. In particular,
classical machine-learning methods3 have been applied to many-
body,4–11 superconducting,12 bosonic13, and electronic14 systems.
Furthermore, machine-learning can also be applied to the
problem of state preparation,15 tomography,10,16 experiments
searching.17 Beyond quantum information science, machine
learning also finds applications in particle physics,18 electronic
structure of molecules,19,20 and gravitational physics.21 Further-
more, there are many classical methods in machine learning
inspired by ideas in physics.22

In this work, we are interested in applications of supervised
machine learning to the problem of quantum-state classification,23

which is a generalization of pattern recognition in learning theory.
Supervised (machine) learning refers to a set of methods where

both data and the corresponding output (called label) are
provided as the input. In the classical setting of pattern
recognition, we are given a training set S containing paired
values,

S ¼ ðx1; y1Þ; ðx2; y2Þ; ðx3; y3Þ; ¼f g; (1)

where xi is a data point and yi∈ {0, 1} is a pre-determined label for
xi. Based on the training set, the problem of pattern recognition is
to construct a low-error classifier (or predictor), in the form of a
function, f : x→ y, for predicting the labels of new data. The
quantum extension of this problem is to replace the data points xi
with density matrices of quantum states ρi. Specifically, a quantum
state classifier outputs a “label” associated with the state, for
example, “entangled” or “ unentangled”.
Technically, we employ artificial neural networks (ANN)24 as our

machine-learning method. The architecture of ANN shares a
similarity with the structure of biological neural networks, which
contains a collection of basic units called “artificial neurons”. As
shown in Fig. 2b, the simplest neural network consists of linear
connections and non-linear output. The network can be improved
by inserting a hidden layer, as depicted in Fig. 2c.

CHSH inequality
To get started, let us consider an ensemble of quantum states ρ of
n qubits; the method is also applicable for qudit systems. Recall
that a quantum state is (fully) separable if and only if it can be
expressed as a convex combination of product states, i.e.,

ρsep ¼
X
i

pi ρ
1
i � ρ2i � ¼ � ρni ; (2)
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for 0 ≤ pi ≤ 1 and
P

i pi ¼ 1. Otherwise, the quantum state is
entangled.
Entanglement is necessary for a violation of the Bell’s inequal-

ities,25 e.g., the CHSH (Clauser-Horne- Shimony-Holt) inequality,26

abh i � ab0h i þ a0bh i þ a0b0h ij j2; (3)

where 〈·〉 represents expectation, {a, a′} and {b, b′} are the detector
settings of parties A and B respectively that take only two values
±1 (see Fig. 2a). Furthermore,

bn ¼ n1σx þ n2σy þ n3σz; (4)

bn∈ {a, a′, b, b′}, and σx,y,z are the Pauli matrices.
Quantum states violating the CHSH inequality can be labelled as

“entangled”. However, CHSH inequalities cannot be employed as a
reliable tool for entanglement detection. There are two reasons.
First, there exist entangled states not violating the Bell’s inequal-
ities. To be more specific, the maximally-entangled state, such as

ψ�j i ¼ 00j i � 11j ið Þ=
ffiffiffi
2

p
; (5)

for a pair of qubits, can maximally violate the CHSH inequality.25

However, this tool fails under the circumstances of noise, in the
form of a quantum channel. After passing through a depolarizing
channel,27 the resulting state,

ρ ¼ p ψ�j i ψ�h j þ 1� pð ÞI=4; (6)

where 0 ≤ p ≤ 1, violates the CHSH inequality only if p>1=
ffiffiffi
2

p
≃

0.707.28 However, the state is entangled when p > 1/3≃ 0.333.28

Another reason is that the measurement angles depends on the
quantum state. For example, if we choose fixed measurement
angles with the following CHSH operator,Y
CHSH

� a0b0 � a0b
0
0 þ a00b0 þ a00b

0
0; (7)

where a0= σz, a00 = σx, b0 ¼ σx � σzð Þ= ffiffiffi
2

p
, b00 ¼ σx þ σzð Þ= ffiffiffi

2
p

,
then for any given quantum state of the form,

ψθ;ϕ

�� � ¼ cos θ=2ð Þ 00j i þ eiϕsin θ=2ð Þ 11j i; (8)

we have the expectation value,

ψθ;ϕ

� �� Y
CHSH

ψθ;ϕ

�� � ¼ ffiffiffi
2

p
sinθcosϕ� 1ð Þ; (9)

which is equal to �2
ffiffiffi
2

p
when θ= π/2, and ϕ= π, i.e., when ψθ;ϕ

�� �
= ψ�j i. For a different value of ϕ, e.g., ϕ= π/2, the resulting
quantum state can no longer be used to violate this particular
CHSH inequality. Therefore, in general, single original CHSH
inequality cannot be employed as a reliable tool for detecting
quantum entanglement for given quantum states.

RESULTS
In this work, we focus on the task of classifying entangled or
separable states, but the method can also be extended for other
physical properties. The main challenges include the following:

1. Obtaining full information for a given quantum state
becomes resource consuming as the number of qubits
increases.

2. It is known to be computational hard (more precisely, NP-
hard)29 in general even if all the information about the
states is given.

For the 1st point, instead of full information (e.g., from quantum
tomography), we aim at constructing a set of quantum-state
classifiers which can reliably output a correct label of a given
quantum state in an ensemble, using only partial information (i.e., a
few observables) about the state. Our strategy is motivated by the
development of Bell’s inequalities,25 which was originally used to
exclude incompatible classical theories from a few measurement
results performed non-locally.

