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Advanced brain aging in Parkinson’s
disease with cognitive impairment
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Patients with Parkinson’s disease and cognitive impairment (PD-CI) deteriorate faster than those
without cognitive impairment (PD-NCI), suggesting an underlying difference in the neurodegeneration
process.Weaimed to verify brain agedifferences inPD-CI andPD-NCI and their clinical significance.A
total of 94 participants (PD-CI, n = 27; PD-NCI, n = 34; controls, n = 33) were recruited. Predicted age
difference (PAD) based on gray matter (GM) and white matter (WM) features were estimated to
represent the degree of brain aging. Patients with PD-CI showed greater GM-PAD (7.08 ± 6.64 years)
and WM-PAD (8.82 ± 7.69 years) than those with PD-NCI (GM: 1.97 ± 7.13, Padjusted = 0.011; WM:
4.87 ± 7.88, Padjusted = 0.049) and controls (GM: -0.58 ± 7.04, Padjusted = 0.004; WM: 0.88 ± 7.45,
Padjusted = 0.002) after adjusting demographic factors. In patients with PD, GM-PAD was negatively
correlated with MMSE (Padjusted = 0.011) and MoCA (Padjusted = 0.013) and positively correlated with
UPDRS Part II (Padjusted = 0.036). WM-PAD was negatively correlated with logical memory of
immediate and delayed recalls (Padjusted = 0.003 and Padjusted < 0.001). Also, altered brain regions in
PD-CI were identified and significantly correlated with brain age measures, implicating the
neuroanatomical underpinning of neurodegeneration in PD-CI. Moreover, the brain age metrics can
improve the classification between PD-CI and PD-NCI. The findings suggest that patients with PD-CI
had advanced brain aging that was associated with poor cognitive functions. The identified
neuroimaging features and brain age measures can serve as potential biomarkers of PD-CI.

Parkinson’s disease (PD) is a neurodegenerative disease characterized by
pathological alpha-synuclein aggregation, dopaminergic neuron loss in the
substantia nigra pars compacta (SNpc), and motor symptoms such as rest
tremor, bradykinesia, and gait disturbance1. In the advanced stage, alpha-
synucleinopathy may affect cortices2, and most patients will experience
cognitive impairment (PD-CI)3, which indicates a worse prognosis and
affects the quality of life4. PD-CI is subcategorized as PDwithmild cognitive
impairment (PD-MCI)5 and PD with dementia (PDD)6. To achieve high
clinical specificity and sensitivity, it is required to incorporate indispensable
neuropsychological tests (NPT) into level II evaluations in conjunctionwith
the utilization of the Montreal Cognitive Assessment (MoCA) for level I
assessment. Nevertheless, these examinations necessitate considerable

temporal investments and demand substantial manpower resources7. The
dependability and explication of NPT outcomes may exhibit arbitrary dis-
crepancies amongst raters and patients’ levels of cognizance. This variability
may impede the early detection of the pathological conversion leading to
PD-CI, for which no therapeutics are currently available for reversing its
clinical progression. Therefore, an unmet clinical need exists for a robust
and objective biomarker that can facilitate the detection of degenerative and
senescent processes associated with PD-CI.

Brain magnetic resonance imaging (MRI) is acknowledged as a
potential tool to provide objective, qualitative, and quantitative biomarkers.
Brain age prediction has emerged as a new method for predicting brain
health8. It entails predicting the brain age of individuals through machine
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learning algorithms and neuroimaging data9–11. The difference between the
predicted brain age and chronological age is the predicted age difference
(PAD), which has been suggested to be positively associated with the risk of
various brain disorders such as Alzheimer’s disease8,12,13. Numerous inves-
tigations have demonstrated that increased PAD serves as a risk factor for
cognitive impairment14–16; however, whether PD with varying degrees of
cognitive impairment exhibiteddeviant trajectories of brain aging relative to
healthy controls (HCs) has remained uncertain in prior studies16–19.

To investigate the association of brain age with PD-CI, we employed
two brain agemetrics (i.e. PAD) derived from graymatter (GM)- andwhite
matter (WM)-based neuroimaging features to quantify the degree of brain
aging in patients with PD-CI, patients with PD but without substantially
cognitive impairment (i.e. PD-NCI), and HCs (Fig. 1). Significantly greater
PAD metrics represent older-appearing brain aging status relative to indi-
viduals’ chronological age. We also examined the associations of PAD
measures withmultiple clinical factors (e.g. symptom severity and cognitive
scores). We hypothesized that patients with PD-CI would exhibit a greater
PAD compared to patients with PD-NCI andHCs, and that PADwould be
correlatedwith cognitive scores.Moreover, we attempted to identify specific
neuroimaging features that could contribute to the advanced brain age in
patients with PD-CI relative to PD-NCI and HC. Lastly, we assessed the
clinical potential of neuroimaging-derived PAD metrics by performing
classification between three experimental cohorts.

