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Distinguishing features of Parkinson’s
disease fallers based on wireless insole
plantar pressure monitoring
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Postural instability is one of themost disablingmotor signs of Parkinson’s disease (PD) and often underlies
an increased likelihood of falling and loss of independence. Current clinical assessments of PD-related
postural instability are based on a retropulsion test, which introduces human error and only evaluates
reactive balance. There is an unmet need for objective, multi-dimensional assessments of postural
instability that directly reflect activities of daily living inwhich individualsmayexperiencepostural instability.
In this study,we trainedmachine-learningmodels on insole plantar pressure data from111participants (44
withPDand67controls) as theyperformed simulated static and activepostural tasks of activities that often
occur during daily living. Models accurately classified PD from young controls (area under the curve (AUC)
0.99+/− 0.00), PD from age-matched controls (AUC 0.99+/− 0.01), and PD fallers from PD non-fallers
(AUC 0.91+/− 0.08). Utilizing features from both static and active postural tasks significantly improved
classification performances, and all taskswere useful for separating PD fromcontrols; however, taskswith
higher postural threats were preferred for separating PD fallers from PD non-fallers.

Postural instability is a cardinalmotor symptomofParkinson’s disease (PD)
and is characterized bydeficits in the control of static, reactive, andproactive
posturing1–3. Postural instability leads to falls, loss of independence, physical
injuries, and immobilization in severe cases4. The underlying pathophy-
siology of PD-related postural instability is not well understood5, postural
instability has little or no response to current PD treatments6,7, and up to
90% of people with PD will fall at some stage of the disease progression8,9.
One of the factors contributing to these challenges is a lack of quantitative,
objective, and accessible approaches to effectively characterize the multi-
faceted nature of postural instability in individuals with PD.

The clinical gold standard of postural instability assessments is the
retropulsion test, which involves pulling back on an individual’s shoulders
and visually inspecting how many steps are necessary to regain balance10.
While well-validated, the retropulsion test is subjective, requires a trained
clinician, and addresses only reactive balance, which is just one aspect of
postural control11. Several studies have demonstrated that monitoring the
center of pressure (COP) over a variety of balance tasks is a useful and
objective way to identify altered postural control in PD12,13, especially in
individuals with PD who have a history of falls14,15. These COP measure-
ments are especially valuable for assessing balance tasks involving heigh-
tened postural threat, which is characterized by significant disturbances to

the postural control system, prompting individuals to adjust their posture to
maintain an upright position16. An increase in postural threats can be due to
things such as: (1) removing visual cues while maintaining an upright
stance, (2) changing the support surface from a hard flat surface to a soft,
tilted surface, or (3) removing a traditional base of support by requiring an
individual to stand upright with only one foot on the ground as opposed to
both feet. However, traditional methods to assess COP during a variety of
balance tasks are not widely available outside of research settings and
therefore are not useful in many clinical or at-home settings.

Monitoring insole plantar pressure17 could be a simple, low-cost, and
accessible way to frequently assess postural control through COP mea-
surements in each foot. However, studies demonstrating that plantar
pressure data can be used to identify PD-related postural instability are
limited. In a small feasibility study, plantar pressurewas used to identify PD-
specific balance patterns during quiet stance and gait18. Other studies have
shown that plantar pressure can predict gait dysfunction inPD19,20, but these
studies did not assess PD-related postural instability.

In this study, we leveraged (1) previous findings showing features of
COParedifferent in individualswithPDand inPDwitha fall risk21,22, (2) the
development of insole pressure sensors as a convenient way to collect COP
outside of the clinic, and (3) careful selection of balance tasks that engage
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different aspects of one’s postural control system to train a series of
machine-learningmodels for detection of PD and PDwho have a history of
one or more falls. We hypothesized that utilizing both static and active
balance tasks would improve classification performance between control
andPDsubjects. Previousworkhas alsodemonstrated that taskswithhigher
postural threat help with identifying individuals with PDwho are at risk for
falling14,23–25. We further hypothesized that models would put more weight
on active balance task features to differentiate PD fallers from PD non-
fallers.

Results
Insole plantar pressure was collected while subjects performed three static
balance tasks (quiet stance eyes open, quiet stance eyes closed, quiet stance
eyes open on one foot) and three active balance tasks (gait, functional reach,
bending over) (Fig. 1). These data were collected across varying participant
demographics and surface types (Supplementary Table 1). After collection
of insole plantar pressure data, COP-derived features collected during these
tasks served as input to train five machine-learning model architectures
(SVM: support vector machine, RF: random forest, LR: logistic regression,
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Fig. 1 | Machine-learning models were developed to classify PD from young
controls, PD from age-matched controls, and PD fallers from PD non-fallers,
based on features derived from insole plantar pressure. a Plantar pressure was
recorded and used to calculate COPper foot from three static balance tasks and three
active balance tasks. Positional, dynamic, and frequency domain features were
generated from the COP. The average of each feature and the asymmetry of each
feature across feet were computed. The static task and active task features were
utilized separately and combined to develop the machine-learning classifier models.
b F-statistic pre-filtering and forward sequential feature selection were used to
identify an optimal subset of features whichmaximized eachmodel’s five-fold cross-