Our strategy is to “transform” Bell’s inequalities into a reliable
entanglement-separable states classifier. However, the non-
locality aspect of Bell’s inequalities is not relevant to the
construction of our classifier, although we can follow the same
experimental setting for an implementation of our proposal.
Here the transformation process involves two levels. First, we

ask the following question: “given the same measurement setting,
is it possible to optimize the coefficients of CHSH inequality for a
better performance, compared with the values (1, −1, 1, 1, 2)
employed in the standard CHSH inequality for specific states?” We
shall see that the answer to this question is positive. This
optimization is linear, in the sense that it gives an optimization
function containing a linear combination of the observables as
input.
At the second level, instead of linear optimization, we include a

hidden layer in the neural network, making it a non-linear
optimization process, and at the same time, allow the measure-
ment angles to be varied randomly. As we shall see, in this way,
the performance of classifier can be enhanced significantly,
relative to the first level. The process can be considered as
encoding multiple variants of CHSH inequalities in a neural
network. In other words, we are effectively applying many
entanglement witnesses simultaneously.
For the 2nd point, we ask a question: “is it possible to construct

a universal state classifier for detecting quantum entanglement?”
If possible, this would be a valuable tools for many tasks in
quantum information theory. However, the challenge is to find a
reliable way for labelling the quantum states in the training set.
For a pair of qubits, this is possible by using the PPT (positive
partial transpose) criterion. We have constructed such a universal
state classifier for a pair of qubits; we find that the performance
depends heavily on the testing sets; the major source of error
comes from the data near the boundary between entangled and
separable states.
Later, we shall argue that our ANN architecture is generic for

entanglement detection. It depends on the fact that any
entangled state is detectable by at least one witness, and multiple
“witness inequalities” can be encoded in our model. Our machine-
learning method is then applied to several different scenarios of
entangled-separable states classification. As an extension, we
consider the systems of three qubits. There, the structure is more
complicated than two qubits. Compared with PPT, our model are
capable to detect entangled states on which PPT cannot detect.
Compared with quantum state tomography, the required
resources for classifying these quantum states can be reduced
in our model.
In the Supplementary Materials, we also construct a quantum

state classifier that can identify four types of states, including
three types of entangled and one type of fully-separable states,
with again only partial information. Furthermore, we have also
considered an ensembles of four-qubit systems. We train and
analyze the performance of state classifiers in terms of three
groups of quantum states, including entangled, separable ones
and the states without a correct label. We also provide an example
to show our model can be applied for many-qubit systems with
significantly reduced computational resources.

Optimizing CHSH operator with machine learning
In this work, we consider two types of machine learning predictors
(Fig. 1a) to classify different types of quantum ensembles, namely

(i) tomographic predictors, and
(ii) Bell-like predictors.

Tomographic predictors make use of all information of a given
quantum state and is used to benchmark the performance of Bell-
like predictors, which employs a subset of non-orthogonal
measurements setting. For example, for a pair of qubits, the
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inputs of tomographic predictors are the Cartesian product of two
sets of Pauli operators, {I, σx, σy, σz}, which contains a total of 15
non-trivial combinations. On the other hand, the CHSH operator in
Eq. (7) can be regarded as an example of using the Bell-like
predictors. There are various forms of Bell-like predictors in our
paper. Only two rather than three local random operators for each
qubit are used to constitute the inputs for all of Bell-like predictors,
therefore their measurement resources is assumed to be smaller
than the tomographic predictors for the same system.
To elaborate further, we construct a linear Bell-like predictor by

generalizing the CHSH operator as (see Eq. (3) for notations):

Πml � w1a0b0 þ w2a0b
0
0 þ w3a00b0 þ w4a00b

0
0 þ w0; (10)

where the coefficients (or weights) {w0, w1, w2, w3, w4} are
determined by the method of machine learning, through
minimizing the error of detecting quantum entanglement of a
given quantum ensemble.
Here the measurement angles {a0, a00, b0, b

0
0} are taken to be the

same as those given in ΠCHSH defined in Eq. (7). We denote the
resulting Bell-like predictor as CHSHml. For a given quantum state,
the set of measurement outcomes

a0b0h i; a0b
0
0

� �
; a00b0
� �

; a00b
0
0

� �� �
; (11)

are taken as the input of machine learning program. These
elements are called “features” in the machine-learning literature.
Normally, the number of elements in this set should be much
smaller than the dimension of the quantum state.
In fact, the method of machine learning allows us to construct

more general Bell-like predictors, given the same number of
features. The key element of them is the inclusion of an extra
hidden layer of neurons (Fig. 2c), compared with the linear
predictor CHSHml. Moreover, each link between a pair of neurons
is associated with a weight to be optimized in the learning phase.
Specifically, here we consider a class of non-linear predictors

denoted by

Bellml n; nf ; neð Þ; (12)

where n labels the number of qubits in the quantum state, nf
labels the number of features, and ne labels the number of

neurons in the hidden layer of the neuron network. Apart from the
extra neurons in the hidden layer, the measurement angles {a, a′,
b, b′} in the corresponding feature list are taken randomly. For n=
2, the list is {ab, ab′, a′b, a′b′}. See Table 1 for more details about
the comparison of Bellml, and CHSH inequality.
In this work, all random measurement angles are obtained by

UσzUy, where U is implemented by directly calling the function
RandomUnitary.30 Numerically, we found that they are uniformly
distributed on the Bloch sphere. Furthermore, the mismatch rates
are not sensitive to the choice of the measurement angles, when
the number of neurons in the hidden layer is sufficiently large. The
features of Bell-like predictors are obtained for a single set of
random measurement angles in our work.