Results
Characteristics of participants
PatientswithPD-CI (n, 27;meanage, 75.3 years; standarddeviation (SD), 7.2;
sex, 15men), PD-NCI (n, 34;mean age, 70.0 years; SD, 7.9; sex, 20men), and
33 HCs (mean age, 65.2 years; SD, 5.6; sex, 17 men) were recruited in this
study. Patients with PD-CI consisted of 15 patients with PD-MCI (mean age,

74.1 years; SD, 7.8; sex, 6 men) and 12 patients with PD-D (mean age, 76.8
years; SD, 6.4; sex, 9 men). The details of recruitment criteria and clinical
diagnosis are shown in Methods Participants. As presented in Table 1, the
patients with PD-CIwere chronologically older than thosewith PD-NCI and
theHCs, soagewasadjusted in the followinganalyses.The twoPDgroupsdid
not differ significantly in sex or education level. Disease duration (P = 0.116)
and onset age (P= 0.181)were slightly greater in thePD-CI group than in the
PD-NCI group, but this difference was nonsignificant. Regarding symptom
severity, the PD-CI group had significantly higher scores on the Hoehn and
Yahr (H&Y) scale and Unified Parkinson’s Disease Rating Scale (UPDRS)
(Part II, Part III, and overall score) than did the PD-NCI group (P < 0.001 for
all items). In routine cognitive screening (RCS) examinations (i.e. Mini-
Mental StateExamination [MMSE]andMoCAscores), thePD-CIgrouphad
significantly lower scores than did the PD-NCI andHC groups, and the PD-
NCIgrouphad significantly lower scores thandid theHCgroup; these results
were all adjusted for age and education level (P < 0.001 for all items). Besides,
NPTs including the Color Trails Test (CTT)20 for executive function and
Wechsler Memory Scale (WMS)21 for logical memory (LM) were assessed;
the PD-CI exhibited significantly longer response time in CTT and poorer
memory performance in WMS compared to the PD-NCI (adjusted for age
and education, P < 0.01 for all items, except WMS-LMdelayed P = 0.011).

Comparison of PAD among PD-CI, PD-NCI, and HC groups
The GM- andWM-PADmeasures were compared among the PD-CI, PD-
NCI, andHC groups using analyses of covariance (ANCOVAs) adjusted by
chronological age, sex, and education, and the post hoc analysis examined
between-group differences with the Benjamini–Hochberg method for
multiple comparison adjustment. The GM-PADs of the three groups dif-
fered significantly (PD-CI, 7.08 ± 6.64 years; PD-NCI, 1.97 ± 7.13 years;
HC,−0.58 ± 7.04 years; F(2,88) = 6.25, adjusted P = 0.006; Fig. 2a). Notably,

Fig. 1 | Flowchart of image processing, brain age estimation, and data analysis.
Structural and diffusion MRI data were obtained for each group (a). The structural
MRI data were analyzed using voxel-based and surface-based morphometries to
extract volumetric and cortical thicknessmeasures of graymatter (GM), respectively
(b). Also, the diffusion MRI data were processed with tract-based analysis to extract
white matter (WM) features (b). These imaging features from each modality were
utilized to estimate tissue-specific brain agemeasures (c). Subsequently, the GM and

WMbrain-predicted age difference (PAD) metrics, representing the degree of brain
aging, were used for further analyses. Brain features exhibiting significant between-
group differences were extracted to examine their association with brain age mea-
sures, decomposing the potential contributing regions to advanced brain aging (d).
Moreover, the clinical significance of brain age metrics was examined by analyzing
their association with clinical measures of symptom severity and cognitive
impairment (e).
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Table 1 | Characteristics of participants

Characteristic PD-CI PD-NCI HC P-value

N 27 34 33 -

Age (y) 75.3 (7.2) 70.0 (7.9) 65.2 (5.6) <0.001
(PD-CI vs. PD-NCI: 0.008)
(PD-CI vs. HC: <0.001)
(PD-NCI vs. HC: 0.006)

Male (%) 55.6 58.8 51.5 0.834

Education (y) 9.8 (4.9) 11.1 (4.8) 15.1 (4.1) <0.001
(PD-CI vs. PD-NCI: 0.326)
(PD-CI vs. HC: <0.001)
(PD-NCI vs. HC: 0.001)

MMSE 23.4 (4.3) 27.6 (1.7) 29.4 (0.8) <0.001
(PD-CI vs. PD-NCI: <0.001)
(PD-CI vs. HC: <0.001)
(PD-NCI vs. HC: <0.001)

MoCA 17.7 (6.2) 25.3 (3.8) 28.4 (1.8) <0.001
(PD-CI vs. PD-NCI: <0.001)
(PD-CI vs. HC: <0.001)
(PD-NCI vs. HC: <0.001)

Age at onset (y) 69.2 (8.3) 65.9 (8.8) – 0.181

Disease duration (y) 6.2 (3.2) 4.8 (3.1) – 0.116

Hoehn & Yahr scale 2.5 (0.9) 1.7 (0.7) – <0.001

UPDRS I 3.2 (2.3) 2.4 (1.7) – 0.100

UPDRS II 11.3 (6.8) 5.4 (4.2) – <0.001

UPDRS III 15.8 (10.2) 9.6 (5.8) – 0.004

UPDRS total 30.3 (15.3) 17.4 (9.7) – <0.001

CTT-1 RT 175.0 (97.3) 65.5 (36.6) – 0.004

CTT-2 RT 291.5
(138.8)

132.0
(66.8)

– 0.001

WMS-LMimmediate 15.7 (5.4) 25.5 (6.1) – <0.001

WMS-LMdelayed 3.0 (2.0) 5.4 (3.0) – 0.011

Note: mean (SD).
PD-CI Parkinson’s disease with cognitive impairment, PD-NCI Parkinson’s disease without cognitive impairment, HC healthy control, MMSEmini-mental state examination,MoCA Montreal cognitive
assessment, UPDRS Unified Parkinson’s Disease Rating Scale, CTT Color Trails Test, RT response time,WMSWechsler Memory Scale, LM logical memory.