validation F1 score. Once the subset of features per model was determined, hyper-
parameter tuning over a five-fold cross-validation was completed. c From the tuned
model, themodel performance was assessed, and individuals who weremisclassified
across models were identified. d Features commonly chosen by feature selection
methods were identified, and Shapley analysis was performed for each model to
identify features with the highest Shapley value. Features that appeared in the
common feature set and top Shapley value feature set were analyzed to understand
their underlying biomechanical implications related to PD and individuals with PD
who have a history of falls.
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KNN:K-nearest neighbors, andGNB:GaussiannaiveBayes) to differentiate
between PD subjects and controls (young and age-matched), and between
individualswithPDwhodo anddonot have a history of falls (PD fallers and
PD non-fallers, respectively). COP-derived features from static and active
tasks were used separately and then together. For each classification, the
feature sets were first pre-filtered by way of F-statistic feature selection.
Then, forward sequential feature selection with five distinct machine-
learning model architectures was used to determine an optimal subset of
features thatmaximized eachmodel’s classification performance, measured
by the five-fold cross-validation F1 score. After determining the optimal
feature subset, the hyperparameters of each model were tuned, and the

performancemetrics of eachmodelwere determined using afive-fold cross-
validation. Complete model performance results and all performance
metrics are shown in Supplementary Figs. 1–6.

COP-derived feature differences between PD and control
subjects
For comparisons of COP between PD subjects and young controls (Fig. 2a)
and between PD subjects and age-matched controls (Fig. 2b), there was no
effect significant effect of model type on classification. Additionally, models
trained on only static or only active tasks performed similarly across all
metrics. In contrast, the models trained on static+active task features
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Fig. 2 | Model performance for all three binary classifications. a Average model
performance (with standard error mean) for models trained on static task features
only, active task features only, and static+active task features. Models trained on
static+active task features demonstrated the highest classification accuracies. b The

average ROC curves and associated AUC (with standard error mean) based on five-
fold cross-validation are shown for all models trained on static+active task features.
**p < 0.001, *p < 0.017. (SVM support vector machine, RF random forest, LR
logistic regression, KNN K-nearest neighbors, GNB Gaussian naive Bayes).
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performed significantly better than the models that were trained on only
static task features (young controls: accuracy p < 0.001, precision p = 0.0011,
f1 p < 0.001, kappa p < 0.001; age-matched controls: accuracy p = 0.008, f1
p = 0.007, kappa p = 0.008) and models trained only on active task features
(young controls: accuracy p < 0.001, precision p < 0.001, f1 p < 0.001, kappa
p < 0.001; age-matched controls: accuracy p < 0.001, recall p < 0.001, f1
p < 0.001, kappa p < 0.001). Models trained on features from the static
+active tasks that best classified PD from young control groups, based on
five-fold cross-validation performances, were the support vector machine,
K-nearest neighbors, and Gaussian Naïve Bayes models (AUC of 0.99+/−
0.00 [standard error mean]; Fig. 2a and Supplementary Figs. 1 and 4). For
classification between PD and age-matched control groups trained on static
+active task features, again based on five-fold cross-validation perfor-
mances, theK-nearest neighborsmodel performed the best (AUCof 0.99+/
− 0.01 standard error mean; Fig. 2b and Supplementary Figs. 2 and 5).

COP-derived feature differences between PD fallers and non-
fallers
When comparing PD fallers with non-fallers, there was no significant effect
on model type for any performance metrics. There was a marginal
improvement in classification performance with models trained on active
task features compared to static task features but with no significant

difference. Similarly, there was a marginal improvement in classification
performance for models trained on static+active task features compared to
only static task features or only active task features, but no significant dif-
ferences (Fig. 2c). The model that best classified between PD faller and PD
non-faller groups, based onfive-fold cross-validationperformances, was the
Gaussian Naïve Bayes model. This model achieved an AUC of 0.93+ /−
0.04 (standard error mean) (Fig. 2c and Supplementary Figs. 3 and 6).

Common features
When comparing data from individualswith PDand age-matched controls,
models trainedon the static task shared35 common features, derivedmostly
from the quiet stancewith eyes open task and averaging foot COP data (Fig.
3a and Supplementary Fig. 8a). For models trained on the active task, 26
features were common with most from the bending-over task and an even
split between average and asymmetric COP features. Combining static and
active task features resulted in 88 common features, mostly from static
balance tasks, and predominantly average features. Among the common
features, 7 unique features also had top Shapley values.

For data collected between PD fallers and PD non-fallers, models
trained on the static task had nine common features, derived primarily from
the quiet stance eyes closed task and from asymmetric COP foot metrics
(Fig. 3b and Supplementary Fig. 8b). For models trained on active task
features, there were 10 common features, derivedmostly from the gait task.
For models trained on static+active task features, there were 17 common
features, again derived primarily from the gait task. Out of the common
features for static, active, and static+active models, 9 unique top Shapley
features were identified.

Key features
For models comparing individuals with PD and age-matched controls, 7
features that were common across static, active, and static+active tasks also
appeared as top Shapley features in amodel (Fig. 4a andTable 1). Four were
from static balance task features (3 eyes open, 1 one foot) and three were
features from active balance tasks (2 bend over, 1 functional reach). No
features appeared from gait tasks. Five were positional measures, one was a
dynamic measure, and one was a frequency measure (Supplementary
Fig. 11a).