Labelling quantum states
As the first “test run” of our machine learning method, we focus
on the following family of quantum states:

ρθ;ϕ ¼ p ψθ;ϕ

�� �
ψθ;ϕ

� ��þ ð1� pÞI=4; (13)

where ψθ;ϕ

�� �
is defined in Eq. (8), 0 ≤ p ≤ 1. For a pair of qubits, the

entanglement between them can be determined by checking the
PPT (positive partial transpose) criterion:31 let ρTBθ;ϕ be the matrix
obtained by taking partial transpose of ρθ,ϕ in the second qubit.
The state is entangled if and only if the smallest eigenvalue of the
matrix ρTBθ;ϕ is negative. For n-qubit general system, in order to
apply the PPT criterion, the full density matrix must be available, in
order to obtain the minimum eigenvalue of the partial-transposed
density matrix. However, state tomography requires an exponen-
tial number (4n− 1) of measurements.
For our case, the minimal eigenvalue (the absolution of this

value for entangled states is named as negativity28), can be
obtained analytically (see Supplementary Materials for a deriva-
tion),

λmin ρTBθ;ϕ

� 	
¼ 1� pð Þ=4� pcos θ=2ð Þsin θ=2ð Þ: (14)

For each quantum state in the training set, we first evaluate the

value of λmin ρTBθ;ϕ

� 	
, in order to create a label for it. In Fig. 3a, we

depict the portion of separable states in the colored area of a
Bloch sphere.

Testing phase of linear predictor
After the predictor is well-trained (see “Methods”), we test the
performance by creating a new set of quantum ensemble that is
distinct from the data set employed for training. Here the testing
data comes from an ensemble of quantum states ρθ,ϕ with a
uniform distribution of p, θ and ϕ. Note that from Eq. (14), the
entanglement of ρθ,ϕ depends on the values of p and θ but not ϕ.
However, the same set of features of the new density matrices are
provided as the input; the values of p and θ are not directly
provided in the testing phase, but they are used to evaluate the
performance of the predictors.
We quantify the performance of the CHSHml predictor as

follows: for given values of p and θ, the mismatch rate Rmm(p, θ) is
defined by the probability that the function outputs a different
label from the PPT criterion, averaged over uniform distribution of
the angle ϕ, i.e.,

Rmm p; θð Þ � Pr 1MLj0PPTð Þ þ Pr 0MLj1PPTð Þ; (15)

where xML ∈ {0, 1} labels the output of the machine learning
predictor; 1ML (0ML) means separable (entangled), and similarly for
xPPT. Of course, the match rate can be defined in a similar way (i.e.,
1− Rmm).
First, we only trained and tested with data on fixed ϕ= 0,

CHSHml preforms satisfactory for any value of θ. The form of this
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Fig. 1 Comparison between different methods. a Measurement
angles for every qubit. For n-qubit system, the process of reading an
unknown quantum state by standard quantum state tomography or
some entanglement witness (e.g., the method depicted in Fig. 3b)
requires to measure by three angles (σx, σy, σz) for every qubit.
However, the detection of quantum entanglement by two-setting
Bell’s inequalities only requires two operators for each observer. b, c
Various state classification tasks. Traditional tools aim to detect
partial entangled states. The task belongs to type I. Our predictors
aim to identify two (a and b in the figure) or more specific classes of
quantum states. Note that 1 and 4 are intrinsically the same. In other
words, if our training data cover all of separable states, the perfectly
trained classifier can be regarded as entanglement witness
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becomes: �14 a0b
0
0

� �� 28 a00b
0
0

� �þ 10. Here we keep the trained
parameters in integer values.
Then, we trained our model again with different values of ϕ.

Through a linear optimization process, the form of this is numerically
found to be: 0:521 a0b0h i− 0:603 a0b

0
0

� �
− 0:025 a00b0

� �
+

0:016 a00b
0
0

� �
+ 0:373. As shown in Fig. 3c, d, can classify the data

as entangled (or separable) state if p > 1/2 (p≤ 1/2). Although it is not
perfect, the predictor yields a better performance than the standard
CHSH for most of the testing states.
To be specific, let us focus on the state of θ= π/2 (Fig. 3c). The

numerical data indicates that both CHSH and CHSHml can identify

the regime where λmin ρTBθ;ϕ

� 	
>0 as separable. Beyond that region,

CHSH results in a 100% mismatch rate, but CHSHml can reduce the
mismatch rate as p increases. Therefore, the performance of
CHSHml is significantly better than that of CHSH in identifying
quantum entanglement. The reason for CHSH to produce 100%
mismatch rate is explained after Eq. (6): there exist entangled
states not violating the CHSH inequality for any choice of ϕ.
Besides, the limitations of CHSHml are due to the following facts:

1. The features taken directly from the original CHSH inequality
do not include any information about σy.

2. As an entanglement witness, any Bell-like inequality is not
sufficient to characterize the boundary between entangled
and separable states on our “test run” states.

Next, we shall see that the performance of machine learning
can be significantly increased, if we choose to make the
measurement angle random and add a hidden layer, i.e., Bell-
like predictor.

