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A review of sampling, energy supply and intelligent monitoring
for long-term sweat sensors
Pufan Yang1, Gaofeng Wei 2✉, Ang Liu3, Fengwei Huo4 and Zhinan Zhang 1✉

Sweat is a biofluid with rich information that can reflect an individual’s state of health or activity. But the real-time in situ sweat
sensors lack the ability of long-term monitoring. Against this background, this article provides a holistic review on the necessary
process and methods for sweat sensing, including sweat collection, composition analysis, energy supply, and data processing. The
impacts of the environment in stimulating sweat production, providing energy supply, and intelligent health monitoring are
discussed. Based on the review of previous endeavors, the future development in material, structure and artificial intelligence
application of long-term sweat monitoring is envisioned.
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INTRODUCTION
Personal health monitoring plays a vital role in daily healthcare
and chronic disease management. To monitor physical health,
researchers have tried various methods to acquire vital signals
from the human body1,2. A growing field in this area is wearable
sensing devices, which aim to obtain long-term information
regarding personal health3–5. Wearable sensor devices can be
placed on different positions of the human body, such as the
wrists, chest, forehead, waist and soles of the feet. In recent years,
wearable sensors have shown increasing promise for use in broad
applications regarding human health monitoring6 and medical
diagnosis7,8.
Flexible sensing is one of the most promising technologies for

health monitoring devices.9–15 The typical configuration of flexible
wearable sensors is include biosensors in combination with
wearable technology16. The characteristics of biosensors, such as
high specificity, high efficiency, low cost, low power requirements
and convenience, make them promising in wearable applications,
especially for sweat, saliva, interstitial fluid and other biological
fluids. Among the biological fluids, sweat contains an abundance
of relevant biomarkers, such as ions and metabolites, that can be
leveraged for tracking the user’s metabolism, fatigue, and stress
17–20, a potentially essential metabolic pathway of the human21–24.
The abundant ions and metabolites in sweat are closely related to
human health. At the same time, testing sweat is noninvasive and
sweat can be the best monitoring substance for in vitro
monitoring. The focus of research for testing sweat is usually in
device design25–31, health applications32–38, or sports manage-
ment39–41.
Despite the research to date, a wearable sweat sensor is still far

from being realized for commercial health monitoring. The core
issues requiring attention relate to long-term monitoring, includ-
ing the mechanism for collection and analysis of sweat, the supply
and management of energy to the device, and the establishment
of the relationship between monitoring data and human health.
Research has been aimed at sweat collection42–47, self-powered
devices48–51 and applying artificial intelligence to monitors52–54.
This review provides an overview of current developments in

wearable sweat sensors through bibliometric analysis, paying
attention especially to long-term stability. On this basis, sweat
analysis, including production and collection, energy supply and
storage, and the algorithms and models of intelligent monitoring
are discussed.

BIBLIOMETRICS ANALYSIS OF WEARABLE SWEAT SENSORS
Searching on the subject of ‘wearable sweat sensor’ on the Web of
Science website identified the presence of relevant research since
2005, but only a few researchers focused on sweat sensing. An
early sweat analysis device was reported by Morris55. The device
passively collects sweat based on textiles and performs pH
analysis in a predefined channel, which preliminarily verified the
feasibility of wearable sweat sensor applications. A critical turning
points occurred in 2016, when Gao56 published research on a fully
integrated array sweat sensor in Nature that simultaneously and
selectively measured sweat metabolites and electrolytes without
requiring external analysis57. This significant work attracted the
attention of many researchers and in the past five years, research
on wearable sweat sensors has grown rapidly.
Using VOSviewer, we created a network visualization map of the

popular keywords from our search (Fig. 1). In the map, the larger
the circular area, the higher the frequency of occurrence for that
keyword. The core keywords observed are ‘wearable,’ ‘sensor,’
‘biosensor’ and ‘sweat.’ Other keywords fall into several categories,
including parameters (such as ‘pH,’ ‘sodium,’ ‘glucose,’ and
‘lactate’) and vocabulary related to devices (such as ‘skin,’ ‘array,’
and ‘platform’). Clustered results are discussed in turn below.
In the first cluster, colored red, the main keyword is ‘wearable.’

The most popular research directions, as indicated by cluster
device keywords, are ‘electrochemical sensors,’ ‘flexible sensors,’
and ‘mouthguard biosensors.’ In this cluster, ‘pH’ also has high
frequency, reflecting its importance as a parameter of sweat. The
second cluster, colored green, has the main keyword ‘sensor.’ The
next most frequent word was ‘glucose,’ a reflection of the
abundant research on glucose monitoring in blood, sweat and
interstitial fluid (ISF). Moreover, ‘lactate’ and ‘sodium’ also showed
up as common research keywords. The sensor cluster also includes
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various sensing platforms, such as ‘patches,’ ‘electronics’ and
‘microfluidics.’ The third cluster, colored yellow, has the main
keyword ‘sweat.’ This cluster includes keywords related to
pressure monitoring, sensor arrays, and bio-electrochemical
sensing, along with ‘performance.’ In the fourth cluster, colored
blue, the main keyword is ‘biosensor’ and the associated keywords
focus on preparation methods. Materials such as ‘graphene’ and
‘nanoparticles’ are common keywords. The last cluster is colored
purple and mainly involves cortisol and stress monitoring. While
few studies exist to date, the exploration of mental monitoring is a
noteworthy and exciting area of study.

THE PROCESS OF MONITORING SWEAT
Figure 2 gives an overview of the process of sweat monitoring,
including sweat secretion, collection, sensing, transmission, and
analysis. In all parts of the process, researchers are concerned with
components in sweat that can be detected, how to achieve
accurate monitoring with a small sample volume and how to
design sensitive sensor devices. The question of what to measure
and how to measure it is gradually being answered.

Benefits and challenges of measuring sweat
Sweat has several beneficial characteristics as an indicator of
health: collection of sweat is non-invasive, sweat has a fast update
rate, and sweat is rich in ions and metabolites for analysis. With
long-term sweat monitoring, construction of a matching health
monitoring model will be possible. A recent increase in fabric-
based wearable sensing technology has enabled continuous
monitoring for longer periods (more than a day).
Whether the flexible sensor device has enough life and stability

to meet long-term operational needs remains uncertain. Factors
affecting long-term monitoring are diverse and include

environmental contamination, equipment reliability, biocompat-
ibility, energy supply, and system design. Environmental contam-
ination can include cumulative errors compounded during data
collection and contaminants getting mixed in with sweat during
collection. Equipment reliability issues most frequently reflect life
span limitations, along with tensile and deformation properties of
the electrochemical sensor device after repeated cycles. Most
existing flexible sensor devices can meet the requirements related
to these issues, with the caveat that the service life of an enzyme
sensor is related to temperature and pH. Biocompatibility
problems mostly reflect issues in the comfort of wearing the
sensor for a long time. For example, the wearer may struggle if
there is a lack of air permeability, changes in temperature and
humidity, or possible allergic or stress reactions; these need to be
avoided through the appropriate selection of materials. For energy
supply, the key factor is ensuring that the battery capacity can
meet the requirements. If continuous use for a longer time is
considered, the reliability and stability of a self-powered device
are critical. Finally, for the overall design of the sensor system, it is
necessary to consider the sensor interaction with the human body
and the environment when the sensor is worn for a long time.
Another set of challenges regard the feasibility of the sensor

system. Sweat generation can be accomplished through exercise
activity, thermal heating, stress or iontophoretic stimulation38.
Usually, the sweat we analyze is generated by exercise, but this
sweat may have completely different composition characteristics
from sweat caused by other factors. Furthermore, there is still
sweat metabolism in the human body at rest. To achieve a longer-
term wearable continuous monitoring, sensitive sweat collection
and analysis under low metabolic rates will be indispensable.
Moreover, once long-term monitoring can be achieved, the
management and supply of energy presents more challenges.
Most current wearable sweat sensor devices have a short
operational time, indicating that batteries for power supply are

Fig. 1 Network visualization map of the top 50 keywords in documents returned from a search on wearable sweat sensors. The map was
created by VOSviewer.
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not the best choice. A self-powered device could bring many
advantages. Meanwhile, long-term monitoring data could eluci-
date the relationship between the health status and sweat
characteristics.