Additionally, for models trained to differentiate PD fallers from non-
fallers, 9 features that were common across static, active, and static+ active
tasks models also appeared as top Shapley features in a model (Fig. 4b and
Table 1). Fivewere static balance task features (4 eyes closed, 1 one foot), and
four were from active balance tasks (3 gaits, 1 bend over). No features
appeared from a quiet stance eyes open or from functional reach. Further,
five were dynamic features and four were frequency features. There were no
positional features. Lastly, four of the features were average features and five
were asymmetric features (Supplementary Fig. 11b).

Discussion
This study demonstrates the utility of insole plantar pressure recordings
during simulated daily living activities to differentiate between individuals
with PD and control subjects (young and age-matched), as well as between
PD fallers and PD non-fallers. Feature selection and Shapley analysis of the
machine-learningmodels further enabled the identification of specific tasks
(static and active), COP trajectories (position, dynamic, and frequency), and
consistency of COP between feet (average and asymmetry) that best dif-
ferentiated between groups.

This study investigated binary classification models leveraging insole
pressure data from static and active tasks to differentiate PD subjects from
young and age-matched control groups. The classifications assessed in this
study achieved high performance (with F1 scores greater than 97% for all
models trained on static+active features). Additionally, three models clas-
sifying PD from young controls (support vector machine, K-nearest
neighbors, and Gaussian Naïve Bayes) demonstrated perfect classification
(100% accurate) over a five-fold cross-validation. Together, these data
demonstrate clear decision boundaries from insole plantar pressure-derived
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features that separate PD and control subjects when utilizing multiple
simulated tasks that are often performed as part of daily living.

Previous studies that have leveraged machine-learning models to
classify PD and control groups have focused primarily on one task,
including quiet stance (86% accuracy)26 or gait (95% accuracy)27. The
improved performance achieved by static+active tasksmodels in this study
likely stems from choosing tasks that sample non-redundant aspects of
postural control. This finding emphasizes the differences in the manifes-
tation of postural control dysfunction amongst individuals with PD and
demonstrates the clinical need toquantify a variety of balanceassessments to
fully capture the high dimensionality of PD-related postural instability.

In conjunction with combining static+active tasks in the models, the
use of insole plantar pressure from each foot enabled assessment of COP
asymmetry,whichprovedhelpful in differentiatingPDfallers fromPDnon-
fallers. In this study, the KNN model trained on insole plantar pressure
features from both static and active tasks, achieved 91% accuracy, 93%
precision, and 80% recall. A previous study using a force plate to capture
COP metrics during static balance tasks and a decision tree model had
performance results of 88%accuracy, 75%precision, and57%recall24.Other
studies have investigated COP characteristics to differentiate between

controls, PD non-fallers, and PD fallers, but did not use insole plantar
pressure sensors, machine-learning algorithms, or investigate the effect of
balance task type on classification23,25.

This study also investigated the effect of task type on model classifi-
cation performance between PD fallers and PD non-fallers. Models using
active task features showed slightly better performance than those using
static task features, and models trained on both static+active features
showed the highest performance. Abnormalities in postural control for PD
fallers have been shown to be more evident during active tasks14 and static
tasks with induced postural threat28, explaining why models using active
tasks performed better, and static+active task models had the best classi-
fication performance. These findings highlight the importance of using a
variety of balance assessments to fully capture the high dimensionality of
postural instability, especially tasks with higher postural threat to assess fall
risk in PD.

Using common feature identification and Shapley analysis, themodels
identified seven key features that had a high marginal contribution to
classifying subjects with PD from age-matched controls. While these fea-
tures were biomechanically relevant, classification performance was higher
when additional features (beyond the seven) were methodically included in
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the model’s input. Therefore, these seven features were not sufficient on
their own to classify between groups, but their biomechanical relevance was
strongly relevant to the overall classification performance.

The ankle and hip joints are the primary contributors to ante-
roposterior (AP) and mediolateral (ML) COP displacement, respectively,
during postural control29,30. In individuals with PD, ankle joint torques are
decreased, leading to compensatorymechanisms such as increased hip joint
torques31. This compensation was observed in the key feature set of the
study, as individuals with PD exhibited an increase in the lateral placement
of weight on each foot during quiet stance with eyes open and bending over.
Since individuals were instructed to place their feet at a comfortable width,
as opposed to a normalized stance width, this key feature may provide
insight into individuals with PD electing to take a stance width that
emphasizes lateral weight distribution, or simply an attempt to put more
weight on the outside of their feet to increase the area of base support or
compensate for decreased ankle joint control.

On the contrary, the mean frequencyMLwas decreased in individuals
with PD compared to age-matched controls during a quiet stance on one
foot. This may be counterintuitive, as an increase in this feature may be
indicative ofmoreMLsway inorder tomaintain balance32.However, during
quiet stance one foot, individuals with PD more often placed their non-
support foot on the ground to regain balance, while controls were able to
maintain upright on one foot for longer (see Supplementary Fig. 12).
Therefore, the increase in ML sway in controls may be representative of an
increased postural control threshold to maintain balance on one foot,
through ML sway compensation, as opposed to individuals with PD who
had to compensate for a decreased threshold and instead placed their non-
support foot temporarily on the ground to maintain upright posture.

Additionally, the rms of the radius of COP during quiet stance with
eyes open was higher in individuals with PD. This feature reflects the dis-
tance covered by theAP andML components of COP, andwas shown to be
on average larger in PD as compared to controls. There was also a large
distribution of this feature seen in individuals with PD as compared to
controls. These findings align with previous studies that found machine-
learning algorithms could classify PD subjects from control subjects based
on postural sway features26,33. Specifically, postural sway was greater and

more variable in PD subjects compared to controls26, and that rms of the
COP was a useful feature in the differentiation33.

