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Adequacy of Si:P chains as Fermi–Hubbard simulators
Amintor Dusko1,3, Alain Delgado2, André Saraiva1 and Belita Koiller1

The challenge of simulating many-body models with analogue physical systems requires both experimental precision and very low
operational temperatures. Atomically precise placement of dopants in Si permits the construction of nanowires by design. We
investigate the suitability of these interacting electron systems as simulators of a fermionic extended Hubbard model on demand.
We describe the single-particle wavefunctions as a linear combination of dopant orbitals (LCDO). The electronic states are
calculated within configuration interaction (CI). Due to the peculiar oscillatory behavior of each basis orbital, properties of these
chains are strongly affected by the interdonor distance R0, in a non-monotonic way. Ground state (T = 0 K) properties such as charge
and spin correlations are shown to remain robust under temperatures up to 4 K for specific values of R0. The robustness of the
model against disorder is also tested, allowing some fluctuation of the placement site around the target position. We suggest that
finite donor chains in Si may serve as an analog simulator for strongly correlated model Hamiltonians. This simulator is, in many
ways, complementary to those based on cold atoms in optical lattices—the trade-off between the tunability achievable in the latter
and the survival of correlation at higher operation temperatures for the former suggests that both technologies are applicable for
different regimes.
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INTRODUCTION
Strongly interacting fermions are the main ingredient for some
phenomena in the forefront of physics, such as high-Tc super-
conductivity and topological phase transitions.1–3 In one dimen-
sion, correlations may be identified through collective electronic
behavior, such as charge density wave (CDW), bond-order wave
(BOW) and spin density wave (SDW).4,5 The complexity in
describing correlated particles led to the idea of simulating these
systems with artificial architectures mimicking many-body models,
such as the Hubbard Hamiltonian. Control over this Hamiltonian
parameters requires a level of experimental precision achieved
only recently with cold atoms in optical lattices. This experimental
platform presents low tunneling probability for atoms in
neighboring optical lattice sites, which sets a low energy scale
for quantum effects. Optical lattice-based experiments obtained
many-body manifestations as spin and charge correlations for 1D5

and 2D6,7 lattices. In the 1D case, related to the present study, the
required temperature is in the nanokelvin range. Other promising
proposals as the quantum simulation using a semiconductor
quantum dot array were presented recently,8 and will become a
competitive architecture once long quantum dots arrays become
feasible.
In the last few years, the expertise in positioning dopants

nanostructures in Si has evolved.9–13 The precision necessary for
quantum applications with regard to impurity placement has
pushed the development of these techniques to the point that
atomic scale certainty is now a reality.14–16 Precise atomic chains
of these impurities are fabricated and, as demonstrated theore-
tically here, they may constitute convenient simulators for the
extended Hubbard model. Multi-valley effects are ubiquitous in Si
and valley interference impacts the tunnel coupling. We

investigate–within a realistic model–how electronic properties of
donor nanowires in Si can be controlled by design to emulate
Hubbard systems, even allowing for some disorder effects.

RESULTS
We focus on the Hilbert subspace of neutral (half-filling) chains
with NS = 8 sites, periodic boundary conditions and zero total spin
projection Sztot ¼ 0 (sketched in Fig. 1). We arbitrarily set the
quantization axis to z, without any regard to its significance with
relation to the crystallographic directions. In the absence of
external magnetic fields, this choice is arbitrary and the solutions
to this Hamiltonian is invariant under a rotation of spin states.
Donor positions are assigned at evenly spaced (R0) substitutional
atomic sites in Si along a [110] crystalline direction. The many-
body state is described within the configuration interaction (CI)
framework17–20 and diagonalized exactly. Since Si is a material
with very low spin–orbit coupling and no piezoelectric phonons, it
is reasonable to assume that spin relaxation times are much
longer than all other time scales involved in the experiment, so
that thermalization does not remove the system from the Sz =
0 subspace.
Given a set of local operators {Ai} acting on site i, a pair

correlation function may be defined with i = 1 taken as the
reference site

F 1;jðAÞ ¼
XN‘

n¼1

wn A1Aj
� �

n� A1h in Aj
� �

n

� �
(1)

where the average is taken over the thermally excited equilibrium
occupations, N‘ is the total number of states, wn is the Boltzmann
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weight of a level n at a given temperature T and � � �h in¼
Φn � � �j jΦnh i is the expectation value of the operator for Φnj i, the
nth eigenstate of H.
We define the dimensionless correlation function