Fig. 2 | Comparison of PAD measures across groups. The PAD metrics derived
from GM (a) andWM (b) features are visualized with beeswarm plots. Vertical and
horizontal lines that overlap observation dots indicate interquartile range and
median, respectively. Asterisk sign * and ** indicate adjusted P < 0.05 and adjusted
P < 0.01, respectively. The PAD measures displayed were adjusted by ANCOVA

given the mean values of continuous covariates (i.e. age and education) and female
class of the sex covariate. GM gray matter, WM white matter, PD Parkinson’s
disease, CI cognitive impairment, NCI non-cognitive impairment, HC healthy
control.
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the mean PAD measures displayed were the estimated marginal means
adjusted by ANCOVA given the mean values of continuous covariates and
female class of the sex covariate. The subsequent post hoc analysis achieved
by ANCOVA adjusting for the same covariates revealed significantly

advancedGMbrain aging in thePD-CI group relative to theHCgroup (PD-
CI vs. HC, adjusted P = 0.004) and PD-NCI group (PD-CI vs. PD-NCI,
adjusted P = 0.011), but no significant difference was observed between the
PD-NCI and HC groups (adjusted P = 0.353). Regarding WM-PAD, the
three groups differed significantly (PD-CI, 8.82 ± 7.69 years; PD-NCI,
4.87 ± 7.88 years; HC, 0.88 ± 7.45 years; F(2,88) = 5.24, adjusted P = 0.007;
Fig. 2b). Post hoc analysis with the same covariate adjustments revealed
significantly greaterWMaging in the PD-CI group relative to theHCgroup
(PD-CI vs.HC, adjustedP = 0.002) andPD-NCIgroup (PD-CI vs. PD-NCI,
adjustedP = 0.049); however, no significant differencewasdetected between
the PD-NCI and HC groups (adjusted P = 0.447). To further elucidate the
potential influence ofmotor-specific symptoms on the observed disparity in
PAD metrics between PD-CI and PD-NCI, a subgroup comparison was
conducted with the inclusion of an additional covariate, the UPDRS part III
(motor-specific symptom severity). The results showed that the GM-PAD
was significantly greater in PD-CI compared to PD-NCI (adjusted
P = 0.027) while the difference in WM-PAD did not reach statistical sig-
nificance (adjusted P = 0.114) (Supplementary Note 1). This suggested that
WM-PAD was more susceptible to the combined impact of both cognitive
and motor impairment relative to GM-PAD.

Association of PAD with clinical variables
Multiple linear regression was used to examine the influence of clinical
factors on PADmeasures; the regression analysis included five categories of
clinical dimensions: symptom severity, time-related clinical factors, routine
cognitive screening outcomes, executive function, and logical memory.
Table 2 lists the associations of PAD with multiple clinical variables
including symptom severity, illness duration, onset age, general cognitive
performance, and domain-specific cognitive performance, in patients with
PD.Weobserved significant associationsof brain agemetricswith symptom
severity, general cognitive outcomes, and logic memory-specific perfor-
mance (Fig. 3) but not in the time-related clinical factors (i.e. onset age and
duration of illness) and executive function. The symptom related to
experiences of daily living (assessed using the UPDRS part II) was sig-
nificantly associated with the increased GM-PAD (β = 0.440, adjusted

Table2 | AssociationsofPADwith symptomseverity, cognitive
measures, and other clinical factors

GM-PAD WM-PAD

Estimate SE P-value Estimate SE P-value

UPDRS I 0.804 0.500 0.2270 0.999 0.496 0.1461

UPDRS II 0.440 0.158 0.0355* 0.416 0.171 0.0915†

UPDRS III 0.134 0.130 0.3061 0.192 0.125 0.2624

UPDRS total 0.166 0.069 0.0799† 0.175 0.077 0.1068

H&Y scale 2.172 1.106 0.1644 0.207 1.248 0.8689

Duration of
illness

0.604 0.335 0.1542 0.424 0.382 0.2726

Onset age −0.252 0.126 0.0518† −0.215 0.133 0.2214

MMSE −0.942 0.326 0.0110* −0.502 0.340 0.1460

MoCA −0.514 0.200 0.0127* −0.368 0.199 0.1382

CTT-1 RT 0.017 0.011 0.2224 0.015 0.011 0.3240

CTT-2 RT 0.009 0.011 0.3967 0.014 0.011 0.2012

LMimmediate −0.468 0.160 0.0098** −0.595 0.164 0.0030**

LMdelayed −0.795 0.423 0.0654† −1.510 0.408 0.0005***

Multiple linear regression was performed with Benjamini–Hochberg adjusted significance level.
PAD predicted age difference, GM gray matter,WM white matter, UPDRS Unified Parkinson’s
Disease Rating Scale, H&Y Hoehn & Yahr Scale,MMSEMini-Mental State Examination,MoCA
Montreal Cognitive Assessment, CTT Color Trails Test, RT response time, LM logical memory, SE
standard error.
†Adjusted p-values < 0.1.
*Adjusted p-values < 0.05.
**Adjusted p-values < 0.01.
***Adjusted p-values < 0.001.