The mean peak sway density during functional reach was higher
between individuals with PD compared to controls. This feature measures
the consecutive samples of the COP trajectory that, for each instant, fall
within a 3mmcircle. For static tasks, high peak sway density corresponds to
stable postural control34. However, for active tasks such as functional reach,
as shown in this study, the PDgroup demonstrated a largermean peak sway
density than controls. While perhaps counterintuitive, the increase may
demonstrate a more rigid or slower movement over the duration of the
active task for the PD group in comparison to controls. Further assessment
of this feature should be evaluated to determine whether its biomechanical
underpinnings are due to increased rigidity or bradykinesia35,36.

Features that represented an increase in asymmetric postural control in
PD were also highlighted by the models. The asymmetric energy content
between 0.5 and 2HzML during quiet stance with eyes open and the
asymmetricmeanvalueMLduringbendingoverwas increased in individuals
with PD compared to controls. Asymmetric posture is due to larger joint
torques fromone sideof thebodyasopposed to theother37. For these features,
it is likely that the asymmetry occurred because one hip joint producedmore
hip torque than the other, which resulted in asymmetric ML features across
the feet. This aligns with previous findings that have demonstrated that
asymmetric postural control occurs in PD38, whichmaybe further influenced
by the asymmetric presentation of other PD motor signs39.

Within the PD cohort, nine unique features strongly influenced the
classification between PD fallers and PD non-fallers. The tasks underlying
these nine features in the machine-learning models were either active tasks
or static tasks with induced postural threat by way of removing visual cues
(eyes closed) or reducing thebaseof support (standingonone foot). Previous
studies have also observed that active tasks and static tasks with induced
postural threat result in different postural control responses between PD
fallers andPDnon-fallers14,23–25. The average zero crossing in theMLandAP
directions, defined as the number of times theCOPvelocity crosses the zero-
value axis, was higher in PD fallers. Previous work has shown an association
between this variable and people in general who fall40, but this metric may
also prove useful for predicting PD fallers from PD non-fallers.

The average energy content below0.5 Hzpower spectral density (PSD)
ML and total power PSDML during gait was larger in PD fallers compared
to PD non-fallers. This may indicate that there is more postural sway in the
ML direction during gait for PD fallers, or that PD fallers deviate from a
straight walking pathmore often, or a combination of both. This alignswith
previous findings, which saw increasedML head and hipmotion in those at
higher risk of falls with PD41. Additionally, greater postural sway in the ML
direction stance has been associated with an increased risk of falls in indi-
viduals with PD42,43. Increased postural sway during gait may be due to
impaired postural responses in the ankle and hip, or evidence of cognitive
compensation due to decreased gait automation44,45.

Duringquiet stancewith eyes closed, themodels showed thatPD fallers
have increased asymmetry in their confidence ellipse area as well as their
mean peak sway density. Similarly, increased asymmetry was observed in
power frequency 50% PSD AP during the bending over task. Asymmetric
posture can stem from larger joint torques from one side of the body37;
however, in this study, it was also seen that PD fallers exhibited decreased
asymmetry in two other key features: quiet stance one-foot frequencymode
PSDAP and gait sway area per secondML andAP.While previous findings
have demonstrated that asymmetric postural control occurs in PD38, there
are mixed results as to whether PD fallers exhibit more or less postural
asymmetry in comparison to PD non-fallers46,47. Beretta et al. showed that
COP asymmetry increased in PD fallers and could be used in a machine-
learning model to classify PD non-fallers from PD fallers46. In contrast,
Barbieri et al. demonstrated that PD fallers had decreased asymmetry in
their postural control47.

PD symptoms typically present unilaterally (and therefore asymme-
trically), and this may contribute to the asymmetric posture observed in
PD48. However, as the disease progresses, the symptoms often become

Table 1 | List of key features at the intersection of top Shapley
and common features for classifications between (top) indi-
viduals with PD and age-matched controls, and (bottom) PD
fallers and PD non-fallers

Feature # Feature (COP type, task, feature name)

Key features separating: PD from age-matched control subjects

1 Average, eyes open, mean value ML

2 Average, eyes open, rms radius

3 Average, one foot, mean frequency ML

4 Average, bend over, mean value ML

5 Average, functional reach, mean peak sway density

6 Asymmetric, eyes open, energy content between 0.5–2 Hz PSD ML

7 Asymmetric, bend over, mean value ML

Key features separating: PD fallers from PD non-fallers

1 Average, eyes closed, zero crossing velocity ML

2 Average, eyes closed, zero crossing velocity AP

3 Average, gait, energy content below 0.5 Hz PSD ML

4 Average, gait, total power PSD ML

5 Asymmetric, eyes closed, confidence ellipse area

6 Asymmetric, eyes close, mean distance peak sway density

7 Asymmetric, one foot, frequency mode PSD AP

8 Asymmetric, gait, sway area per second ML and AP

9 Asymmetric, bend over, power frequency 50% PSD AP
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bilateral, whichmay decrease the asymmetric nature of PD-related postural
instability. The transition from unilateral to bilateral symptom presentation
may be why there have been mixed results as to whether or not PD fallers
exhibit decreased or increased asymmetric postural control. Similarly, the
heterogeneous presentation of PD and the non-linear mixing of symptoms
may also contribute to these results. One advantage of the insole plantar
pressuremeasurement approach is that such questions could be followedup
upon through longitudinal tracking of subjects in their activities of daily
living over time.