Encoding Bell’s inequalities in a neural network
The key idea of the non-linear model can be regarded as a
transformation from a group of Bell’s inequalities or entanglement
witnesses. For traditional methods, any quantum state must be
entangled if it violates at least one Bell’s inequality. Here different
inequalities have different weights. For example, Eq. (3) can be
regarded as two different inequalities,

� abh i þ ab0h i � a0bh i � a0b0h i � 20; (16)

and

abh i � ab0h i þ a0bh i þ a0b0h i � 20: (17)

By swapping a(b) and a′ (b′) of Eq. (17), we obtain some variants of
the CHSH inequalities

abh i þ ab0h i þ a0bh i � a0b0h i � 20; (18)

� abh i þ ab0h i þ a0bh i þ a0b0h i � 20: (19)

When applied separately, these new CHSH inequalities potentially
detect different entangled states.
In fact, all of these variants can be encoded into one neural

network model with a hidden layer (see Fig. 2c, d). Here the
connections between each hidden neuron (except bias) and input
layer corresponds to one Bell’s inequality. Specifically, we apply
ReLu32 function

ðzÞRL ¼ maxðz; 0Þ; (20)

on every hidden neuron to ensure that the output is always 0 if
the state do not violate any Bell’s inequality. Otherwise, the
entanglement state can be detected and quantified by the hidden
neuron.
Furthermore, for any entangled state, there exists at least one

entanglement witness detecting it (known as the completeness of
witnesses28). Because all of these “witness inequalities” can be
encoded into one neural network, our tomographic predictor
represents a generic entangled-separable state classifier; there
exists a set of weights in the ANN neural network for distinguish-
ing any finite set of entangled states from all separable states. The
size of the hidden layer is not larger than that of the entangled
states. More details about the formal argument, together with the
definition of witness and ANN formulas, are placed in the
“Methods” section.

Testing phase of Bell-like predictor
The result of three predictors, Bellml(2, 4, x) (i.e., for 2 qubits, 4
features, and x neurons in the hidden layer, here x= 0, 20, 150) are
shown in Fig. 3e, f. The overall performance in terms of mismatch
rates are significantly improved, compared with the CHSHml

predictor. Furthermore, inclusion of a hidden layer can signifi-
cantly mitigate the problem of CHSHml near θ= 0. Note that the
state ψθ;ϕ

�� �
with θ= 0 reduces to only one state 00j i for any

choice of ϕ, thus the mismatch rate becomes 100% whenever the
predictor made a mistake.
We note that such a problem in CHSHml also exists in the Bellml

predictor without hidden layer. However, the problem goes away

Fig. 2 CHSH inequality and machine learning. a Typical setup for obtaining CHSH inequality. b Encoding CHSH inequality to the simplest
network (called Rosenblatt’s perceptron24). c Artificial Neural Network with hidden Layers. The objective of machine learning is optimizing
σS W2 W1~x þ ~w10ð Þð Þ þ w20ð Þ where σRL is ReLu function and σS(z)= 1/(1+ e−z) is sigmoid function. d The neural network with a hidden layer
and ReLu function can be regarded as encoding multiple CHSH (witness) inequalities simultaneously in a network
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whenever hidden layers are included. Numerically, we find that
the results with a total of 150 neurons in the hidden layer do not
significantly out perform the results with only 20 neurons.

Classifying general two-qubit states
In the previous section, we have studied the ability of machine-
learning predictors in identifying the entanglement of quantum
states of the form indicated in Eq. (13), which belongs to type II
(Fig. 1b) problem. Although Bell-like predictors perform better
than the CHSH inequality for some quantum states, a more
interesting question is, can we construct a universal function that
accepts only partial information about the quantum state but, at
the same time, can detect all entangled states by machine
learning (i.e., type III)? A negative result suggests that such a
classifier may not exist.33 Therefore, in order to train a universal
entanglement classifier, tomographic predictor should be
considered.
Tomographic predictor is universal for such task, in the sense

that one can classify all separable and all entangled states with an
infinite number of neurons in the hidden layer. Therefore, an
important and interesting question is, are standard machine-
learning algorithms capable of training a finite neural network for
such a task at a high accuracy?
In this section, we verify that the answer is true. For the case of

two qubits, we can still rely on the PPT criterion to provide labels
for our training set. For this part, we generate a new training set of
2-qubit mixed states randomly and label them by the PPT criterion
in the same way as the previous section. The ensembles ρ are
prepared by first generating a set of random matrices σ, where the
real and imaginary parts of the elements σij= aij+ ibij are
generated by a Gaussian distribution with a zero mean and unit
variance. The resulting density matrix is obtained by

ρrand ¼ σσy= σσy
 �
; (21)

which is implemented by using the code of
RandomDensityMatrix.30

The performance of our machine-learning predictors heavily
depends not only on the training set but also the distribution of
the testing data. We find that many data points are localized near
the boundary between entangled and separable states, which
represents a challenge for us; machine learning performs not so
well near the marginal cases.
The distribution of λmin in our data set is given in Fig. 4a. We can

see that the majority of states are weakly entangled, which
imposes the challenge for our machine-learning predictor. The
population of entangled states in our data set is about 75%. To
avoid a bias in our training set, the fraction of entangled states is
about the same as separable states, as shown in the red area in
Fig. 4a. However, all new data are used in the testing stage. The
mismatch rates of both separable (blue) and entangled (green)
data are listed in Fig. 4b individually, showing the increase in the
performance of the tomographic predictor as the number of
hidden neuron increases. Furthermore, the mismatch rate of states

with different λmin is depicted in Fig. 4c; the network becomes
more reliable when larger size of hidden layer units are available.
Small fraction of error occurs near the boundary of entangled and
separable states. The mismatch rate decreases to about 0.5% with
3200 hidden units, if λmin of test data distributes uniformly
between −0.38 and 0.14, rather than near the boundary of
separable-entangled hyperplane.
Note that our tomographic predictor are trained from scratch