Fig. 3 | Associations of PAD measures with symptom severity and cognitive
measures. Subplots (a–c) show statistical association of GM-PAD metric with
UPDRS part II score, MMSE, and MoCA, respectively. Subplots (d–f) demonstrate
statistical association of LM measures with GM-PAD and WM-PAD, respectively.
Patients with and without cognitive impairment are illustrated with purple and
yellow dots, respectively. Presented variables are adjusted for covariates shown in

Methods Statistical Analysis. Significance level: * adjusted P < 0.05, ** adjusted
P < 0.01, *** adjusted P < 0.001. UPDRS Unified Parkinson’s Disease Rating Scale,
MoCA Montreal Cognitive Assessment, MMSE Mini-Mental State Examination,
LM logical memory, GM graymatter, WMwhite matter, PD Parkinson’s disease, CI
cognitive impairment.
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P = 0.036) and showed a trend with the increased WM-PAD (β = 0.416,
adjusted P = 0.092). The disease severity, as assessed using the total UPDRS
score, also revealed a statistical trend with the increased GM-PAD
(β = 0.166, adjusted P = 0.080). The onset age tended to be marginally
associated with the decreased GM-PAD (β =−0.252, adjusted P = 0.052).
The GM-PAD but not WM-PAD was significantly and negatively asso-
ciated with MMSE (β =−0.942, adjusted P = 0.011) and MoCA
(β =−0.514, adjusted P = 0.013) scores. The CTT measures did not show
significant association with PAD metrics; however, the WMS-LM
immediate score was significantly and negatively associated with both
PADmetrics (β =−0.468, adjustedP = 0.010 forGM-PADand β =−0.595,
adjusted P = 0.003 for WM-PAD). Also, the WMS-LM delayed score was
significantly correlatedwith the decreasedWM-PAD (β =−1.510, adjusted
P < 0.001) and reflected a trend with the decreased GM-PAD (β =−0.795,
adjusted P = 0.065).

Contributions of features to advanced brain age in PD-CI
To identify the image features attributable to advanced brain aging in PD-
CI, we first tested for image feature differences between the PD-CI and HC
groups (see Methods Statistical Analysis). The comparisons of image fea-
tures through mass univariate ANCOVAs (adjusting age, sex, and educa-
tion) revealed that, relative to the HC group, the PD-CI group had 44 GM
features with substantially (P < 0.05) lower values for volumetric measures
and 40 GM features with substantially less cortical thickness (Fig. 4a, b and
Supplementary Table 1). Left and right side features were calculated sepa-
rately. Within them, volume in the right lateral orbitofrontal gyrus, right
inferior temporal gyrus, left parahippocampal gyrus, bilateral caudate, and
bilateral hippocampi (Fig. 4a) and cortical thickness in the left cuneus, left
lateral occipital gyrus, and left posterior cingulate gyrus (Fig. 4b) were
considered as the significantly distinct features (P < 0.001). For WM fea-
tures, the PD-CI group had 35 substantially higher mean diffusivity (MD)
values and 37 substantially lower generalized fractional anisotropy (GFA)
values relative to the HC group especially for those significant features such
as the MD in the right frontal aslant tract, left stria terminalis, bilateral
uncinate fasciculi, bilateral fornices, left cerebrospinal tract, and the corpus
callosum of the temporal lobes and the GFA in the corpus callosum of the
splenium (Fig. 4c, d and Supplementary Table 2). Moreover, we identified
convergence between the aforementioned differentiated features in PD-CI
compared to HC and those demonstrating statistically significant differ-
ences (P < 0.001) between PD-CI and PD-NCI. This overlap was evident in
regions including the volume of the left parahippocampal gyrus, the MD of
the left fornix, right uncinate fasciculus, left cerebrospinal tract, and the
corpus callosum of temporal lobes, and GFA of the corpus callosum of the
splenium, suggesting that these features may also serve as potential differ-
ential markers for PD-CI and PD-NCI.