Sweat sampling and control
Sweat collection and control are prerequisites for its analysis58.
Sweat collection is more complicated than standard body fluid
analysis, such as blood analysis or urinalysis. For example, blood is
plentiful in the human body and blood vessels are spread
throughout the body, making blood sample acquisition relatively
simple59. In contrast, sweat is produced only under appropriate
environmental conditions. In addition, although sweat glands are
distributed in various body parts, they are small and often
attached to the skin surface, so that sweat produced from them
easily evaporates. Sweat secretion rates can be lower than 10 nL
min−1 cm−2 at low secretion sites such as an arm or leg, but can
reach 100 nL min−1 cm−2 at high secretion areas like the palm and
foot5. It is also not currently clear if the composition of sweat
produced by different stimuli differs: high temperature, strenuous
exercise and mood swings are all triggers for sweating. In some
application scenarios, the goal is to monitor sweat continuously
and the amount of sweat may not meet monitoring needs. In such
circumstances, iontophoresis, whereby sweat glands are stimu-
lated through delivery of an agonist using a low electrical current,
is an useful method to obtain sufficient sweat60,61. However, sweat
composition obtained by iontophoresis differs from the composi-
tion of sweat spontaneously produced by the human body. Figure
3 shows examples of sweat collecting and control methods.
Early research focused on the ionic components in sweat, such

as pH and sodium. Due to the lack of appropriate in-situ analysis
methods, they had to do analysis using in vitro sweat collection.

Bandodkar et al.62 achieved in situ sweat sensing in 2013, using a
whole body-washdown method since local sweat collection
cannot fully reflect human sweat. For the procedure, the subject
is exercised in a closed environment. The weight difference before
and after exercise is used to quantify the amount of sweat
produced and the subject, the clothing worn, and the sports
equipment are all washed with deionized water and collected. The
composition of sweat is then calculated. This rigorous and
standard method is the gold standard for sweat analysis. However,
it is too complicated and cumbersome for regular use and thus
subsequent researchers have looked for methods to collect and
analyze local sweat in vitro. The methods used include sweat-
absorbent patches, armbands and microcatheters. However, all
methods have the problem that sweat is lost during the in vitro
analysis after collection. Further, such collection methods cannot
be accurately time-stamped, making it difficult to match the
results of the sweat analysis to the state of the subject.
With the development of micro-, nano- and wearable technol-

ogy, researchers have begun to try smaller and more precise
sweat collection and analysis. At present, such methods can be
divided into two categories. The first category focuses on the real-
time performance of sweat composition analysis - focusing on
sweat renewal rate as opposed to sweat loss. The core parameter
in this category is thus the refresh rate of sweat. The second
category pursues highly accurate sweat collection and analysis
using microchannels and other means to collect and control sweat
for subsequent high-throughput sweat analysis. The advantage to
this method is that a closed sweat collection system can
effectively avoid external contamination.
An important component of precise sweat collection is the

control of sweat entering the device. Hydrophilicity and hydro-
phobicity control is a common method for controlling the

Fig. 2 Wearable sweat sensors system. Different stages of the process from sweat production to human state monitoring.
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movement of sweat. Son et al.63 created a patch that uses cactus-
spine-inspired wedge-shaped wettability patterned channels on a
hierarchical microstructure/nanostructure surface. Dai et al.64

modified textiles with superhydrophilic/superhydrophobic condi-
tions to drive the directional flow of sweat. He et al.65 demon-
strated a flexible and skin-mounted band that combines
superhydrophobic and superhydrophilic microarrays with non-
dendritic colorimetric biosensors for in situ sweat sampling and
analysis. They also prepared an intelligent Janus textile band
based on a contact pump model to enable the transport of sweat
from the body surface to the hydrophilic electrode side66. In
addition, the team designed devices to monitor the comfort of hot
and humid environments based on the characteristics of Janus
materials67.
The design of mechanical structures such as micro-pumps and

micro-valves is an alternative way to successfully control sweat.
Choi et al.68,69 focused on a structure, termed capillary bursting
valves (CBV). They designed valves with different angles to
achieve selective flow of sweat under specific contact angle
conditions. CBV are passive valves that do not require external
control.
With the development of micro-nano processing technology,

the technology for local sweat collection is expected to become
more mature, realizing a more precise collection of local sweat. At
the same time, local sweat differences are likely occur based on
factors such as different parts of the human body, different diets,
and climate. Therefore, distributed multi-point sweat collection
and joint analyses will be necessary in the future.

Sweat composition and application prospects
The flexible sweat sensor can be used in humans for health
monitoring, special disease screening, or emotional stress
testing70. The components of sweat fall into three categories:
electrolytes (ions), metabolites, and xenobiotics. Different compo-
nents can reflect different health conditions.
Common ions found in sweat include sodium, chlorine,

potassium, ammonium, calcium and hydrogen. Although the
concentration of ions in sweat is much lower than in blood, they
can still reflect the state of the human. Among them, chlorine was
used in human health monitoring. When patients with cystic
fibrosis were discovered to have higher sweat chloride ion
concentrations, monitoring the chloride ion concentration after
stimulating sweat through iontophoresis or by directly collecting
sweat became a recognized monitoring method.

The ions in sweat are thought to reflect the level of water and
salt metabolism in the human body. Excessive loss of sodium and
potassium can lead to hyponatremia, muscle cramps, and
dehydration. Hydrogen, known as pH, is also an important
physiological index parameter that can be used for other
parameters.
Sensors to detect ions in sweat can be divided into two general

categories: electrochemical and colorimetric. Typically, devices
using colorimetry have smaller structures and better flexibility. In
comparison, electrochemical-based sensors require further
improvement in terms of device flexibility and skin compatibility
but have good performance. The long-term monitoring capability
and signal acquisition capability of electrochemical based sensor
are suitable for longer-term monitoring. For example, Wang
et al.71 tested a flexible, self-healable, adhesive and wearable
hydrogel patch for sweat colorimetric detection, and showed the
good conformality of the patch to the skin. They used a cell phone
to analyze the data, which could not provide real-time dynamic
monitoring of sweat.

Electrolytes
The monitoring of ions depends on the construction of ion-
selective membranes; the selectivity and sensitivity of these
membranes are vital parameters when developing sensors.
Common ions detected in sweat are outlined below.

pH. It is generally believed that the pH value of human sweat is
in the range of 4.2-7.8. Although current research has not found
that pH value of sweat alone can reflect the characteristics of
health or disease, pH value is an essential reference. As shown in
Fig. 4a, Yang et al.72 created a flexible and wearable patch
consisting of a charge-coupled device (CCD) pH sensor that can
measure a person’s sweat with high sensitivity. Nyein et al.73

demonstrated a wearable electrochemical device for continuous
monitoring of ionized calcium and pH of body fluids using
disposable and flexible array sensors that interface with flexible
printed circuit board(FPCB) (Fig. 4b).