AjðAÞ ¼ F 1;jðAÞ=F 1;1ðAÞ, so that for any T the self-correlation is
A1 ¼ 1, while Aj ¼ 0 when the values of A at sites 1 and j are
completely uncorrelated. It is now straightforward to define
charge-charge Cj ¼ AjðρÞ

� �
and spin-spin Sj ¼ Aj Szð Þ� �

electronic
correlations with the total spin at site j component along the
quantization axis defined as Szj ¼ 1

2 cþj;"cj;" � cþj;#cj;#
� 	

.
Mermin–Wagner theorem21 states that one-dimensional chains

at finite temperatures can not sustain a long range order that
breaks continuous symmetries. Still, the range of the pair
correlations is a valuable figure of merit for the appearance of
collective behavior in low-dimensional systems. We initially
discuss charge correlations as a function of temperature T and
interdonor spacing R0.
Results for the extreme cases T = 0 K and T = 300 K, are shown in

the Supplemental Material. At absolute zero, Cj is restricted to
holes in the nearest neighbors of the reference site, namely j = 2
and j = 8, with strong localization due to the Mott mechanism. Any
other pair {1, j} remains essentially uncorrelated. Results for 300 K
are presented merely as an illustration of high temperatures limit,
when even the nearest neighbors’ correlations are lost. Neither the
proposed device nor the model developed here are suitable for
this temperature range. At room temperature, even the nearest
neighbors correlations are lost.
Figure 2a shows results at two experimentally achievable low

temperatures. For T = 0.1 K the 0 K results are essentially repro-
duced while at T = 4 K and R0 ~ 3 nm there is an alternation in Cj
among successive j’s, i.e., a temperature-activated delocalization.
This indicates that, for this particular R0, states with metallic
character within kBT ~ 0.3 meV of the ground state dominate the
Boltzmann average.
Spin correlations propagate further into the chain. The

antiferromagnetic correlations among nearest neighbors hint at
the establishment of a SDW phase, as expected for this range of
parameters in the U vs V phase diagram. For T = 0 K, the
antiferromagnetic-like behavior is observed along all j (see
Supplemental Material), still with stronger correlations with
neighboring sites (j = 2, 8). Results at room temperature, as for
the charge, show no indication of correlation between sites. The T
= 0.1 and 4 K results show a strong sensitivity of spin correlations
with R0—some specific distances sustain the ground state
antiferromagnetic tendency while others show very weak correla-
tion signatures. This is a consequence of the oscillatory behavior
of the hopping t with R0 as can be observed in Fig. 3a. If the
hopping is small (large), correlations will be weaker (stronger).
Thus, for T = 0.1 K and R0 = 6.53 nm the chain is fully correlated,
while for R0 = 6.91 nm the correlations vanish, reappearing for R0
= 7.30 nm at this temperature.
Unavoidable positional disorder impacts all Hamiltonian para-

meters. We estimate this effect in the electronic properties

through a simple model for disorder where P donors can occupy
any position inside a disk with radius δ = 0.4 nm around a target
substitutional site (see Fig. 4a). With this uncertainty radius, each
donor can occupy 5 positions. This level of uncertainty is
realistically achieved for STM placement of donors.10,13

These nanowires are quasi-1D chains where electrons can
follow only one path.22 To investigate effects of disorder and
temperature we compare results for perfect and disordered chains
for two nominal distances between target sites (R0). Both
interdonor distances are chosen to be significantly larger than
the range of disorder R0 � δ ¼ 0:4 nm. We choose the two
distances sustaining (R0 = 5.37 nm) and loosing (R0 = 7.68 nm) the
AF correlations at low T4 0 (See Fig. 2b). Results for Cj shown in
Fig. 4b show that in all cases effects of the 2D disorder are mild,
and do not affect significatively Cj general trends–even for
temperatures up to 4 K. Magnetic correlations, on the other hand,
are more clearly affected by disorder, as seen in Fig. 4c. On
average, disorder leads to less than 20% reduction for non
neglectable correlations. The dispersion among spin correlations
for individual realizations, indicated by the error bars in Fig. 4,
means that disordered samples may present sizeable correlations,
eventually stronger than the ordered ones. In real experiments,
small chains are susceptible to this dispersion and may result in
enhanced magnetic behavior.