To further examine the role of highlighted image features in the
advanced brain aging in PD-CI as compared with HC, partial correlation
analysis was applied to the selected features (P < 0.05, listed in Fig. 4)
within each tissue type (GM and WM) while adjusting age, sex, and
education to assess their potential contributions to brain age metrics. The
results revealed that the majority of GM regions demonstrating sub-
stantial differences between PD-CI and HC were also negatively corre-
lated with their GM-PAD (PD-CI & HC) such as the right lateral
orbitofrontal gyrus, right inferior temporal gyrus, bilateral para-
hippocampal gyri, and bilateral hippocampal volumes (Fig. 5a) as well as
the bilateral cuneus, bilateral lateral occipital gyri, and bilateral caudal
middle frontal cortical thickness measures (Fig. 5b). In contrast, although
numerous WM metrics substantially differed between PD-CI and HC,
only a limited fraction of WM bundles exhibited significant associations
with their WM-PAD including the MD in the right frontal aslant tract,
bilateral fornices, and the corpus callosum of the temporal lobes (Fig. 5d).
The resulting features not only reflects the impaired brain structures in
patients with PD-CI but were also substantially associated the variation in
brain age between the PD-CI and HC groups. This implied that the
advanced GM aging in PD-CI may stem largely from widespread

deterioration of GM structures whereas advanced WM aging in PD-CI
may originate from localized impairments in specific WM tracts.

Similarly, in the analysis for PD-CI and PD-NCI, most of the differ-
ential features inGMwere significantlynegatively associatedwith theirGM-
PAD (PD-CI & PD-NCI) including the bilateral lateral orbitofrontal gyri,
bilateral parahippocampal gyri, and left hippocampus in volume (Fig. 5a) as
well as the bilateral caudal middle frontal gyri and bilateral pars triangularis
in thickness measures (Fig. 5b). In the WM features, only bilateral fornices
showed significantly positive correlation with their WM-PAD (Fig. 5d).
These findings suggest that the identified features might explain the asso-
ciation with brain age between the PD-CI and PD-NCI, highlighting the
potential neuroanatomical underpinning of cognitive impairment. The
results from comparing the PD-NCI and HC groups are provided as a
reference.

Improvement of classification between PD-CI and PD-NCI by
using brain age metrics
In order to evaluate the clinical impact of brain age metrics as a diagnostic-
aided marker, we conducted a classification task to differentiate PD-CI and
PD-NCIgroups byusingdifferent combinationsof clinical factors (UPDRS)
as well as brain age metrics and assessed the performance by using receiver
operating characteristic (ROC)12 analysis. By using the support vector
machine with a cubic kernel through 5-fold cross-validation, the baseline
model using UPDRS achieved an accuracy of 63.9% and area under
the ROC curve (AUC) = 0.694 (Fig. 6b). By solely adding routine cognitive
screening (RCS) scores (i.e. MMSE and MoCA) or WMS scores into the
model (CTT was excluded due to lack of statistical relevance), the perfor-
mance cannot be improved (Fig. 6); however, combining these two
dimensions can improve performance metrics (accuracy 75.4% and
AUC= 0.818). Moreover, the classification performance can be widely
improved by including brain agemetrics (Fig. 6b).With brain agemetrics as
an additional predictor, the accuracy, sensitivity, and specificity can be
averagely increased by 10.6%, 12.7%, and 9.4%, respectively. The overall
model combining all selected clinical factors and brain age metrics can
achieve an accuracy of 83.6% and AUC= 0.859, which increased by 19.7%
compared to the baseline model. This result suggested that the brain age
metrics could provide additional information to facilitate the differentiation
between PD-CI and PD-NCI.

Discussion
Using brain age metrics, we demonstrated that both GM-PAD and WM-
PAD in patients with PD-CI were significantly increased (approximately
+7–8 years) compared with those in patients with PD-NCI (approximately
+2–4 years) andHCs (approximately zero). GM- andWM-PADwere both
negatively associated with immediate recall in logical memory. WM-PAD
was negatively associated with delayed recall of logical memory. Only GM-
PAD was negatively correlated with routine cognitive screening (MMSE
andMoCA) and positively associated with impaired activities of daily living
(UPDRS Part II). This supports the clinical validity of brain age metrics in
GM and WM for assessing cognitive alterations in PD16,19. Previous litera-
ture suggestsADpatternsof brain atrophymaybe apreclinical biomarker of
cognitive decline inPD22. In our study, the elevatedPADin thePD-CI group
was largely attributed to regional GM and WM features that bore a
resemblance to the characteristics of AD such as parahippocampal regions
(Fig. 4). Through this paradigm, the diagnostic accuracy of PD-CI was
improved by using brain age metrics (Fig. 6). These findings suggest the
relevance of the image marker in the early detection of PD-CI.

A more extensive and advanced GM aging was clearly observed in
PD-CI compared to PD-NCI. The volumetric measures including the
bilateral hippocampi, bilateral parahippocampi, right inferior temporal
gyrus, and right lateral orbitofrontal gyrus showed a significant asso-
ciation with GM-PAD when there was lower cognitive performance.
These findings may correlate to autopsied studies of alpha-synuclein23

and other co-pathology of amyloid-beta and tau in PD-CI24. Our results
observed AD-associated GM patterns in PD, specifically those with
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cognitive impairment, in terms of advanced GM-PAD, which was
consistent with previous studies16,19,22. This may suggest the involvement
of the aberrant basal forebrain cholinergic system in PD-CI25. Additional
positron emission tomography imaging is warranted to clarify whether
advancedGM-PADwould be correlated with amyloid or tau positivity16.
Other brain areas related to advanced brain age (e.g. lateral orbitofrontal

lobes, cuneus, lateral occipital gyri, parahippocampi, and hippocampi)
have been demonstrated to have functional effects on cognition in
patients with PD26,27. For example, the circuit involving the orbitofrontal
lobes to the ventral caudate nucleus and that from the dorsolateral
prefrontal cortex to the dorsal caudate nucleus are two of the three key
loops in the pathogenesis of frontostriatal cognitive dysfunction in