This study demonstrated the differential utility of insole plantar
pressure sensor data in the context of peoplewith andwithout PD, andwith
and without a history of falls in the context of PD, suggesting a potential
approach for telehealth trackingof postural instability. Thewearable sensors
are relatively low-cost and accessible within multiple contexts (Supple-
mentary Table 1), and the brief balance tasks can be completed in under
10min and do not require a trained physician. The low barrier of entry
presents opportunities for insole sensors to frequently and objectively assess
fall risk in PD, with falls and the fear of falling often contributing to sig-
nificant reductions in quality of life.

Additionally, this study showed that interpretable, quantitative COP
measurements can be used in machine-learning models to identify indivi-
duals with PD and those with a history of falls. Although interpretable COP
features were used, it was not necessary to understand every input feature to
comprehend the model’s output. This balance between model simplicity
and interpretability candirectly benefit clinicians andpatients by identifying
postural instability severity and indirectly impact future treatments for PD-
related postural instability by providing further insight into this motor
symptom.

In the context of interpreting the results from this study, it is important
to consider several limitations. First, portions of the dataset were imbal-
anced, with a higher percentage of participants in the PD group than in the
young control group, and in the PD non-faller group than the PD faller
group. Second, data were collected in varying locations, with significant
differences in surface type between PD and age-matched control groups.
While this limitation introduced additional variability in the study, it also
demonstrated that data collection location did not impede the classifier
models and showed the robustness of the insole plantar pressure approach
across varying support surfaces. Third, there was a significant difference in
sex between the age-control and PD groups. Therefore, while the features
provide insight into differences between the posture of PDand age-matched
control groups, sex is a confounding factor that may also influence these
features.

This study establishes and reinforces important insole plantar pressure
features across tasks that could be used for improved tracking of PD-related
postural instability progression and more effective evaluation of patient-
specific treatments in the future. To address the identified limitations, the
next steps should be considered to further refine how plantar pressure
features provide insight into individuals with PD who fall. To begin, future
studies should consider expanding the size of the dataset to (1) further
validate current classificationmodels andkey featureswith anewcohort, (2)
capturemore edge cases of PD for improvedmodel classification, (3) enable
additional comparisons, like distinguishing between age-matched fallers
and PD fallers, and (4) minimize confounding differences between some of
the group comparisons, such as sex or surface type. Similarly, comparing
classification model outcomes to clinically relevant ratings of PD fall risk,
such as the Unified Parkinson’s Disease Rating Scale or Berg Balance Scale,
would provide valuable insights and guidance for the use of the identified
features within telehealth contexts and within contexts to quantify the
degree of postural instability.

While this study demonstrated the usefulness of capturing COP in the
context of various balance tasks, future work should further refine how
plantar pressure features provide insight into individuals with PD who fall.
Falls inPDhavebeenshown tobe closely related todysfunction ingait41, and
many of these gait dysfunctions can be captured frommetrics such as stride
length, stride width, swing time, and stance time49. Future studies should

consider leveraging the insole plantar pressure sensors, likely coupled with
wearable inertial measurement units, to extrapolate these important gait
metrics and test whether their inclusion would provide greater classifier
performance for individuals with PD who are at risk for falling. Similarly,
instability characteristics of PD have been shown to be exacerbated during
turning anddual-task gait (i.e.,when an individual performs agait taskwhile
also completing a cognitive task, such as counting backward from one
hundred by threes)50. Subsequent studies with the insole plantar pressure
sensorsmay consider including such tasks, as they hold the potential to offer
deeper insights into the vulnerability of falls among individuals with PD.
Although participants performed turns within the scope of this study’s gait
task, the event-based analyses did not enable isolating specific nuances of
turning movements.

Lastly, the at-home use of insole plantar pressure systems for assessing
fall risk in PD will require technical developments51. One could envision
processing the data collected during a brief set of tasks, uploading it to the
cloud through a smartphone or tablet, and then using the pre-trained
machine-learningmodels tomap theplantar pressure data to forecast falling
risk across tasks, environments, and time. Most studies tracking the pro-
gression of postural instability in PD have only sampled on the order of
several months to years21,52,53, and little is known if ultradian, circadian, and
infradian rhythms of postural instability are present as people with PD go
about their daily activities54. This is an important next step to track fall risk
longitudinally and on an individual basis.

Machine-learning models, based on insole plantar pressure data col-
lected during six simple static and active postural control tasks, successfully
differentiated between people with and without PD, and between PD fallers
and PD non-fallers. The COP-derived feature input to the model was bio-
mechanically relevant and interpretable, showing how specific static and
active tasks were useful for differentiating PD and how tasks with greater
postural threat were useful for differentiating PD fallers from PD non-
fallers. The approach points toward an objective, at-home tool for rapid and
longitudinal assessment of PD-related postural instability.