without exploiting any prior information (the weights are
initialized randomly by standard API), but the performance of
trained hidden layer are indeed similar to entanglement witness.
The results are depicted in Fig. 4d–f and the details shall be
discussed in the “Methods” section.
The results in this section demonstrate the capability of our

tomographic predictor to detect unknown entangled states. It
paves a way to the development of a generic tool for
entanglement detection in other intricate, for example, 3 by 3
(2-qutrit) and 3-qubit systems. If the qubit number n ≥ 3, all of
traditional methods such as PPT and entanglement witness are
only expected to detect partial entangled states (type I in Fig. 1b).
Even if a complete characterization of a quantum state is given,
the task of determining whether it is entangled or not (type III) is
time-consuming with numerical tools, such as semidefinite
programming. If the state is labelled by such numerical tool, our
machine learning methods would potentially reduce the time
significantly for predicting the class of new states.

Machine learning for identifying bound entangled states
The entanglement structure of a three-qubit system is significantly
more complicated than two-qubit systems. As seen in Fig. 5b, it
can be classified into several types of entanglement classes.28 In
particular, a three-qubit quantum state is called “biseparable”, if
two of the qubits are entangled with each other but not with the
third one. The corresponding density matrices are denoted as {ρA|
BC, ρB|AC, ρC|AB} and their convex combination, i.e., λ1 ρA|BC+ λ2 ρB|
AC+ λ3 ρC|AB for 0 ≤ λ1, λ2, λ3 ≤ 1 and λ1+ λ2+ λ3= 1. Of course,
these sets of states include fully-separable states as a special case.
A system is called fully-entangled28 if it is neither biseparable nor
fully-separable.
There are two types of typical fully-entangled states.

1. Any 2 qubits are entangled with each other. For these states,
any partial reduced matrix, X(ρABC) for X∈ {A, B, C}, should be
detected as entangled states by the PPT criterion. A typical
example is the W state, i.e. 100j i þ 010j i þ 001j ið Þ= ffiffiffi

3
p

.
2. Any 2 qubits are separable. If given all of information about

density matrix, some of them can be identified as entangled
states by PPT criterion, for example, Greenberger-Horne-
Zeilinger (GHZ) state 000j i þ 111j ið Þ= ffiffiffi

2
p

, while others are
not and called as bound entangled states.

Numerically, we found that almost all of ensembles generated
by Eq. (21) are entangled states and can be detected by PPT.

Table 1. CHSH inequality versus machine learning predictors for two qubits

Type Features Weights Form

CHSH fixed {a0b0, a0b
0
0, a

0
0b0, a

0
0b

0
0}
a 4 Fixed valuesb Linear, no hidden layer

CHSHml fixed {a0b0, a0b
0
0, a

0
0b0, a

0
0b

0
0}
c 4 Optimized values Linear, no hidden layer

Bellml variable {ab, ab′, a′b, a′b′}d many optimized values Non-linear, with hidden layer

aa0= σz, a00 = σx, b0= (σx− σz)/
ffiffiffi
2

p
, b00 = (σx+ σz)/

ffiffiffi
2

p
bw0= ±2, w1= 1, w2=−1, w3= 1, w4= 1
cFor “test run” states, a0b0h i ¼ a0b

0
0

� �
and a00b0

� � ¼ a00b
0
0

� �
, the features of CHSHml contains redundant information. If only trained with a0b

0
0

� �
and a00b

0
0

� �
,

the predictor also works well
da, b, a′, and b′ are randomly generated and uniformly distributed on the Bloch sphere
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We therefore focus on another task: training a tomographic or
Bell-like predictor to identify bound entangled states and fully
separable states (Fig. 5a); neither of them can be identified as
“entangled states” through PPT criterion.
In 1998, Bennett34 showed that in a group of four product states

in a 3-qubit system, the complementary counterpoints are bound
entangled states. Theses product states are called unextendible
product basis (UPB) and denoted by vij if g, i= 1, 2, 3, 4, where
v1j i= 000j i, v2j i= 1

2 1j i 1j i � 0j ið Þ 1j i þ 0j ið Þ, v3j i=
1
2 1j i þ 0j ið Þ 1j i 1j i � 0j ið Þ, v4j i= 1

2 1j i � 0j ið Þ 1j i þ 0j ið Þ 1j i.30 The
normalized form of

ρtile ¼ I �
X
i

vij i vih j; (22)

is a bound entangled state.
To generate sufficiently many bound entangled states for

training, we applied operations called stochastic local operations
assisted by classical communication (SLOCC).35 Specifically, three
independent random matrices σ= σA⊗ σB⊗ σC are applied on
each qubit of ρtile, i.e.,

ρ ¼ σρtileσ
y

Tr σρtileσyð Þ : (23)

Here the elements of each matrix σA,B,C= aij+ ibij were discussed
in the previous section. Numerically we found that all of the
generated random matrices are invertible. Moreover, fully-
separable states are obtained by the sum of random product
ensembles according to its definition in Eq. (2).
In our implementation, similar to our previous construction of Bell-

like predictors based on Bell’s inequalities, here we consider the
Mermin inequality36 and Svetlichny inequality37 as the starting

points. For three-qubit systems, the Mermin inequality is of the form

abch i � a0b0ch i � ab0c0h i � a0bc0h ij j � 2: (24)