Fig. 4 | Potential key features of gray matter (GM) and white matter (WM)
contributing to the discrepancy between groups for advanced brain age.Values in
the density plot for GM volume (a), GM thickness (b), WM GFA (c), andWMMD
(d) indicate a negative logarithm to base 10 of P values corresponding to group
differences; higher values indicate greater significance (corresponding brighter ones

in the color scale). Anatomical regions with P-values less than 0.05 are visualized,
and those with P-values less than 0.001 are labeled with asterisks. Full names of
anatomical regions are provided in Supplementary Note 4. GFA generalized frac-
tional anisotropy, MD mean diffusivity.
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patients with PD28. Similarly, the reduced thickness of the left cuneus and
left lateral occipital gyrus may functionally underlie the common pre-
sentation of visual hallucination in patients with PD29, and this condition
is substantially worsened after the development of cognitive impair-
ment. On the basis of these findings, these GM areas warrant further
research to clarify their functional effect on motor and nonmotor
symptoms in patients with PD-CI.

In our analysis using WM-PAD, we revealed a higher degree of invol-
vementof impairedWMtracts in thePD-CIgroupcompared toboth thePD-
NCIandHCgroups.These identifiedWMfeatures, particularly including the
fornices, corpus callosum, uncinate fasciculi, frontal aslant tracts, and
superior longitudinal fasciculi, play a key role in aberrant brain aging in
patients with PD-CI. For example, the fornix is considered a major outflow
hub for transducing signals from the hippocampus30,31. TheMDof the fornix

Fig. 5 | Partial correlation analysis identifying the association of image features
with brain agemetrics.Values in the density plot for volume (a), thickness (b), GFA
(c), and MD (d) indicate linear correlations of individual image features with brain
age metrics while adjusting age, sex, and education. Red and blue color spectrums

indicate positive and negative correlation, respectively. Anatomical regions with
P-values less than 0.01 are visualized, and those with P-values less than 0.001 are
labeled with asterisks. Full names of anatomical regions are provided in Supple-
mentary Note 4. GFA generalized fractional anisotropy, MD mean diffusivity.
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havebeen reported to predict cognitive impairment in patientswithMCI and
AD30 and to be correlated with memory function in patients with PD32.
Additionally, WM abnormalities in the corpus callosum may contribute to
PD-CI by disrupting information transfer across interhemispheric and
callosal–cortical projections33. WM alterations were previously detected in
multiple tracts such as the uncinate fasciculi, superior longitudinal fasciculi,
and corpus callosum in patients with PD-MCI34. Considering that a higher
WM-PAD was observed in PD-CI, the aforementioned aberrant WM
alterations may impede the connections among various brain areas and
impair cognitive domains that are not commonly identified in the current
cognitive domains shown in AD spectrum diseases14. The association of
WM-PAD with various high-level cognitive domains should be studied to
clarify the clinical role of WM-PAD in PD-CI.

Our study demonstrated the advantage of using both GM-specific and
WM-specific brain age metrics for investigating brain alterations in PD-CI.
Nevertheless, it has several limitations. First, the sample size of our single-
center cohort is limited, which may compromise our analysis of the asso-
ciations between brain age and clinical variables. Therefore, future studies
should include a larger validation cohort for the differentiation and prog-
nosis of PD-CI. Second, we aggregated PD-MCI and PDD into a single PD-
CI group, neglecting the differentiation of the two disease categories.
However, the status of cognitive decline can be considered as reflecting a
continuumof thedisease spectrum insteadof twodistinct disease categories.
Future studies can validate this concept by conducting a longitudinal
assessment using the current cohort as a baseline. Third, predicted brain age
may vary depending on the in-house analyticmethod andmachine learning
methods used. Nevertheless, we have minimized this concern by validating
and implementing our analytic pipeline in several studies9,10,18. In addition,
there were statistically significant differences in age and education between
the clinical and control groups. To reduce the potential confounding
influence of these variables, we utilized bias-free brain age metrics and
adjusted for these covariates in all statistical analyses. Nevertheless, age-
matched study design is warranted to control for aging-related pathological
phenomena such as amyloid or tau positivity.

Using modality-specific brain age metrics, we identified the advanced
brain aging in patients with PD-CI relative to patients with PD-NCI and
HCs. This elevated brain aging can be attributed to the unique involvement
of GMandWMareas characteristic of cognitive impairment.Moreover, we
demonstrated clinical associations of brain age metrics with symptom
severity, general cognitive performance, and memory-specific outcomes.
Our findings suggest that the unique anatomical patterns of PD-CI can

potentially serve as a diagnostic- or prognostic-aided imaging biomarker for
PD-CI, paving the way for future advancements in early detection and
personalizedmanagement of PD-CI. Further investigations should focus on
conducting longitudinal assessments to validate the practicability of the
identified distinctive patterns in enabling early identification of cognitive
impairment in patients with PD.