Methods
Participants
One hundred eleven people were recruited for this study: 44 were diag-
nosed with PD and 67 were control subjects (Table 2). The 44 oldest
subjectswere considered age-matchedcontrols, and the remaining 23were
considered young controls. There was no significant difference between
ages for PD and age-matched control subjects (Welch’s t-test, p = 0.09).
The inclusion criteria for participants were that they were able to complete
the balance tasks and that they were over the age of 18. Controls could not
have any form of neurological condition that affected movement, and
individuals with PD needed to self-report a diagnosis of PD as assessed by
their treating physician and not have any other form of neurological
condition that affected theirmovement. The purpose of this criteria was to
exclude other motor control disorders from the study. Data were collected
while the PD subjects were on their typical medication and/or deep brain
stimulation regimen. After providing informed consent, all participants
completed a questionnaire with information on sex, race, age, and fall
history. At the time of self-reporting fall history, individuals were asked
whether they had experienced a fall within the past year. Individuals who
had experienced at least one fall in the past yearwere considered fallers. PD
participants completed an additional questionnaire that provided infor-
mation onPDduration whenmedicationwas last taken, andwhether they
had an implanted deep brain stimulation system (Table 2). Information
regarding each participant’s PD diagnosis, medication and deep brain
stimulation state, fall history, and associated demographics were self-
reported and not accompanied by clinical assessments by a trained neu-
rologist. The study was approved by the University of Minnesota Insti-
tutional Review Board (IRB Study Number: STUDY00013580). All
subjects gave written, informed consent prior to participation.

After completing the questionnaire, all participants were instructed to
complete a series of static and active balance tasks while wearing insole
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plantar pressure sensors (see below). Each task was completed one time, per
participant. The tasks were completed outside of a traditional lab-based
environment, and instead in the context of a common location that the
participant goes to in their daily life. Therefore, the location of data col-
lection varied across participants. Due to varying locations where testing
took place, the surface that the subject stood on also varied. The types of
surfaces used in this study included hardwood floors, pavement, concrete,
carpet, and turf (Supplementary Table 1).

Balance tasks were categorized into three static tasks and three active
tasks. Tasks that required the individual to maintain a still posture were
categorized into static tasks1. Tasks that required the individual to initiate a
voluntary movement to complete the task were categorized into active
tasks1. These taskswere chosen based on previous research that has assessed
postural control in PD, tasks included in the MDS-UPDRS assessments of
movement, tasks included in the Berg Balance Scale, and postural tasks that
are commonly completed during daily life55–59. Both static and active tasks
were included because they recruit different aspects of the postural control
system60.

Static balance tasks
Static postural control is defined as achieving postural alignment while
minimizingmovement of body segments, which requires a complex state of
sensorimotor control loops that contribute to balance control61. The goal of
static postural control is to maintain the upward alignment of the body so
that the effect of gravitational forces that displace the body’s center of mass
can be minimized. The first static task required the participant to stand still
for 30 s with their eyes open (EO: quiet stance eyes open). The next static
task required the participant to stand still for 30 s with their eyes closed (EC:
quiet stance eyes closed). For both eyes open and eyes closed static tasks,
stance width was not normalized; instead, participants were instructed to
place their feet at a comfortable distance apart. The last static task required
the participant to stand on their left foot for 30 s then stand on their right
foot for 30 s each with their eyes open (OF: quiet stance one foot). Each
participant was allowed to put their non-standing foot down to regain
balance if needed but was required to return to a one-legged stance
immediately afterward.

Active balance tasks
Active postural control requires the ability to remain stable while per-
forming voluntary movements or actions that include movement from an
individual’s initial body placement62. These active movements require the
integrationofmany sub-componentswhichultimately result in coordinated
and steadymovements. These sub-components include proprioception, the
range of motion of lower limb joints, the strength of muscles, automatic

reflexes, and movement cognition. The first active task required the parti-
cipant towalk 3meters, turn, andwalk back to their starting location (GAIT:
gait). The next active task required the participant to stand normally and
then reachboth arms forward as far as possiblewithout losing balance.Once
the reach limit was hit, the participant was instructed to return back to their
normal upright stance (FR: functional reach). For the last active task, the
participant was instructed to bend down and pick up an item off the ground
that was placed two feet in front of them. The participant was allowed to
bend their knees while picking up the object (BO: bend over).

Data processing
During all tasks, plantar pressure data was collected using insole plantar
pressure sensors (PRISM, RetiSense, India). The participants wore properly
fitting athletic shoes with the proper sized insole sensor inside each shoe.
Each pressure insole contained 100 sensors distributed as a matrix array.
The RetiSense PRISM sensors collected force data at each sensor in the
insole. During data collection, the back end of the RetiSense software
averaged the data from the 100 pressure sensors into eight groups, which
were determined by anatomically relevant locations: big toe (area 1), smaller
toes (area 2), metatarsal 1 and 2 (area 3), metatarsal 3 and 4 (area 4), medial
arch (area 5), lateral arch (area 6), medial heel (area 7), and lateral heel (area
8). Coordinates were defined by the distance between arrays in the matrix,
marked by dashed lines on ML and AP axes (Fig. 5).

The raw data from the plantar sensors comprised of the force values
across the eight locations of each foot and a time stamp for each sample. For
30 controls and 43 PD subjects, the data were collected with a sampling rate
of 50 Hz. For 37 controls and 1 PD, the data were collected with a sampling
rate of 12 Hz. Based on comparisons between sampling rates, the data
collected at 50 Hz was filtered with an IIR anti-aliasing filter and down-
sampled to 12 Hz for consistency.