The Svetlichny inequality (essentially a double Mermin inequality)
is of the following form

abc0h i þ ab0ch i þ a0bch i � a0b0c0h iþj
a0b0ch i þ a0bc0h i þ ab0c0h i � abch ij � 4:

(25)

The Mermin inequality and the Svetlichny inequality are the
multipartite counterpart of Bell’s inequalities. Therefore, one can
also employ these inequalities for detecting multipartite entangle-
ment. In a similar way, we can also apply the machine learning
method to boost the efficiency.
In our machine learning method, we adopted the elements of

Mermin inequality as input (four features) to train our Bell-like
predictor Bellml(3, 4, x), and similarly, for the Svetlichny inequality,
we constructed Bellml(3, 8, x).
The mismatch rate of the machine learning method is shown in

Fig. 5c. It is indicated that if we just use the same number of
features as in Mermin Bellml(3, 4, x) and Svetlichny Bellml(3, 8, x)
inequalities, the performance is not satisfactory. The mismatch
rate cannot get much improved by increasing the number of
neurons in the hidden layer. However, the performance of
machine learning method can get significantly improved by
putting three groups of features from CHSH inequalities for every
pair of qubits, which gives a new Bellml(3, 12, x) predictor. As a
benchmark, the mismatch rate of tomographic predictor can be
decreased to nearly 0%. If given more information, Bell-like
predictor performs almost same (about 1%) as the tomographic
predictor. For example, for the Bell-like predictor, Bellml(3, 26, x),
the 26 features are generated in the following way: assume there

Fig. 3 Results of the first “test run” by machine learning. a The “shape” of quantum states illustrated by Bloch sphere; the blue area represents
separable states. b Limitation of entanglement witness detection. The entangled states detected by single witness W depends on at least
three angles28 and the state phase ϕ. As an example, the entangled states which lie in green area can be detected, while that in red area can
not. See Supplementary Materials for more details. c, d The optimization of original CHSH inequality by tuning W and w0. For states ρθ,ϕ (Eq.
(13)) with fixed θ, p but different angle ϕ, the height of vertical axis presents the mismatch (i.e., error) rate. Here p∈ [0, 1] are uniformly divided
into 100 parts and ϕ∈ [−π, π) into 60 parts, same with (d–f). c is the cross section of (d–f) with θ= π/2, which illustrates the optimization of
maximum entangled states. e, fMismatch rate of entanglement detection by Bell-like predictor with different hidden layers on 2-qubit system
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are three parties and each party performs a measurement on a
qubit locally in two different angles labelled by bni , bn0i (i= 1, 2, 3).
Then, a feature is obtained by the joint expectation value
O1O2O3
� �

, where O 2 bn; bn0; If g. Note that I1I2I3 is excluded, since
I1I2I3h i ¼ 1 for any quantum state. The feature number decreases
from 4n− 1= 63 for tomographic predictor, to 3n− 1= 26 for
Bell-like predictor with a similar performance.

DISCUSSION
In this work, we have applied a method of machine learning,
known as artificial neuron networks (ANN), to solve problems of
entanglement-separable classification in quantum information
science. We have achieved several results, including

1. Optimization of CHSH inequality or Bell-type inequalities.
Our machine-learning architecture can yield a much better
performance for a class of testing states.

2. Exploring the challenges for constructing a universal
entanglement detector for two-qubit systems.

3. A novel physical interpretation of network-based model
from the perspective of quantum information. As an
entanglement-separable classifier, we presented an argu-
ment showing that the tomographic model is universal in
the large-N limit. We have numerically studied the trained
weights and found that their performance is very similar to
entanglement witnesses. The result is consistent with our
interpretation that each witness can be encoded in the
hidden layer of network. The details are documented in the
“Methods” section.

Fig. 4 Tomographic predictor on all 2-qubit states. a Histogram of λmin ρTBAB

 �

. In our numerical results, 3,000,000 data are generated but only
the data on boundary (red area) are used for training. Then 300,000 new data are generated for testing. The vertical axis here refers to test
data. bMatch rate of 300,000 test states predicted by tomographic predictors on the general 2-qubit ensembles. cMismatch rate (test data) of
fixed λmin with different length of hidden layer units. d Histogram of the trained w2i. Here W2 ¼ w21;w22; � � �w2ne½ � with ne= 10,000. e
Distribution of 1

ne

Pne
i¼1 x1i for 300,000 test data. f Same with (e) but excluding x1i if w2i ≥−0.01 (the orange area in (d))

a bFully separable  
states

Bound entangled
states

Source

c
Bound entangled 

W Biseparable

GHZ

Fully separable

Fig. 5 Biseparable and bound entangled states distinguished by
Bell-like and tomographic predictors. a The generation process of 3-
qubit states. 200,000 bound entangled and 200,000 fully separable
data are generated individually. Ninety percent of them are used for
training and others for testing. b Different quantum states in 3-qubit
system. c Five types of predictors applied on the ensembles
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4. Construction of both tomographic and Bell-like predictors to
classify quantum states that cannot be detected by PPT
criterion.

Overall, we found that machine-learning can produce reliable
results, given a proper training set of data. The performance of
machine learning becomes worse whenever the majority of
quantum states in the training set lies around the boundary
between two classes (e.g., entangled and separable) of quantum
states.
One may ask what if we can apply our methods to general

quantum systems with unknown entanglement or large qubit
number. The answer depends on the task we aim at.