Sodium. The most common ion in human sweat, sodium is the
primary indicator for levels of human water and salt metabolism.
Sodium ions can indirectly reflect the sweat rate of the human
body and thus also provide a reference for calibration of sweat
monitoring. Zhai et al.74 used a vertically aligned mushroom-like
gold nanowire to achieve a multiplex in situ analysis of pH, sodium
and potassium in sweat. The device performed well even under a

Fig. 3 Examples of sweat collecting and control. (a) A sweat-collecting patch that can collect sweat efficiently for fast and continuous
healthcare monitoring. Ref. 63, Copyright 2021, Advanced Materials. (b) A hydrophobic/superhydrophilic Janus polyester/nitrocellulose textile
embedded with a conical micropore array that has a hydrophilic inner surface. Ref. 64, Copyright 2019, Advanced Materials. (c) A thin, soft,
skin-like microfluidic platform that bonds to the skin to allow for the collection and storage of sweat in an interconnected set of micro
reservoirs. Ref. 69, Copyright 2017, Advanced Healthcare Materials.
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30% strain during stretch-release cycles. At the same time, it was
possible to wear the sensor for 30 minutes of in-situ wireless
monitoring.

Chlorine. Abnormally high sweat chloride concentration is
observed in cystic fibrosis (CF) patients, and sweat chloride

analysis has been adopted as the gold standard for cystic fibrosis
diagnosis75 Wescor-macrodut is a specific product made for
chlorine monitoring.

Potassium. The concentration of potassium in the serum can
predict muscle activity, and is also closely related to hypokalemia

Fig. 4 Examples for electrolytes sensing. a A flexible charge-coupled device can be used to create a sensor capable of measuring the pH of
sweat with high sensitivity. Ref. 72, Copyright 2018, Nature Electronics. b A wearable electrochemical device for continuous monitoring of
ionized calcium and pH of body fluid. Ref. 73, Copyright 2016, ACS Nano. c Illustration of WPIS based on a bracelet that was modified with the
working/indicator electrode (WE) and a reference electrode (RE) to provide a WPIS. Ref. 77, Copyright 2018, Trends in Analytical Chemistry.
d An integrated device to monitor the physiological concentration of two cations, ammonium (NH4+) and calcium (Ca2+). Ref. 78, Copyright
2019 Advanced Healthcare Materials.
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and hyperkalemia, regardless of cause. However, the current
mechanism of potassium ion secretion in sweat is still uncertain,
so the final potassium concentration in sweat may be maintained
within the plasma potassium concentration range76.

Calcium. Calcium can be used to monitor the status of the liver
and bones77. Sweat and blood concentrations of calcium are
correlated. As shown in Fig. 4c, A sensor for calcium is based on
working electrode and reference electrode output signals, and
three feasible sensing mechanisms are known, two of which (a
and b in Fig. 4c) correspond to all-solid-state potentiometric
sensors, using conductive polymers with high redox capacitance.
In the third mechanism (c in Fig. 4c), nanomaterials for double-
layer capacitance measure the response mechanism of reference
electrode (RE) based on Ag/AgCl layer and polymer reference film.
Keene et al.78 reported on ion-selective organic electrochemical
transistor (IS-OECT) devices that can monitor the physiological
concentration of two cations, ammonium and calcium. As seen in
Fig. 4d, the device is small and convenient, has good stability, and
also exhibits well characteristics when compared to standard
monitoring methods.

Metabolites
The metabolites in sweat are represented by lactic acid and
glucose. Unlike ions, these metabolites need to be precisely
monitored using enzymes. The specificity of enzymes allows the
monitoring of metabolites in sweat to have higher precision,
accuracy, and speed. Still, due to the limitations of enzyme
activity, the life of the enzyme sensor will be lower than that of the
ion-selective sensor. Figure 5 summarizes examples of sensors
used for metabolite sensing.

Lactate. Lactate is a minor molecular metabolite produced by
the body during anaerobic exercise, including high-intensity
exercise and metabolism in critically ill patients. Lactic acid is also
used to maintain the Purine Nucleotide Cycle (PNC) and the
Tricarboxylic Acid Cycle (TCA cycle). These two processes provide
energy in a hypoxic environment. However, the secretion
mechanism of lactic acid into sweat is complex and still unclear79.
Nonetheless, sweat lactic acid can indirectly reflect the physical
state of exercise. Compared with the activity of the whole body,
sweat lactic acid may have a more direct relationship with the
activity of the sweat glands themselves. At present, research

Fig. 5 Examples of metabolite sensors. a A real-time noninvasive lactate sensor for human perspiration. Ref. 82, Copyright 2021, Talanta. b An
elastic gold fiber-based three-electrode electrochemical platform that can meet the criteria of wearable textile glucose biosensing. Ref. 85,
Copyright 2019, Analytical Chemistry. c Multifunction sensor: ultrasensitive sweat UA and Tyr detection, sweat rate estimation, temperature
sensing and vital-signs monitoring. Ref. 86, Copyright 2020, Nature Biotechnology. d An integrated wireless graphene-based sweat stress
sensing system for dynamic and noninvasive stress hormone analysis. Ref. 89, Copyright 2020, Matter.

P. Yang et al.

6

npj Flexible Electronics (2022)    33 Published in partnership with Nanjing Tech University



teams are exploring the relationship between sweat lactic acid
and blood lactic acid after exercise80,81. The concentration range
of lactic acid in sweat ranges from ~6mM to ~100mM. Wang
et al.82 described a textile lactate biosensor. As shown in Fig. 5a,
gold fibers are used to fabricate lactate-sensing working electro-
des, reference electrodes and counter electrodes and then further
weaved into textiles in a standard three-electrode system with a
planar layout.

Glucose. Continuous monitoring of blood glucose levels is
necessary for diagnosis and treatment of diabetes. A correlation
between sweat glucose and blood glucose exists and obtaining
blood glucose values by detecting glucose in sweat is thus
expected to replace conventional diabetes blood glucose
monitoring practices83,84 Zhao et al.85 created an elastic gold
fiber-based three-electrode electrochemical platform that meets
the criteria for wearable textile glucose biosensing. Figure 5b
shows the gold fiber that can be functionalized with Prussian blue
and glucose oxidase to obtain a working electrode and modified
by Ag/AgCl to serve as the reference electrode. The nonmodified
gold fiber can serve as the counter electrode. The device has
stable performance even when the stretch rate reaches 200%.

Uric acid (UA). UA is a risk factor for cardiovascular disease, type 2
diabetes, and renal disease; it is also widely used in clinical
settings to manage gout, the most common inflammatory
arthritis, which affects tens of millions of people worldwide. Yang
et al.86 described a laser-engraved wearable sensor that can
rapidly and accurately detect UA and tyro-sine (Tyr) in human
sweat in situ. As shown in Fig. 5c, on the graphene substrate, they
not only arranged UA and Tyr sensing units, but also included
auxiliary signal sensors, such as temperature and sweat rate.

Cortisol. Cortisol is a hormone related to human stress released
by hypothalamic-pituitary-adrenal axons87. There are two types of
cortisol bound to carrier protein: free cortisol and cortisol. Free
cortisol can diffuse through the cell membrane through passive
transport. The concentration of cortisol in sweat ranges from
2.21 × 10−5 to 3.86 × 10-4mM, with the largest concentration
typically occurring in the morning. In comparison, the cortisol
concentration in the blood is generally 1.24 × 10-4 to 4.0 × 10-4

mM88. This difference may be related to the type II 11-
β-hydroxysteroid-dehydrogenase (HSD) in the sweat ducts that
converts cortisol into corticosterone. As shown in Fig. 5d, Torrente-
Rodríguez et al.89 proposed a highly sensitive, selective and
miniaturized mHealth device, based on a laser-enabled flexible
graphene sensor, to monitor levels of stress hormones non-
invasively; they also discuss the relationship between cortisol and
circadian rhythms and stress response.

Xenobiotics
Drug. Drug analysis is another primary function of sweat analysis.
It is commonly implemented for doping control, drug abuse
testing, forensic investigation, clinical therapeutics, and digital
health monitoring. Sources of biological specimens for drug
analysis include urine, saliva, hair, sweat, and exhaled breath. Tai
et al.90 present a wearable sweatband that can detect the
concentration of caffeine in sweat. They selected caffeine as an
example methylxanthine drug that can lead to health problems
such as coronary syndromes, hypertension and depression.