Methods
Participants
Patients with PD-CI (n, 27; mean age, 75.3 years; standard deviation (SD),
7.2; sex, 15 men) and PD-NCI (n, 34; mean age, 70.0 years; SD, 7.9; sex, 20
men) were recruited from the outpatient clinic of the Department of
Neurology, National Taiwan University Hospital (NTUH) between
December 2019 and December 2020. Clinical diagnoses of PD were
established using the criteria stipulated by the UK Brain Bank35 and were
confirmed through Tc99m-TRODAT imaging performed by experienced
neurologists from the PD center of NTUH. Patients with similar education
levels and disease durations were preferably included whereas those with
malignancies, autoimmune disorders, cerebrovascular disorders, major
systemic diseases, self-reported substance abuse, brain surgery, or other
known neuropsychiatric diseases were excluded. The patients’ symptoms at
initial recruitment were assessed using the Unified Parkinson’s Disease
Rating Scale (UPDRS) andH&Yscale. Cognitive functionwasfirst screened
using the MoCA and MMSE. All patients underwent a complete NPT to
confirm their cognitive impairment status including theWechslerMemory
Scale (WMS) and Color Trails Test (CTT); the former was used to assess
memory-relateddeficits, and the latter evaluated cognitive processing speed,
attention, and executive function. A total of 33 HCs (mean age, 65.2 years;
SD, 5.6; sex, 17men)whomet the following inclusion criteriawere enrolled:
having MMSE (≥25) and MoCA (≥26) and not having any self-reported
substance abuse, brain injury, severe ongoing healthproblems, and a history
of neurological diseases or psychiatric disorders. The Institutional Review
Board of NTUH approved the study (No: 201904092RINC), and all parti-
cipants provided written informed consent. The raw neuroimaging data
acquired are not available due to confidentiality agreement of NTUH
Research Ethics Committee. The secondary data are conditionally available
upon request from the corresponding author.

Brain image acquisition through MRI
All brain images used in this study were acquired using a 3-Tesla MRI
scanner (Tim Trio; Siemens, Erlangen, Germany) with a 32-channel

Fig. 6 | Receiver operating characteristic (ROC) analysis for PD-CI classification
based on clinical factors andbrain agemetrics.TheROCcurves (a) were yielded by
using different combinations of clinical factors and/or brain age metrics. The per-
formance was evaluated by using 5-fold cross-validation (b). AUCArea Under ROC

Curve, PAD Predicted Age Difference, GM Gray Matter, WM White Matter,
UPDRS Unified Parkinson’s Disease Rating Scale, MMSE Mini-Mental State
Examination, MoCA Montreal Cognitive Assessment, WMS Wechsler Mem-
ory Scale.
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phased-array head coil. We collected T1-weighted images and diffusion
spectrum imaging (DSI) data sets to estimate GM and WM features,
respectively. T1-weighted imaging was performed using a three-
dimensional (3D) magnetization-prepared rapid gradient-echo sequence
with the following parameters: repetition time/echo time (TR/TE) = 2000/
3ms; flip angle = 9°; field of view (FOV) = 256 × 192 × 208mm3; and
isotropic spatial resolution = 1mm3. DSI was performed using a pulsed-
gradient spin-echo echo-planar imaging sequence with the following
parameters: bmax = 4000 s/mm2; TR/TE = 9600/130ms; slice thickness =
2.5mm; FOV= 200 × 200mm2; and in-plane spatial resolution = 2.5 ×
2.5mm2. The acquisition scheme comprised 102 diffusion-encoding gra-
dients that corresponded to the Cartesian grids in the half-sphere of a 3D
diffusion-encoding space and employed bipolar diffusion-encoding gra-
dient design to minimize the eddy current artifact at the sequence level18.
Each MRI scanning process involved T1-weighted imaging (~3min) and
DSI (~16min).

Image analysis
Before executing image analyses, we subjected all T1-weighted images and
DSI data to quality assessments (see Supplementary Note 2). All the
structural and diffusion MRI data sets used in the present study exhibited
satisfactory image quality. To extract GM features from the T1-weighted
images, voxel-based morphometry and surface-based morphometry were
performed using the Computational Anatomy Toolbox36. Voxel-based
morphometry was applied to estimate regional volume features in accor-
dance with the LONI probabilistic brain atlas, which contains 56 regions of
interest37. Besides, surface-based morphometry was employed to estimate
cortical thickness36, and the thickness features were sampled using 68 cor-
tical regions of interest defined by the Desikan–Killiany atlas38. A total of 56
volumetric and 68 cortical thickness features were used to conduct GM-
based brain age estimation. Details regarding the image processing proce-
dures are provided in Supplementary Note 3.

WM features were extracted from DSI data sets using an in-house
analytic pipeline to convert DSI data into tract-specific features11,39. The
algorithmapplied is described inSupplementaryNote 3, and the codeofDSI
imaging process is conditionally available upon request from the corre-
sponding author. In brief, diffusion indices (i.e. GFA and MD) were
reconstructed from DSI data by using the regularized mean apparent pro-
pagatorMRIalgorithm40.We sampled tract-specific features according to45
predefined tract bundle coordinates. Consequently, 45 GFA and 45 MD
features were obtained to execute WM-based brain age estimations. The
parcellation of GM and WM is described in Supplementary Note 4.