1. For n-qubit (few body) states where the entanglement is
completely unknown. Tomography is proved to be neces-
sary for universal entanglement detection.33 Therefore any
algorithm of detecting unknown entangled states is
expected to depend on the measurement outcomes of 4n

− 1 observables. Although we have argued that there exist
the tomographic predictor’s weights for detecting any finite
set of entangled states, the numerical validity of tomo-
graphic predictor is still an open question due to the
difficulties in making correct labels and generating appro-
priate quantum states.

2. For n-qubit (few body) system where the entanglement is
partially known. PPT criterion fails for detecting the so-called
bound entangled states. We find that Bell-like predictors
with 3n− 1 observables has good performance for identify-
ing bound entangled and fully separable states. Next, in the
Supplementary Materials, as an extension, we consider
multiple-state classification involving the system of three
qubits. We construct a quantum state classifier that can
identify four types of states, including three types of
entangled (biseparable) and one type of fully-separable
states. Furthermore, we consider the ensembles of four-
qubit system. We train and analyse the performance of state
classifiers in terms of three groups of quantum states,
including entangled, separable ones and the states without
correct label. The performances of Bell-like predictors using
3n− 1 features in all of these systems are satisfactory,
although the form of entangled states are different from
each other.

3. For n-qubit (many body) states where the form of
entanglement is partially known. In the Supplementary
Materials, we have studied identifying n-qubit GHZ-type
states by non-tomographic predictors. Any n− 1 particles of
GHZ state constitute a fully separable system. Therefore, in
order to distinguish GHZ-type states from fully separable
states, the application of PPT criterion requires 4n− 1
measurement outcomes (features) and a diagonalization of
an exponentially-large matrix. We found that our ANN
architecture are capable to identify fully separable and
various GHZ-type states using only 2n random features.

In our approach, the goal of machine learning method is to
“learn” the labels we assign to a quantum state. This is the reason
we use “match/mismatch rate”, instead of using “error”. In other
words, if we label some states with mistakes, the machine learning
methods may learn the mistakes as well, unless most of the same
states are labelled correctly. Without additional instructions, all of
data shown in our figures are test data. And all of error/accuracy
(mismatch/match rate) refers to test error/accuracy. Overall, for
scaling up this method for detecting higher-dimensional quantum
entanglement, the major challenge is related to a lack of reliable
method for labeling the entanglement. One possible direction to
further explore is through labeling entanglement with semi-
definite programming (SDP), which is a highly time-consuming

process. Our machine learning method can potentially speedup
the state-classification process by learning the SDP labeling.
In general, our results imply that machine learning is particularly

useful for problems where the process of labelling a quantum
state is resource consuming. A significant contribution of this work
is that it reveals the relationship between a widely used machine
learning architecture called ANN and the theory of entanglement
witnesses from both analytical and numerical perspectives.

METHODS
General background on quantum entanglement
Entanglement is a key feature of quantum mechanics, where the
correlation between pairs or groups of particles cannot be described
within a local realistic classical model. In quantum information theory,
entanglement is regarded as an important resource to achieving tasks,
such as quantum teleportation, computation, and cryptography. However,
given a quantum state, the problem of determining if it is entangled or not
is a computationally-hard, this question is particularly important in
quantum experiments. Currently, methods of entanglement detection
has been developed for specific scenarios. The most popular ones includes
positive partial transpose (PPT) criteria31 and entanglement witnesses.28

For a pair of qubits, PPT is both sufficient and necessary for
entanglement detection.38 However, PPT is a necessary but not sufficient
condition for multi-qubit systems. In addition, it requires the knowledge of
the whole density matrix. Experimentally, it means one needs to perform
quantum state tomography, which is resource consuming for multiple-
qubit systems.
Moreover, entanglement witnesses represent a different approach for

entanglement detection. Given an observableW , where TrðWρÞ � 0 for all
separable states. If TrðWρÞ<0 for (at least) one entangled ρ, then we sayW
detects ρ.28 Here the trace TrðWρÞ ¼ Wh i represents the measurement
result of ρ with W . Although any entangled states can be detected by at
least one witness,28 there is no efficient way to find it out. In other words, it
is possible that there are entangled states not detected by a given witness,
i.e., TrðWρÞ � 0 for an entangled state.
On the other hand, quantum entanglement is necessary for a violation

of Bell’s inequalities,25 which has been confirmed in numerous experi-
ments.39–41 In principle, Bell’s inequality can be employed for detecting
quantum entanglement; it can witness some entangled states. It is an
attractive direction, as only partial information is needed from the
quantum state. However, for normal Bell’s inequalities, only small part of
the entangled states can be detected; a situation similar to entanglement
witness. Motivated by this problem, one of our objective is to construct a
quantum-state classifier for entanglement detection through optimizing
Bell’s inequalities.

Overview of ANN with single hidden layer
Consider the scenarios where quantum states are distributed to different
parties through a noise channel characterized by some unknown
parameter. The parties are given the opportunity to test the channel
through a set of testing states, which corresponds to the training phase of
machine learning. At the end, the parties are given an non-linear function
optimized for the purpose of state classification, where only partial
information is required for testing new quantum states beyond the
training set.
Our non-linear quantum-state classifier is constructed by a technique in

machine learning known as artificial multilayer perceptron,24 which is a
network composed of several layers, where information flows from input
layer, through hidden layer, and finally to the output layer.
The input layer contains the information about the quantum state,

where the expectation value of certain observables are taken as the
elements of a vector~x. The hidden layer contains another vector~x1, which
is constructed through the relation,

~x1 ¼ σRL W1~x þ ~w10ð Þ: (26)

Here W1, ~w10 are initialized uniformly and optimized through the learning
process. And ReLu function,32 defined by σRL z1; z2; � � � ; zne½ �T

� 	
=

max z1; 0ð Þ;max z2; 0ð Þ; � � � ;max zne ; 0ð Þ½ �T , is a non-linear function for every
neuron. Finally, the neuron(s) in the output layer contains the probabilities
for the input state to belong to a specific class. For example, for a binary-
state classification, where only one neuron is needed, the output y
contains the probability for the input state may be identified as entangled
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or separable. Here

y ¼ σS W2~x1 þ w20ð Þ; (27)

where σS(z) is sigmoid function

σSðzÞ ¼ 1=ð1þ e�zÞ: (28)

For non-linear predictors, both W2 and w20 are parameters to be trained.
For linear predictor (CHSHml), W2= 1 and w20= 0.