Alcohol. Human alcohol metabolism has been thoroughly
studied. Alcohol is a commonly abused substance and assessing
blood alcohol level is key for detecting individuals who cannot
safely drive or for monitoring those with alcoholism. Studies have
shown a high correlation between the concentrations of alcohol in
sweat and blood, which enables continuous noninvasive blood

alcohol monitoring to be achieved by monitoring sweat alcohol
concentration91,92.

Heavy metals ion. Heavy metal ions are not ordinary human
sweat metabolites, but the primary way to metabolize heavy
metal ions is through sweat. Therefore, in the face of possible
heavy metal ion poisoning, a wearable sweat sensor to monitor
levels can provide an effective diagnostic tool.
Multichannel sweat composition analysis has become a

relatively mature technology, but the perceptual parameters
required differ according to the specific health monitoring task.
For example, the target of diabetes monitoring could be glucose
and the exercise-related targets could be lactic acid, sodium and
potassium ions. Deciding on the appropriate parameter to
monitor, however, depends on the medical data to provide
sufficient theoretical analysis to not only identify the parameter,
but also to provide quantitative data regarding normal levels.
Unfortunately, medical knowledge may not be able to provide
such information. Another possibility is to use portable, fully
integrated wearable sweat sensors to monitor the human body,
and then use data analysis to judge the correlation between sweat
components and health goals. The challenges with this are that
the targets that can be monitored are limited and screening
accuracy with wearable sensors is unlikely to match that required
of special medical devices. Therefore, in the case of insufficient
monitoring accuracy, wearable sensors can still only provide rough
trend information of health targets.

Sustainable energy supply system
For wearable sensors, long-term continuous monitoring is
required to obtain sufficient data to accurately measure human
health. Therefore, energy supply for the sensor is vital. Long-term
monitoring requires the establishment of a complete data
perception, storage, and calculation systems, all of which require
energy. The most straightforward energy source is additional
functional components, such as button batteries or small lithium
batteries. However, traditional batteries are not light and thin
enough to meet the needs of flexible wearables. Existing
technologies include battery-less systems such as near-field
communication (NFC) devices93,94 and flexible battery devices,
such as supercapacitor flexible batteries26,95 and self-powered
devices50,96.
A battery-free system is a simpler and more stable structure

with a lower cost. NFC devices have performed well in studies93,94,
because the passive data transmission mode fits well with the
needs of battery-free systems. However, this acquisition mode
cannot achieve continuous data monitoring. In addition, com-
pared with other communication methods, such as Bluetooth and
WiFi, its short interaction distance is limiting. Therefore, it is
difficult for a battery-free system to meet the needs of continuous
monitoring for an extended period.
Flexible batteries are currently the best technical option for

traditional sensors. Intrinsically flexible batteries still have certain
technical difficulties, but structurally flexible batteries realized by
island structures are relatively easy to implement. Liu97 reviewed
the recent development of flexible and stretchable lithium(Li)-ion
batteries and supercapacitors. Li-ion batteries have high energy
density, high power density and a long life cycle. Breakthroughs in
flexibility, stretchability, long-term stability and microscale energy
harvesting have been achieved through research on different
materials, joint design, fabrication methods and integrated
assembly. Wang et al.98 proposed an environmentally friendly
and degradable biofuel cell that cleverly uses the kirigami process
to design the device structure. It has good electrochemical
performance and mechanical flexibility without sacrificing capa-
city, providing different application possibilities for wearable
devices. Peng et al.99 proposed woven lithium-ion fiber batteries,
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which can be prepared in large quantities and have good stability.
These batteries have a capacity retention that reaches 90.5% after
500 charge-discharge cycles, comparable to commercial batteries
such as pouch cells. Over 80% capacity was maintained after
bending the fiber for 100,000 cycles.
Given the changing nature of batteries, some researchers prefer

to find solutions without batteries. The most popular direction is a
self-supplied energy system associated with environmental
factors. By collecting energy from the environment, the sensor
becomes self-sufficient. With proper design, self-powered flexible
sensors can meet the long-term monitoring goals of most
applications. The correlation between the production of sweat
and environmental factors makes it especially feasible to match
the self-supply of the environment. Figure 6 shows several energy
sources and their corresponding self-powered device design.
Some researchers use biofuel cells to power the sensor

system100–103. The commonly used battery type is a lactic acid
fuel cell, and lactic acid in sweat can meet the needs of low-power
sensors. Wearable biofuel cells (w-BFCs) generate green electricity
from energy-dense carbon-neutral fuels via highly efficient
bioelectrochemical reactions, delivering good biocompatibility,
remarkable environmental sustainability, and exceptional capacity
for miniaturization104. Therefore, biofuel cells are one of the most
suitable components of self-powered sweat sensors. Sweat
contains a variety of small molecular organic substances, such as
lactate and glucose, and these substances can be used as energy
sources for biofuel cells. A major advantage of the biofuel cell is
that it can use the very substances the sensor is detecting,
reducing the system’s complexity and ensuring its stability.
Active development of flexible self-supply systems has provided

more options for powering flexible sweat sensor. Wearable self-
power generation devices include triboelectric nanogenerators
(TENG), piezoelectric nanogenerators (PENG) and wearable
thermoelectric generators (WTEG)105. Typically, sweat production
is accompanied by higher exercise intensity or ambient

temperature, providing an energy source for various wearable
self-powered devices that can, in turn be used for sweat sensor
monitoring.
Xia et al.106 reviewed the application of TENG in the biomedical

field, noting that TENG has become the power source for many
commercialized medical sensors. TENG devices reported in the
literature can supply energy for up to 72 h. While existing self-
powered systems can meet the energy requirements of the body
surface sensor, research on design is required to achieve a stable
supply of energy. Yang et al.107 reviewed the progress of
combining textiles with TENG. For textile wearable TENG, lifespan
is evaluated in terms of factors such as washability and
stretchability. As long as the structure was not damaged, its
long-term stability was satisfactory. However, most of the energy
sources for TENG fabrics are low-frequency human motion and
transformation of the motion to energy for a sensor remains to be
studied. Tang et al.108 reviewed the development of paper-based
TENGs. Paper is cost effective, flexible, lightweight and biocom-
patible, making it a promising substrate that can serve as an uesful
frame and a suitable material for integrated energy converting
devices. Unfortunately, current paper-based self-powered sensors
still face many problems, including limited mechanical stability,
moisture resistance and lifespan. Further development and
research are needed. Fischer et al.109 demonstrated a self-
powered paper-based biosensor for glucose monitoring. Their
device operating mechanism is based on a glucose/oxygen
enzymatic fuel cell. Its advantage lies in its low cost and strong
portability.
TENG is also one of the most popular devices in use for self-

powered wearable systems. Because its energy supply requires
mechanical movement, the relationship between exercise and
sweat in human health monitoring makes it a good alternative.
Textile TENG is used for monitoring sweat by changing the
triboelectric characteristics. Jao et al.110 develop a textile-based
TENG to harvest biomechanical energy from human motion and

Fig. 6 Examples of self-powered sweat sensors. a Self-powered devices, a wearable BFC harvester powered by finger touch. Ref. 100,
Copyright 2021, Advanced Functional Materials. b The FTENG for harvesting energy from human motion. Ref. 103 Copyright 2015, Biosensors
and Bioelectronics. c A flexible and textile-based self-powered sweat sensor based on TENG. Ref. 105, Copyright 2018, Nano Energy. d A
scalable, flexible magnetoelectrical clothing generator. Ref. 111, Copyright 2018, Nano Energy.
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biofluids. Their TENG can be further developed into various kinds
of self-powered healthcare sensors for humidity, sweat, and gait
phase detection. Although the potential has been verified, more
specific selectivity and stability research is required for further
exploration. Wang et al.111 demonstrate a scalable-manufactured
fabrication of magnetoelectrical clothing generator that enables
power generation through arm-swinging movement. The nature
of using electromagnetic energy still requires motion, but this
innovative idea expands the potential of self-powered devices.
In summary, the use of biofuel cells as a self-powered

technology for sweat sensing has been studied and needs to
now be tested in the context of applied use. Self-powered devices
such as TENG, PENG, and WTEG all show potential in the field of
sweat sensors. The use of environmental energy, such as solar or
wind energy, is another direction that should be explored. It is
worth noting that a hybrid energy supply could further enhance
the stability of energy supply112. The coordination of multiple
energy supply systems can cover a broader range of sensor device
usage requirements and avoid the limitations of a single self-
supply system. However, this also brings about challenges in
terms of energy management and the complexity of structure.