Center of pressure calculation
The force data were post-processed to calculate the COP for each foot at
each sample. The COP at a moment in time was defined as an ML and AP
coordinate of the average location based on all pressure acting upon the
insole.COPwas calculated for each foot separately bymultiplying each force

Left Foot

12

4 3

6 5

8 7

1 2

43

65

87

Right Foot
AP

ML

AP

ML
Fig. 5 | The plantar pressure sensors collected force data at each sensor in the
insole. The average force value from each of the eight anatomical areas was used for
COP calculation. Coordinates were defined by the distance between arrays in the
matrix, marked by dashed lines on the mediolateral (ML) and anteroposterior
(AP) axes.

Table 2 | The demographics of participating subjects in this
study given by their mean (standard deviation)

Young controls Age-matched
controls

PD

Sample size 23 44 44

Age, in years 28.9 (5.2) 59.0 (10.2) 65.7 (7.9)

Years with PD NA NA 8.2 (5.2)

Deep brain stimulation
implant (% yes)

NA NA 20%

Sex (% male) 47.8% 45.5% 68%a

Self-reported balance
issues (% yes)

0.09% 15.9% 77.3%

Self-reported faller
(% yes)

0% 0% 34.1%

See Supplementary Table 1 for information on data collection sites and surfaces.
aA significant difference in sex was observed between PD and age-matched control groups
(p = 0.03), which is consistent with a higher prevalence of PD in males.
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value, Fi, by the ML distance ðDMLÞ and AP distance ðDAPÞ from the insole
origin and dividing by the total force summation (Eqs. 1–2, Supplementary
Table 2).

COPML ¼
P8

n¼1Fi � DMLP8
n¼1Fi

ð1Þ

COPAP ¼
P8

n¼1Fi � DAPP8
n¼1Fi

ð2Þ

Feature set generation
The time-varying COP signal for each foot was measured throughout the
duration of each task, and then used to calculate 60 features63 per foot for
each task completed (Supplementary Tables 3–5). The 60 features were
further categorized into positional, dynamic, and frequency features. Posi-
tional features describe characteristics of the dispersion of the trajectory or
position of the feet and do not require the knowledge of the dynamics of the
signal. Nineteen positional features were used (Supplementary Table 3).
Dynamic features are based on the dynamic of the COP, requiring the
knowledge of its local displacements. Twenty-one dynamic features were
used (Supplementary Table 4). Frequency features are used to describe the
power spectral density of the COP trajectory. Twenty frequency features
were used (Supplementary Table 5). These features were calculated using
open-source code63, which provides details on the original formulations.
Positional, dynamic, and frequency features were calculated for each task
and foot, and the features were then averaged across both feet to determine
an average for each feature (Eq. 3). Asymmetry of the features between feet
was also calculated as the absolute difference of features, relative to the sum
of the features from each foot (Equation 4). This resulted in 60 average
features and 60 asymmetric features per participant per task, for a total of
120 features per participant and per task. For the one-foot stance task, only
the features fromtheweight-bearing footwere considered.Normalizationof
the features was done using aminimum-maximum scaler between zero and
one.

featureavg ¼
featureleftfoot þ featurerightfoot

2
ð3Þ

featureasym ¼
featureleftfoot � featurerightfoot

�
�
�

�
�
�

featureleftfoot þ featurerightfoot
ð4Þ

Features were used to train binary machine-learning classifiers to
classify (1) young control from PD participants, (2) age-matched control
from PD participants, and (3) PD non-fallers from PD fallers. The young
controls vs. PD classifier assessed the feasibility of identifying PD based on
PD-specific balance patterns. The age-matched control vs. PD classifier
investigated whether PD could be identified based on altered postural
control while reducing age-related confounding factors. The PD non-fallers
vs. PD fallers classification aimed to identify different severities of PD-
related postural instability (non-faller being less severe postural instability,
and faller being more severe postural instability). The static and active task
feature sets were used separately and together (static, active, and static
+active) to investigate the influence of task type on classification perfor-
mance. To investigate potential confounding factors, exploratory analysis
(Welch’s t-test) was conducted to compare surface types, sex, and age
between groups (age-matched controls vs. PD and PD non-fallers vs. PD
fallers). A significant difference was defined at p < 0.05.

Feature selection and model development
Before developing the machine-learning classifier models, the static, active,
and static+active feature sets were each pre-filtered and sub-selected to
determine an optimal subset of features (see below). These optimal sets of

features were then used to train five different binary classificationmachine-
learning architectures: support vectormachine (SVM), random forest (RF),
logistic regression (LR), K-nearest neighbors (KNN), and Gaussian naive
Bayes (GNB). Python’s sci-kit learn package was used for the five machine-
learning model architectures (SVM: sklearn.svm.SVC, RF: sklearn.ensem-
ble.RandomForestClassifier, LR: sklearn.linear model.LogisticRegression,
KNN: sklearn.neighbors.KNeighborsClassifier, GNB:
sklearn.naivebayes.GaussianNB)64.

Feature set pre-filtering
In order to prune the feature space used to train the models, an F-statistic
filtering method was applied. Each feature’s one-way ANOVA F-statistic
and associated p-value was calculated using Python’s sci-kit learn package
(sklearn.feature selection.f classif)64. The F-statistic is the ratio of the var-
iation between group means and the variation within groups. A higher F-
statistic is associated with greater evidence that there is a difference between
group means. Any feature with a p-value greater than 0.05 was removed
fromthe feature set. This resulted inpre-filtered static andactive feature sets.
The pre-filtered static task and active task feature sets were utilized sepa-
rately and combined to develop machine-learning classifier models. Note
that this p-value filtering aimed to reduce the feature set for sequential
feature selection. The purpose was not to claim the statistical significance of
features, as this was not a conservative statistical analysis.