Universality of tomographic predictor
In this section, we shall argue that the tomographic predictor is generic to
classify any set of entangled and separable states. More precisely, all of
separable states and a finite set of any entangled states can be
distinguished by our model. The size of hidden layer is expected to be
not larger than that of entangled states. The main ingredient is a theorem
called completeness of witnesses:28 for any entangled state, there exists at
least one entanglement witness detecting it.
According to the definition of witness and the fact that different

Hermitian matrices can be expanded as the sum of a finite set of fixed base
observables, i.e., W ¼ P

i wiôi . For n-qubit system, the set ôif g has 4n− 1
elements. We consider the following “witness inequalities”,P

i
wi ôih i<0forsomeentangledstate;

P
i
wi ôih i � 0forall separablestates:

(29)

For 2-qubit systems, the set is just the Cartesian product of two identical
sets of Pauli operators, {I, σx, σy, σz}. In the section “Encoding Bell’s
inequalities in a neural network”, we introduce how to encode different
groups of {wi} on an ANN architecture with one hidden layer. (A minor
issue is that here wi should be replaced by −wi to be consistent with the
main text). As seen in Eq. (26) and Fig. 2c, d, expanding
~x1 ¼ x11; x12; � � � x1ne½ �T , each hidden neuron x1i encodes the detection
result of corresponding witness. If the state does not violate this witness
inequality, x1i= 0, otherwise x1i > 0. ThereforeP

i
x1i � 0forallentangledstates;

P
i
x1i ¼ 0forall separablestates:

(30)

If each entangled state can be detected by at least one witness, “≥” can be
turned to “>”.
Define W2 ¼ w21;w22; � � �w2ne½ �. According to Eq. (27), if each w2i ≤ 0 for

i > 1 and w20= 0, we have

y � 0:5forallentangledstates;

y ¼ 0:5forall separablestates:
(31)

“≤” can be turned to “<” if each entangled state can be detected by at least
one witness. And the hidden layer can be compressed by removing the x1i
units if w2i= 0.
Therefore, the weights of a “perfect” tomographic predictor should in

principle exist; the remaining problem is, how to find out these weights? In
this work, we aim at finding them out by machine-learning methods.
In the section “Classifying general two-qubit states”, we trained such a

predictor and found that with a sufficiently-large number of hidden
neurons, tomographic predictor performance is satisfactory. As seen in Fig.
4d, most of the trained elements of W2 are very close to 0. And Fig. 4e
illustrates different performance of entangled and separable states. In most
cases, the sum of xi are larger than 0 for entangled states and close to 0 for
separable states, which is consistent with our theory we discussed above.
Figure 4f tells us if we only keep the negative part of W2 and the
corresponding hidden neurons, x1 of separable states are more close to 0,
which is also consistent with our arguement.

Training of the predictors
To investigate the performance of CHSHml and Bell-like predictors, which is
essentially a linearly-optimized version of CHSH, and a non-linear predictor
with machine learning (see Fig. 2b, c). First, we need to generate an initial
set of quantum states, called training set. for “test run” states in our first
model (Eq. (13)), the set of 200,000 states are generated by sampling a
uniform distribution of θ and ϕ, but with a Gaussian distribution for p, with
a mean value 1/(1+ 2 sinθ), which yields an ensemble of states in the
boundary of separable and entangled hyperplane.

Specifically, for each time, we evaluated the four features, like
a0b0h i; a0b

0
0

� �
; a00b0
� �

; a00b
0
0

� �� �
in the CHSHml for a given state in the

training set, putting them into a four-dimensional feature vector~x in ANN.
In fact, if we consider only one side of the inequality, the CHSH inequality is
equivalent to

W0~x þ w0 � 0; (32)

where W0= [1, −1, 1, 1] and w0= 2. In other words, CHSH inequality are
violated iff the output value is negative. The problem of optimization of
CHSHml is equivalent to the problem of finding an optimal set of matrix
elements for W and w0 (for non-linear predictors they are W1,W2, ~w10, w20),
through the given training set of quantum state.
We make use of a loss function constructed by the binary or cross

entropy42 to calculate the difference between predictor and the results based
on the PPT criterion for many copies in the given quantum ensemble. The
entire implementation of training ANN architecture depends on the neural
networks API keras.43 The optimizer we chose is RMSprop with default hyper-
parameters. For example, the learning rate is 0.001. At the end, we obtained a
vector W and w0 that is optimized by the above process.
Shortly after our original manuscript was posed on arXiv, Lu et al.44

reported that they independently combined machine learning and
semidefinite programming to train their predictors as quantum state
classifiers. Using all information without any prior knowledge, the error of
their predictor is always around 10% on general 2-qubit system. However,
our tomographic predictor performs below 2% on the same ensembles
with 3000 hidden neurons.

Data availability
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