Intelligent monitoring and prediction analysis
The goal of using wearable sensors is to obtain data to monitor
human health. However, due to current technology and data
limitations, it is still difficult to directly obtain critical parameters
that affect the state of the human body. Most researchers
currently study simple heart rate, electrocardiograms, blood
oxygen levels, and other simple parameters. The human body is
a complex system and a variety of monitorable data is required to
establish a comprehensive model of its health.

Artificial intelligence (AI) can be integrated into wearable
sensors to improve the applied performance of wearable sensors
for health monitoring. The AI biosensor is a rapidly growing area
of research. This system contains three main elements: informa-
tion collection, signal conversion and AI-data processing52. At
present, there is no clear relationship between sweat signals and
human health parameters; yet many scholars have studied the
relationship between sweat sugar and blood sugar. Therefore, it
may be possible to use machine learning to calculate and build
their relationship model to obtain interpretable results.
Figure 7 shows the information exchange between signal

monitoring and data processing113,114. The sensors acquire signals
and send them to the analysis platform. Data processing has three
components: data preprocessing, machine learning algorithms
and healthcare models. Data preprocessing refers to the
reorganization of complex data into a standardized dataset for
analysis. Machine learning establishes the relationship between
health characteristics and monitored signals. More specifically, this
component can be divided into several stages115. The raw data
may include various measured sweat parameters, temperature,
heart rate, blood oxygen, blood pressure, and other basic signals.
After preprocessing, such as labeling, filtering, segmentation,
feature extraction and features selection, key characteristic
parameters are retained, and then basic signals and complex
health state models can be established by classification. The third
component of data processing, healthcare models, is the output
from this machine learning model that can provide interpretable
results in the medical field.
Existing machine learning algorithms have been used to

analyze human physical signals, such as electrocardiogram and
heart rate analysis. For example, Quan et al.116 used contact lenses

Fig. 7 Application of machine learning in artificial intelligence (AI) biosensors. a Touch-based fingertip sweat sensor with an algorithm that
can provide personal blood glucose. Ref. 113, Copyright 2021, American Chemical Society. b Correlation of data acquired from biofuel
cell–based glucose and lactate sweat sensors with that acquired from blood glucose and lactate meters. Ref. 114 Copyright 2019, Science
Advances.
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to monitor the glucose content in the tears of diabetics,
performed data processing and then combined it with historical
data to analyze and predict blood glucose changes (algorithms).
When future low glucose levels are predicted, patients are
reminded to take interventions (healthcare models).
Machine learning (ML) is defined by computational algorithms

designed to extract the required information from data through
different probabilistic learning paradigms117. Traditionally, medical
research aims to combine ML algorithms with clinical data (for
example, age, gender, physical examination results, symptoms,
vital signs, laboratory values, imaging variables, test result values)
to predict clinical outcomes or find predictive variables for the
relationship between data and clinical outcomes. Although
wearable device data can be integrated with broader patient
data sets to provide additional background information about the
patient, raw sensor data can also be used as direct input to ML
algorithms to predict clinical outcomes (e.g., physiological or
pathophysiological states) or to extract meaningful data features.
The general difference between ML algorithms for each of these
purposes is based on the type of training data used (labeled or
unlabeled) and whether the goal is to predict specific results or
learn patterns from the data. These scenarios include supervised
(e.g., logistic regression118,119, naive Bayes120,121, decision tree,
nearest neighbor120,122, random forest123, discriminant analysis,
support vector machine (SVM)120,124, neural network), unsuper-
vised (e.g., clustering algorithm125,126, principal components
analysis118,127) or semi-supervised learning paradigms128. A third
class of ML algorithms includes those that perform integrated
goals; these are algorithms that weigh multiple individual
classifiers and combine them to obtain a classifier that is superior
to the individual starting classifiers (e.g., naive Bayesian optimal
classifier, guided aggregation or bagging, boosting, Bayesian
model/parameter averaging, model buckets, stacking)129.
The analysis of blood glucose is a relatively mature applied

model, for which physiological model-based algorithms and data-
driven algorithms are used. The physiological model of the human
body depends on many factors (e.g., gender, age, weight, meals,
external environment). In the classic biological model, glucose,
insulin, and glucagon must be considered comprehensively. At the
same time, change in blood sugar levels has a certain degree of
hysteresis, and the change of glucose in sweat depends on, and
lags behind, the blood sugar, making it difficult to establish the
model. The complexity of the human body further makes the
modeling accuracy insufficient. In recent years, data-driven
algorithms have been increasingly applied to various model
predictions and this can build models even in the case of complex
and unknown relationships of information that are more inline
with reality.

DISCUSSION
Wearable sweat sensors are widely used in healthcare for
monitoring and diagnostic purposes. This article focuses on the
development of long-term sweat sensors and reviews recent
research on sweat collection, sensor energy supply, and data
analysis. Different technologies proposed to achieve longer-term,
on-site, real-time monitoring and to improve the integrity and
practicability of the sensors are reviewed.
Regarding sweat collection, a shift has occurred from extensive

uncontrolled collection to more precise and controlled collection.
However, problems of low collection efficiency and poor results
still exist. Contamination on the skin surface is a key challenge
affecting the accuracy of the device. In addition, specific
differences occur in the composition of sweat obtained by
different methods used to stimulate perspiration; exploring and
identifying these differences is a key area for future research.
Specifically, attention is needed regarding materials used for

sweat collection. Traditional microfluidic technology remains a

major contender for sweat collection but faces the problem of
processing efficiency. The rise of 3D printing may be a solution to
this problem. In addition, paper bases and fabrics show
considerable application potential. They have high hydrophilicity,
a natural advantage for sweat collection, but control remains a
problem. In summary, the key lies in the comprehensive
consideration of material properties and structural characteristics
to design devices that can meet long-term sweat collection and
control.
Regarding self-supplied energy for sensors, sweat is a biological

fluid with an abundance of small molecules that make it a
potential choice for biofuel cells. Both lactic acid and glucose have
been demonstrated as potential fuels for the self-powered sensor.
At the same time, TENG, which has received much attention
recently, has also shown its potential in sweat sensing and
monitoring. In addition, because sweat production is strongly
coupled to movement and temperature, PENG (piezoelectric
nanogenerators) and WTNG (wearable thermoelectric generators)
are energy supplies that should be further explored. Current
wearable self-powered devices have good compatibility with
wearable sweat sensors. Various self-powered technologies
provide more possibilities for long-term continuous monitoring
of wearable sweat sensors. However, the problem is not only the
energy supply of the device itself but also that a single energy
supply element cannot meet the demands faced with scenarios
that require data transmission. This suggests that hybrid energy
supply components and optimized energy management systems
are worthy of attention.
Finally, AI biosensors are a promising research direction. The

current analysis of sweat data is limited to visual presentation or
simple statistical analysis. While limitations remain in the accuracy
of existing sensors, obtaining data is only one component of the
original intention of sweat sensing and health monitoring.
Thoroughly characterizing the relationship between sweat com-
position and health is the ultimate desired result. Careful
consideration must be given to the risk with intelligent monitoring
of personal privacy being maintained, especially with noninvasive
sweat analysis, which increases the chance of personal informa-
tion theft. Convenient personal information monitoring is worth
looking forward to, but standard ethics and data security are also
worthy of attention.
As a summary, the sweat sensor is a potential type of wearable

sensor placed on the body surface that can detect human health
under non-invasive conditions. This paper summarizes and
explores the factors affecting long-term stability in various stages
of sweat sensor application. First, for the collection method of
sweat, the application of hydrophilic and hydrophobic structures
and materials is reviewed. Next, the abundant ions, small
molecules and other substances in sweat were reviewed. In
addition, the energy supply needs of the sensor system is
emphasized and the application prospects of self-powered
sensors are discussed. Finally, research progress in combining
machine learning techniques and sweat sensing are highlighted.
The advantages and disadvantages of various technologies are
considered, and future research directions are proposed.