Brain age modeling and estimation
The pre-trained brain agemodels used in the present studywere established
and validated in our previous study10,18,41. In brief, GM-based and WM-
based brain age prediction models were established using 124 GM features
and 90 WM features from the training set, respectively, plus sex factor,
which provided sex representation in the aging process.We employed a 12-
layer feed-forward cascade neural network architecture for brain age
prediction41. Since all images acquired in this study and the image dataset
used to train the brain agemodels were from the sameMRI scanner, feature
harmonization was not employed before brain age prediction. To detect
subtle differences between PD-CI and PD-NCI, we leveraged the concept of
continual learning and executed domain adaptation on the brain age
models42; this adaptation procedure enabled the models to provide a better
and unbiased fit for the elderly population. The details are presented in
Supplementary Note 5. After assessing the models’ performance, we esti-
mated the bias-free GM-based andWM-based PAD scores43 for the PD-CI,
PD-NCI, and HC groups for further analyses. The methodologies of brain
age modeling and analytic scripts are available in our published work41.

Neuropsychological assessment
Besides applying routine cognitive screening (i.e. MMSE & MoCA), all
patients received the same neuropsychological test battery. Color Trails

Tests with parts I and II (CTT I and II) were applied to assess patients’
executive function20. The response time of the task was recorded to reflect
the cognitive performance of processing speed. Also, the logical memory
(LM) was evaluated by Wechsler Memory Scales (WMS), third edition, in
terms of immediate and delayed recalls21. The lower score indicates poorer
LM outcomes.

Statistical analysis
We compared the GM- and WM-PAD scores of the PD-CI, PD-NCI, and
HC groups by performing analyses of covariance (ANCOVAs) adjusted for
chronological age, sex, and education. A post hoc analysis achieved by
ANCOVA was used to test between-group differences while adjusting age,
sex, and education. Benjamini–Hochberg method was used to address the
multiple-comparison problem in the initial multiple comparison tests of
brain age metrics and the post hoc analyses.

Weconductedunivariate linear regression to investigate clinical factors
influencing PAD measures. The clinical dimensions examined in the
multiple linear regression analysis were divided into five categories: (1)
symptom severity (total and subdivided scores for the UPDRS and H&Y
scale), (2) time-related clinical factors (i.e. duration of illness and onset age),
(3) routine cognitive screeningoutcomes (i.e.MMSEandMoCAscores), (4)
executive function (i.e. response time in CTT), and (5) logical memory (i.e.
WMS-LM immediate and delayed outcomes).Models corresponding to (1)
symptom severity and (2) time-related clinical factors were analyzed using
the covariates (1) age and sex and (2) sex, respectively. Models for routine
cognitive screening and domain-specific cognitive examinations were
adjusted for age, sex, education, andUPDRSmotor-specific subset (part III).
The analyses were performed for all patients with PD, and the
Benjamini–Hochbergmethodwasused to address themultiple-comparison
problem within each dimension.

We further investigated the contribution of image features to the
observed advanced brain aging in the PD-CI. This exploratory analysis
involved two steps; first, mass univariate ANCOVAs were conducted to
identify the differences in image features for each pair of the groups (i.e. PD-
CI vs.HC, PD-CI vs. PD-NCI, andPD-NCI vs.HC)with the adjustment for
age, sex, and education.We then selected features with significant between-
group differences (uncorrected P < 0.05) as candidates. Second, partial
correlation analysis was applied to the selected features under each tissue
type (i.e. GM&WM) to test the relevance between image features and brain
age metrics, which may represent individual linear contributions of image
features to brain age estimates. In practice, each GM and WM feature was
individually correlated with GM- and WM-PAD, respectively, while
adjusting age, sex, and education (significance level as uncorrectedP < 0.01).
The features that exhibited both statistical between-group differences and
statistical correlation with brain age metrics may potentially serve as neu-
roanatomical underpinning of aberrant brain aging in PD-CI.

Furthermore, to assess whether the brain age metrics are capable of
serving as diagnostic-aided markers, we conducted a classification task to
differentiate PD-CI andPD-NCIbyusing clinical factors aswell as brain age
metrics. The clinical factors covered those features demonstrating sig-
nificant differences between these two groups including the UPDRS, RCS,
and WMS. The classifiers were implemented by using support vector
machine44 with a cubic kernel and evaluated by the ROC analysis and
performancemetrics including accuracy, sensitivity, and specificity through
5-fold cross-validation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw neuroimaging data acquired from the National Taiwan University
Hospital (NTUH) are not available due to confidentiality agreement of the
NTUH Research Ethics Committee. The secondary data are conditionally
available upon request from the corresponding author. The methodologies
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of brain age modeling and analytic scripts are available in our published
paper including theURL to the online open-access repository (Chen,C. L. et
al. Generalization of diffusionmagnetic resonance imaging-based brain age
prediction model through transfer learning. Neuroimage 217, 116831,
https://doi.org/10.1016/j.neuroimage.2020.116831 (2020)). The code of the
imaging process is conditionally available upon request from the corre-
sponding author.
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