DISCUSSIONS AND CONCLUSIONS
Perhaps the most important challenge for the implementation of
the simulator described here is the measurement of the
correlation function. While a direct measurement of charge and
spin is possible23,24—these are the basis of the Kane model of
quantum computation—it might be easier to extract these
correlations from charge transport measurements.25

The natural electronic correlations that appear in these chains
may constitute an important resource for the study of many-body
physics. It displays peculiar properties, constituting a unique
example of a strongly interacting system with disordered tunnel
coupling due to valley interference. This kind of random phase of
the tunnel coupling element is the main ingredient in models
displaying critical unitary statistics.26,27 Moreover, the ongoing
development of nanofabrication capabilities suggest that on-
demand models may be analogically simulated. For instance, the
intricate phase diagram of the Fermi-Hubbard problem may be
unveiled by spin-resolved or density-resolved microscopy mea-
surements.5 Such application is under intensive investigation
within cold atoms in optical lattices, and the present technology
may complement these efforts. While not as easily tunable, the
mass fabrication of circuits of donors adopting the know-how
from available semiconductor technology would allow to chart the
behavior of electrons over a wide range of attributes. The
resilience of correlations in Si:P chains under relatively high
temperatures suggests an attractive avenue for future experi-
mental investigation.
We have shown here that, up to currently accessible values of

position disorder and temperature, dopant arrays in silicon
preserve quantum correlations among atoms in a diluted chain.
Our key point is that this system constitutes a robust implementa-
tion of the Fermi–Hubbard model in a semiconductor system with
on-demand Hamiltonian parameters.

METHODS
These atomistic wires may extend throughout several nanometers, and a
full description of the Si atoms would not be feasible. Instead, we describe
the wire electronic states as a linear combination of donor orbitals
(LCDO).22 Each basis orbital is an effective mass Kohn–Luttinger (KL)

R0

P

Si

...
P

periodic boundary conditions

[110]

2 NS1

Fig. 1 Representation of a 1D chain of NS dopants in Si aligned
along the [110] direction and with interdonor separation R0. We
adopt periodic boundary conditions, connecting site j= NS with site
1
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variational wavefunction for the ground state (A1 symmetry),28

ΨKLðrÞ ¼ 1ffiffiffi
6

p
X6
μ¼1

Fμ r� Rið Þϕμ r� Rið Þ; (2)

where Ri is the position vector of the substitutional donor at site i. The
index μ = 1…6 labels the degenerate minima of the Si conduction band at
kμ along the six equivalent 100h i directions, i.e. ±x, ±y, ±z,

kμ
�� �� ¼ k0 ¼ 0:85 2π

aSi

� 	
, and aSi is the conventional Si lattice parameter.29

In this approach, the influence of the Si host is explicitly included in the
orbitals, allowing the investigation of longer chains than the conventional
fully atomistic approach. When directly compared to experiments, this
multivalley central cell corrected KL wavefunction leads to the correct
single impurity spectrum,30 single impurity wavefunction31 and two
impurities spectra, both in the ionized states32 and neutral excited states.33

We use isotropic hydrogen-like envelopes, Fμ(r) = F(r) = (πa*3)−1/2exp(−r/
a*). These isotropic envelopes include a species-dependent Bohr radius a*

obtained by considering a screened potential, affected by the Si host and
the donor singular potential. Isotropic envelopes do not incorporate the
effective mass anisotropy around the conduction band minima in Si, which
is not relevant here. Its validity, including for the current system, is
discussed in ref. 30. Screening is treated by considering a functional form
for the Coulomb potential that interpolates the expected asymptotic
behaviors V(r→ 0) = ±e2/4πϵ0r and V(r→∞) = ±e2/4πϵSir, where the + (−)
signal stands for electron-electron (electron-proton) potential. This
transition between bare and screened point charge potentials occurs at
a phenomenologically determined screening length r*, such that the full
potential reads