Sequential feature selection
The pre-filtered feature sets were further reduced by forward sequential
feature selection using Python’s sci-kit learn package (sklearn.feature
selection.SequentialFeatureSelector)64. This process further reduced the
feature set and determined an optimal subset of features for each classifi-
cation model. In forward sequential feature selection, features were
sequentially added to the training and testing of a machine-learningmodel.
At each stage, the model chose the best feature to add based on the five-fold
cross-validation F1 score of the model. This was repeated until all features
had been sequentially added to the model and assessed for the five-fold
cross-validation F1 score.

After the forward sequential feature selection was completed, the
optimal feature subsets for each model were identified. The optimal feature
subset was defined as the subset of features that resulted in the highest five-
fold cross-validation F1 score, where the F1 score is the harmonic mean
precision and recall of the model’s predictions. Thus, for young controls vs.
PD, age-matched controls vs. PD, and PD non-fallers vs. PD fallers, there
were five different subsets of static features, five different subsets of active
features, and five different subsets of static+active features, one corre-
sponding to each model.

Model development and tuning
After identifying the optimal feature subsets for each model, the models
were further refined through hyperparameter tuning. The previously
determined optimal subset for themodel was used to tune themodel during
a five-fold cross-validation. A grid search was used for hyperparameter
tuning, with the goal of hyperparameter tuning to reduce the overfitting of
the model to the training set of data.

Model evaluation and comparison
After tuning the hyperparameters for each model, their performance was
analyzed using a stratified five-fold cross-validation with optimal feature
subsets. For each fold in the cross-validation, the model’s parameters were
determined from the training set of data, and the performance of the trained
models was determined from the separate test set of data. Since each par-
ticipant only completed each taskonce, participants didnotoverlapbetween
each fold’s training and testing sets. The average accuracy, precision, recall,
F1, and kappa scores were computed at each fold and then averaged. The
average receiver operating characteristic curve (ROC) curve and area under
the curve (AUC) were also computed from the cross-validation. The ROC
curve showed the classification model performance at all classification
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thresholds, and the AUC was the area under this curve. An AUC of one
represented a perfect classificationmodel, and an AUC of 0.5 represented a
model that classifies at the same level as random chance. Each of these
metrics was computed using Python’s sci-kit learn package64.

A mixed effects model was conducted with each classifier’s perfor-
mancemetric used as the response variable,while classifier architecture type
and feature set task type (static task vs. static+active task) were fixed effects.
The same analysis was conducted for active tasks vs. static+active tasks and
active tasks vs. static tasks. A significance level of p < 0.05was adjusted using
a Bonferroni correction for the three comparisons, resulting in a corrected
significance level of p < 0.017.

Misclassification analysis
Individualswhowere commonlymisclassified acrossmodelswere identified
(Supplementary Figs. 4–7; Supplementary Tables 6 and 7). This process
isolatedparticipant-specificpostural control strategiesor characteristics that
contributed to incorrect classifications. Commonly misclassified subjects
were defined as individualswhoweremisclassified in at least threeof thefive
models. This was determined separately for models that used static, active,
and static+active data subsets, thus resulting in three sets of commonly
misclassified subjects.

Common feature identification and analysis
Feature analysis was used to focus on specific COP-derived features to
investigate altered postural control in PD and in PD fallers. Common fea-
tureswere definedas features that appeared in a subset of at least three of the
five models. A z-score of each common feature per group and Pearson’s
pairwise correlation across common features was computed. The correla-
tion across features is shown in Supplementary Fig. 8. The specific tasks
(eyes open, eyes closed, one foot, gait, functional reach, bend over), types of
features (positional, dynamic, and frequency), and type of COP measure
(average and asymmetric) contributing to the set of common features were
identified.

Shapley value analysis
The Shapley values for each feature contributing to each model were also
calculated. The purpose of Shapley analysis is to determine the marginal
contribution of each feature used in themachine-learningmodel, relative to
the other features65. A Shapley value is defined as the average marginal
contribution of a feature value across all possible coalitions. In simple terms,
not all features contribute evenly to a model’s final output, and the Shapley
value is a way to determine how a feature might have contributed more or
less than the others. Python’s SHAP package was used to calculate Shapley
values66 and develop the visualization plots shown in Supplementary Figs.
9 and 10. The single feature with the highest Shapley value for each model
was identified, which resulted in a top Shapley feature set for static, active,
and static+active task models.

Intersection of common and top Shapley value features
Features that appeared in the common feature sets and top Shapley value
feature sets were further analyzed for their biomechanical significance.
These key features were used to train and test five machine-learning model
architectures with eachmodel’s performancemetrics of accuracy, precision,
recall, F1, and kappa determined by a five-fold cross-validation. Key feature
names, distributions, and model performance results are shown in Sup-
plementary Fig. 11.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed in this study are available through our
github repository: https://github.com/NRTL-Repository/Herbers2024_
NPJ_InsolePressure.

Code availability
Similarly, code for this study is available through our github repository:
https://github.com/NRTL-Repository/Herbers2024_NPJ_InsolePressure.
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