VðrÞ ¼ ±
e2

4πr
1
ϵSi

þ 1
ϵ0

� 1
ϵSi

� 
e�r=r�

� �
; (3)
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Fig. 2 Electron-electron correlations with respect to site j= 1 (therefore C1 ¼ S1 ¼ 1, see text). a Calculated charge-charge correlations for the
indicated temperatures. Each box shows Cj (see color code) as a function of interdonor distance (R0) and position along the chain (d). Note
that for T= 4 K and R0 ~ 3 nm the charge-charge correlations are temperature activated. b Same as a for calculated spin–spin correlations. An
anti-ferromagnetic (AF) behavior up to fourth neighbors is clearly observed—the fifth, sixth and seventh neighbors pairs are equivalent to
third, second and first pairs, respectively, due to periodic boundary condition. Note that the magnetic behavior is not monotonic with R0

(a)

(b)

25
50
75

100
125

0

150

onsite (ε)

direct (V)
hopping (t)Hubbard (U)m

eV

3 4 5 6 7 8
10

10

10

R (nm)0

Bk T
t

U
t

10

10

10

110

Fig. 3 a Absolute values of the calculated Hamiltonian parameters
Hubbard (U), direct (V), multi-valley hopping (t) and onsite energy (ε).
Spheres mark the values of R0 allowed for donor pairs in Si along
[110]. b Relative values of the Hubbard energy and kBT at
temperature T= 100mK with respect to the hopping absolute
value. The sharp oscillations are due to |t| alone, as the others are
constants. The temperature of 100mK is attainable for experiments
performed under dilution refrigerators. Small kBT= tj j and large U= tj j
favor the experimental implementation of the proposed simulator
(see text)
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where ϵSi is the Si static dielectric constant, and ϵ0 the vacuum
susceptibility. In what follows, we consider this screening both on single
and two particle Hamiltonian terms. In the electron-electron Coulomb
potential, we take r* = 0.1 nm, a typical value for a Si environment.30

We study a first nearest neighbors Hamiltonian written in the LCDO
basis.22 Defining the creation and annihilation operators cþi;σ and ci,σ for an
electron at the orbital centered in Ri with a spin projection σ along a
quantization axis, and the corresponding number and charge density
operators ni;σ ¼ cþi;σci;σ and ϱi = ni,↑ + ni,↓, the Hamiltonian reads

H ¼
X
i;σ

εini;σ þ
X
hi;ji;σ

tijc
þ
i;σcj;σ þ

X
i

Uini;"ni;# þ
X
hi;ji

Vijϱiϱj : (4)

This is readily recognizable as the extended Hubbard Hamiltonian,34,35

with parameters εi (onsite), tij (hopping), Ui (Hubbard) and Vij (direct).
Analytic expressions for theses parameters are given in Supplemental
Material, calculated values for a set of interdonor distances are presented
in Fig. 3a.
These parameters, which are consistent with typical orders of magnitude

obtained experimentally,9,11,13 support the idea that chains of dopants in Si
constitute a strongly correlated system. Figure 3b shows that the ratio
between the onsite Coulomb repulsion and the tunnel coupling is U/t ≈ 1
to 100, which ranges from the metallic regime, through the Mott insulator
transition up to the strong localization driven by interactions. Still, the
tunnel coupling t is strong enough that quantum fluctuations are
dominant over thermal excitations even at dilution fridge temperatures
T ≈ 100mK. At this temperature, we have kBT/t ≈ 10−4 to 10−2. Even at
liquid He temperatures, this ratio is lower than 0.1 for all ranges of
interdonor separation suggested here. In comparison, state-of-art cooling
techniques applied to cold atoms still are not able to achieve ratios lower
than kBT/t ≈ 0.2.
There is strictly no long range order in a one dimensional chain. Still, a

rich variety of low-temperature electronic ordering tendencies appears at

the range of parameters discussed here. Regardless of the strongly non-
monotonic behavior with R0, as a general trend small distances favor a
CDW phase, while increasing R0 we pass through a BOW phase and a SDW
phase is favored at larger distances (see Supplemental Material). We
investigate signatures of these many-body effects from charge and spin
correlations.

Data availability
Supplementary information is available at npj quantum information
website.
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