Received: 16 December 2021; Accepted: 30 March 2022;

REFERENCES
1. Windmiller, J. R. & Wang, J. Wearable Electrochemical Sensors and Biosensors: A

Review. Electroanalysis 25, 29–46 (2013).
2. Chen, Y. et al. Flex. Inorg. Bioelectron. npj Flex. Electron. 4, 1–20 (2020).
3. Wilson, E. K. Wearable Sweat Sensors. Engineering 5, 359–360 (2019).
4. Bhide, A., Muthukumar, S. & Prasad, S. CLASP (Continuous lifestyle awareness

through sweat platform): A novel sensor for simultaneous detection of alcohol

P. Yang et al.

10

npj Flexible Electronics (2022)    33 Published in partnership with Nanjing Tech University



and glucose from passive perspired sweat. Biosens. Bioelectron. 117, 537–545
(2018).

5. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermo-
regulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

6. Lou, Z., Wang, L., Jiang, K., Wei, Z. & Shen, G. Reviews of wearable healthcare
systems: Materials, devices and system integration. Mater. Sci. Eng. R. Rep. 140,
100523 (2020).

7. Burklund, A., Tadimety, A., Nie, Y., Hao, N. & Zhang, J. X. J. Advances in diagnostic
microfluidics. in Advances in clinical chemistry 95 1–72 (Elsevier Inc., 2020).

8. Seo, S. E. et al. Smartphone with optical, physical, and electrochemical nano-
biosensors. J. Ind. Eng. Chem. 77, 1–11 (2019).

9. Ray, T. R. et al. Bio-integrated wearable systems: A comprehensive review. Chem.
Rev. 119, 5461–5533 (2019).

10. Sempionatto, J. R., Jeerapan, I., Krishnan, S. & Wang, J. Wearable Chemical
Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal. Chem. 92,
378–396 (2019).

11. Chung, M., Fortunato, G. & Radacsi, N. Wearable flexible sweat sensors for
healthcare monitoring: A review. J. R. Soc. Interface 16, 20190217 (2019).

12. Li, S., Ma, Z., Cao, Z., Pan, L. & Shi, Y. Advanced Wearable Microfluidic Sensors for
Healthcare Monitoring. Small 16, 1903822 (2020).

13. Xu, J., Fang, Y. & Chen, J. Wearable biosensors for non-invasive sweat diag-
nostics. Biosensors 11, 245 (2021).

14. Cuartero, M., Parrilla, M. & Crespo, G. Wearable Potentiometric Sensors for
Medical Applications. Sensors 19, 363 (2019).

15. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-Skin: A Review of Flexible and
Stretchable Electronics for Wearable Health Monitoring. ACS Nano 11,
9614–9635 (2017).

16. Jo, S., Sung, D., Kim, S. & Koo, J. A review of wearable biosensors for sweat
analysis. Biomed. Eng. Lett. 11, 117–129 (2021).

17. Upasham, S., Churcher, N. K. M., Rice, P. & Prasad, S. Sweating out the Circadian
Rhythm: A Technical Review. ACS Sens. 6, 659–672 (2021).

18. Klimuntowski, M., Alam, M. M., Singh, G. & Howlader, M. M. R. Electrochemical
Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection.
ACS Sens. 5, 620–636 (2020).

19. Oktavius, A. K. et al. Fully-Conformable Porous Polyethylene Nanofilm Sweat
Sensor for Sports Fatigue. IEEE Sens. J. 21, 8861–8867 (2021).

20. Pali, M. et al. Tracking metabolic responses based on macronutrient con-
sumption: A comprehensive study to continuously monitor and quantify dual
markers (cortisol and glucose) in human sweat using WATCH sensor. Bioeng.
Transl. Med. 6, e10241 (2021).

21. Lee, J. W. et al. Soft, thin skin-mounted power management systems and
their use in wireless thermography. Proc. Natl Acad. Sci. USA. 113, 6131–6136
(2016).

22. Yeung, K. K. et al. Recent Advances in Electrochemical Sensors for Wearable
Sweat Monitoring: A Review. IEEE Sens. J. 21, 14522–14539 (2021).

23. Kaya, T. et al. Wearable Sweat Sensors: Background and Current Trends. Elec-
troanalysis 31, 411–421 (2019).

24. Bandodkar, A. J., Jeang, W. J., Ghaffari, R. & Rogers, J. A. Wearable Sensors for
Biochemical Sweat Analysis. Annu. Rev. Anal. Chem. 12, 1–22 (2019).

25. Kwon, J. Y., Park, H. W., Park, Y., Bin & Kim, N. Potentials of additive manu-
facturing with smart materials for chemical biomarkers in wearable applications.
Int. J. Precis. Eng. Manuf. - Green. Technol. 4, 335–347 (2017).

26. Manjakkal, L., Yin, L., Nathan, A., Wang, J. & Dahiya, R. Energy Autonomous
Sweat-Based Wearable Systems. Adv. Mater. 33, 2100899 (2021).

27. Sekar, M. et al. Review—Towards Wearable Sensor Platforms for the Electro-
chemical Detection of Cortisol. J. Electrochem. Soc. 167, 067508 (2020).

28. Matzeu, G., Florea, L. & Diamond, D. Advances in wearable chemical sensor
design for monitoring biological fluids. Sensors Actuators. B Chem. 211, 403–418
(2015).

29. McCaul, M., Glennon, T. & Diamond, D. Challenges and opportunities in wear-
able technology for biochemical analysis in sweat. Curr. Opin. Electrochem 3,
46–50 (2017).

30. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular
monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

31. Jin, H., Abu-Raya, Y. S. & Haick, H. Advanced Materials for Health Monitoring with
Skin-Based Wearable Devices. Adv. Healthc. Mater. 6, 1700024 (2017).

32. Li, G. & Wen, D. Wearable biochemical sensors for human health monitoring:
sensing materials and manufacturing technologies. J. Mater. Chem. B 8,
3423–3436 (2020).

33. Fan, R. & Andrew, T. L. Perspective—Challenges in Developing Wearable Elec-
trochemical Sensors for Longitudinal Health Monitoring. J. Electrochem. Soc.
167, 037542 (2020).

34. Gao, W., Brooks, G. A. & Klonoff, D. C. Wearable physiological systems
and technologies for metabolic monitoring. J. Appl. Physiol. 124, 548–556
(2018).

35. Yokus, B. M. A. & Daniele, M. A. Integrated non-invasive biochemical and bio-
physical sensing systems for health and performance monitoring: A systems
perspective. Biosens. Bioelectron. 184, 113249 (2021).

36. Wang, X., Liu, Z. & Zhang, T. Flexible Sensing Electronics for Wearable/Attach-
able Health Monitoring. Small 13, 1602790 (2017).

37. Hatamie, A. et al. Review—Textile Based Chemical and Physical Sensors for
Healthcare Monitoring. J. Electrochem. Soc. 167, 037546 (2020).

38. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for
healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

39. Ray, T. et al. Soft, skin-interfaced wearable systems for sports science and
analytics. Curr. Opin. Biomed. Eng. 9, 47–56 (2019).

40. Ye, S., Feng, S., Huang, L. & Bian, S. Recent Progress in Wearable Biosensors:
From Healthcare Monitoring to Sports Analytics. Biosensors 10, 205 (2020).

41. Kim, S. et al. Soft, skin-interfaced microfluidic systems with integrated immu-
noassays, fluorometric sensors, and impedance measurement capabilities. Proc.
Natl Acad. Sci. USA. 117, 27906–27915 (2020).

42. Wang, L., Xu, T. & Zhang, X. Multifunctional conductive hydrogel-based flexible
wearable sensors. TrAC - Trends Anal. Chem. 134, 116130 (2021).

43. Rabost-Garcia, G., Farré-Lladós, J. & Casals-Terré, J. Recent Impact of Micro-
fluidics on Skin Models for Perspiration Simulation. Membr. (Basel) 11, 150
(2021).

44. Yu, H. & Sun, J. Sweat detection theory and fluid driven methods: A review.
Nanotechnol. Precis. Eng. 3, 126–140 (2020).

45. Kalkal, A. et al. Recent advances in 3D printing technologies for wearable (bio)
sensors. Addit. Manuf. 46, 102088 (2021).

46. Sarwar, M., Rodriguez, P. & Li, C. zhong. Sweat-Based in Vitro Diagnostics (IVD):
From Sample Collection to Point-of-Care Testing (POCT). J. Anal. Test. 3, 80–88
(2019).

47. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical
monitoring. Nat. Biotechnol. 37, 407–419 (2019).

48. Shetti, N. P. et al. Skin-Patchable Electrodes for Biosensor Applications: A Review.
ACS Biomater. Sci. Eng. 6, 1823–1835 (2020).

49. Wen, F. et al. Advances in chemical sensing technology for enabling the next-
generation self-sustainable integrated wearable system in the IoT era. Nano
Energy 78, 105155 (2020).

50. Shitanda, I. & Tsujimura, S. Toward self-powered real-Time health monitoring of
body fluid components based on improved enzymatic biofuel cells. JPhys Energy
3, 032002 (2021).

51. Rao, J. et al. Recent Progress in Self-Powered Skin. Sens. Sens. 19, 2763 (2019).
52. Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: Chal-

lenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).
53. Nguyen, B., Coelho, Y., Bastos, T. & Krishnan, S. Trends in human activity

recognition with focus on machine learning and power requirements. Mach.
Learn. Appl 5, 100072 (2021).

54. Witt, D. R., Kellogg, R. A., Snyder, M. P. & Dunn, J. Windows into human health
through wearables data analytics. Curr. Opin. Biomed. Eng. 9, 28–46 (2019).

55. Morris, D. et al. Bio-sensing textile based patch with integrated optical detection
system for sweat monitoring. Sensors Actuators. B Chem. 139, 231–236 (2009).

56. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ
perspiration analysis. Nature 529, 509–514 (2016).

57. Heikenfeld, J. Non-invasive Analyte Access and Sensing through Eccrine Sweat:
Challenges and Outlook circa 2016. Electroanalysis 28, 1242–1249 (2016).

58. Liu, C., Xu, T., Wang, D. & Zhang, X. The role of sampling in wearable sweat
sensors. Talanta 212, 120801 (2020).

59. Tankasala, D. & Linnes, J. C. Noninvasive glucose detection in exhaled breath
condensate. Transl. Res. 213, 1–22 (2019).

60. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to
cystic fibrosis and glucose monitoring using a fully integrated wearable plat-
form. Proc. Natl Acad. Sci. USA. 114, 4625–4630 (2017).

61. Kim, J. et al. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based
Iontophoretic-Biosensing System. ACS Sens. 1, 1011–1019 (2016).

62. Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with
wireless signal transduction for continuous non-invasive sweat monitoring.
Biosens. Bioelectron. 54, 603–609 (2014).

63. Son, J. et al. Cactus-Spine-Inspired Sweat-Collecting Patch for Fast and Con-
tinuous Monitoring of Sweat. Adv. Mater. 33, 2102740 (2021).

64. Dai, B. et al. Bioinspired Janus Textile with Conical Micropores for Human Body
Moisture and Thermal Management. Adv. Mater. 31, 1904113 (2019).

65. He, X. et al. Flexible and Superwettable Bands as a Platform toward Sweat
Sampling and Sensing. Anal. Chem. 91, 4296–4300 (2019).

66. He, X. et al. Integrated Smart Janus Textile Bands for Self-Pumping Sweat
Sampling and Analysis. ACS Sens. 5, 1548–1554 (2020).

67. He, X., Fan, C., Xu, T. & Zhang, X. Biospired Janus Silk E-Textiles with Wet-Thermal
Comfort for Highly Efficient Biofluid Monitoring. Nano Lett. 21, 8880–8887
(2021).

P. Yang et al.

11

Published in partnership with Nanjing Tech University npj Flexible Electronics (2022)    33 



68. Choi, J. et al. Soft, skin-mounted microfluidic systems for measuring secretory
fluidic pressures generated at the surface of the skin by eccrine sweat glands.
Lab Chip 17, 2572–2580 (2017).

69. Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, Soft, Skin-Mounted
Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of
Sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

70. Samson, C. & Koh, A. Stress Monitoring and Recent Advancements in Wearable
Biosensors. Front. Bioeng. Biotechnol. 8, 1037 (2020).

71. Wang, L., Xu, T., He, X. & Zhang, X. Flexible, self-healable, adhesive and wearable
hydrogel patch for colorimetric sweat detection. J. Mater. Chem. C. 9,
14938–14945 (2021).

72. Yang, Y. & Gao, W. Wearable pH sensing beyond the Nernst limit. Nat. Electron.
1, 580–581 (2018).

73. Nyein, H. Y. Y. et al. A Wearable Electrochemical Platform for Noninvasive
Simultaneous Monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

74. Zhai, Q. et al. Vertically Aligned Gold Nanowires as Stretchable and Wearable
Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis.
Anal. Chem. 92, 4647–4655 (2020).

75. O’Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).
76. Baker, L. B. Sweating Rate and Sweat Sodium Concentration in Athletes: A

Review of Methodology and Intra/Interindividual Variability. Sport. Med. 47,
111–128 (2017).

77. Parrilla, M., Cuartero, M. & Crespo, G. A. Wearable potentiometric ion sensors.
TrAC - Trends Anal. Chem. 110, 303–320 (2019).

78. Keene, S. T. et al. Wearable Organic Electrochemical Transistor Patch for Multi-
plexed Sensing of Calcium and Ammonium Ions from Human Perspiration. Adv.
Healthc. Mater. 8, e1901321 (2019).

79. Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate
monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

80. Alvear-Ordenes, I., García-López, D., De Paz, J. A. & González-Gallego, J. Sweat
Lactate, Ammonia, and Urea in Rugby Players. Int. J. Sports Med. 26, 632–637 (2005).

81. Lamont, L. S. Sweat lactate secretion during exercise in relation to women’s
aerobic capacity. J. Appl. Physiol. 62, 194–198 (1987).

82. Wang, R., Zhai, Q., An, T., Gong, S. & Cheng, W. Stretchable gold fiber-based
wearable textile electrochemical biosensor for lactate monitoring in sweat.
Talanta 222, 121484 (2021).

83. Zhou, W. et al. Recent advances in flexible sweat glucose biosensors. J. Phys. D.
Appl. Phys. 54, 423001 (2021).

84. Yunos, M. F. A. M. & Nordin, A. N. Non-invasive glucose monitoring devices: A
review. Bull. Electr. Eng. Inform. 9, 2609–2618 (2020).

85. Zhao, Y. et al. Highly Stretchable and Strain-Insensitive Fiber-Based Wearable
Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal. Chem. 91,
6569–6576 (2019).

86. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric
acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

87. Russell, E., Koren, G., Rieder, M. & Van Uum, S. H. M. The detection of cortisol in
human sweat: Implications for measurement of cortisol in hair. Ther. Drug Monit.
36, 30–34 (2014).

88. Raul, J. S., Cirimele, V., Ludes, B. & Kintz, P. Detection of physiological con-
centrations of cortisol and cortisone in human hair. Clin. Biochem. 37,
1105–1111 (2004).

89. Torrente-Rodríguez, R. M. et al. Investigation of Cortisol Dynamics in Human Sweat
Using a Graphene-Based Wireless mHealth System. Matter 2, 921–937 (2020).

90. Tai, L. C. et al. Methylxanthine Drug Monitoring with Wearable Sweat Sensors.
Adv. Mater. 30, 1707442 (2018).

91. Gamella, M. et al. A novel non-invasive electrochemical biosensing device for
in situ determination of the alcohol content in blood by monitoring ethanol in
sweat. Anal. Chim. Acta 806, 1–7 (2014).

92. Davis-Martin, R. E., Alessi, S. M. & Boudreaux, E. D. Alcohol Use Disorder in the
Age of Technology: A Review of Wearable Biosensors in Alcohol Use Disorder
Treatment. Front. Psychiatry 12, 642813 (2021).

93. Cao, Z. et al. Near-Field Communication. Sens. Sens. 19, 3947 (2019).
94. Xu, G. et al. Smartphone-based battery-free and flexible electrochemical patch

for calcium and chloride ions detections in biofluids. Sens. Actuators B Chem.
297, 126743 (2019).

95. Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based
biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10,
1581–1589 (2017).

96. Reid, R. C. & Mahbub, I. Wearable self-powered biosensors. Curr. Opin. Electro-
chem 19, 55–62 (2020).

97. Liu, W., Song, M.-S., Kong, B. & Cui, Y. Flexible and Stretchable Energy Storage:
Recent Advances and Future Perspectives. Adv. Mater. 29, 1603436 (2017).

98. Wang, Z. et al. Fully transient stretchable fruit‐based battery as safe and
environmentally friendly power source for wearable electronics. EcoMat 3,
e12073 (2021).

99. He, J. et al. Scalable production of high-performing woven lithium-ion fibre
batteries. Nature 597, 57–63 (2021).

100. Yin, L. et al. A passive perspiration biofuel cell: High energy return on invest-
ment. Joule 5, 1888–1904 (2021).

101. Heo, S. Y. et al. Wireless, battery-free, flexible, miniaturized dosimeters monitor
exposure to solar radiation and to light for phototherapy. Sci. Transl. Med. 10,
eaau1643 (2018).

102. Han, S. et al. Battery-free, wireless sensors for full-body pressure and tempera-
ture mapping. Sci. Transl. Med. 10, eaan4950 (2018).

103. Song, Y. et al. Wireless battery-free wearable sweat sensor powered by human
motion. Sci. Adv. 6, eaay9842 (2020).

104. Wu, H., Zhang, Y., Kjøniksen, A. L., Zhou, X. X. & Zhou, X. X. Wearable Biofuel
Cells: Advances from Fabrication to Application. Adv. Funct. Mater. 2103976,
1–38 (2021).

105. Yuan, J. & Zhu, R. A fully self-powered wearable monitoring system with sys-
tematically optimized flexible thermoelectric generator. Appl. Energy 271,
115250 (2020).

106. Xia, X., Liu, Q., Zhu, Y. & Zi, Y. Recent advances of triboelectric nanogenerator
based applications in biomedical systems. EcoMat 2, e12049 (2020).

107. Yang, B., Xiong, Y., Ma, K., Liu, S. & Tao, X. Recent advances in wearable textile‐
based triboelectric generator systems for energy harvesting from human
motion. EcoMat 2, e12054 (2020).

108. Tang, Q., Guo, H., Yan, P. & Hu, C. Recent progresses on paper‐based triboelectric
nanogenerator for portable self‐powered sensing systems. EcoMat 2, e12060
(2020).

109. Fischer, C., Fraiwan, A. & Choi, S. A 3D paper-based enzymatic fuel cell for self-
powered, low-cost glucose monitoring. Biosens. Bioelectron. 79, 193–197 (2016).

110. Jao, Y. T. et al. A textile-based triboelectric nanogenerator with humidity-
resistant output characteristic and its applications in self-powered healthcare
sensors. Nano Energy 50, 513–520 (2018).

111. Wang, R. et al. Magnetoelectrical Clothing Generator for High-Performance
Transduction from Biomechanical Energy to Electricity. Adv. Funct. Mater.
2107682, 1–10 (2021).

112. García Núñez, C., Manjakkal, L. & Dahiya, R. Energy autonomous electronic skin.
npj Flex. Electron 3, 1 (2019).

113. Sempionatto, J. R., Moon, J.-M. & Wang, J. Touch-Based Fingertip Blood-Free
Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood
Glucose Concentrations. ACS Sens. 6, 1875–1883 (2021).

114. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic sys-
tems for simultaneous electrochemical, colorimetric, and volumetric analysis of
sweat. Sci. Adv. 5, eaav3294 (2019).

115. Kamiŝalić, A., Fister, I., Turkanović, M. & Karakatiĉ, S. Sensors and functionalities
of non-invasive wrist-wearable devices: A review. Sens. (Switz.) 18, 1714 (2018).

116. Quan, T. M. et al. AI-Based Edge-Intelligent Hypoglycemia Prediction System
Using Alternate Learning and Inference Method for Blood Glucose Level Data
with Low-periodicity. in 2019 IEEE International Conference on Artificial Intelli-
gence Circuits and Systems (AICAS) 201–206 (IEEE, 2019). https://doi.org/10.1109/
AICAS.2019.8771604.

117. Yu, Y. et al. An automatic and non-invasive physical fatigue assessment method
for construction workers. Autom. Constr. 103, 1–12 (2019).

118. Bordbar, M. M., Barzegar, H., Tashkhourian, J., Bordbar, M. & Hemmateenejad, B.
A non-invasive tool for early detection of acute leukemia in children using a
paper-based optoelectronic nose based on an array of metallic nanoparticles.
Anal. Chim. Acta 1141, 28–35 (2021).

119. Kumar, P. M. & Devi Gandhi, U. A novel three-tier Internet of Things architecture
with machine learning algorithm for early detection of heart diseases. Comput.
Electr. Eng. 65, 222–235 (2018).

120. Otoom, M., Otoum, N., Alzubaidi, M. A., Etoom, Y. & Banihani, R. An IoT-based
framework for early identification and monitoring of COVID-19 cases. Biomed.
Signal Process. Control 62, 102149 (2020).

121. Syed, L., Jabeen, S., S., M. & Alsaeedi, A. Smart healthcare framework for ambient
assisted living using IoMT and big data analytics techniques. Futur. Gener.
Comput. Syst. 101, 136–151 (2019).

122. Veeralingam, S., Khandelwal, S. & Badhulika, S. AI/ML-Enabled 2-D - RuS 2
Nanomaterial-Based Multifunctional, Low Cost, Wearable Sensor Platform
for Non-Invasive Point of Care Diagnostics. IEEE Sens. J. 20, 8437–8444
(2020).

123. Chen, A. et al. Machine-learning enabled wireless wearable sensors to study
individuality of respiratory behaviors. Biosens. Bioelectron. 173, 112799 (2021).

124. Kanoga, S., Hoshino, T. & Asoh, H. Semi-supervised style transfer mapping-based
framework for sEMG-based pattern recognition with 1- or 2-DoF forearm
motions. Biomed. Signal Process. Control 68, 102817 (2021).

125. Tummers, J., Catal, C., Tobi, H., Tekinerdogan, B. & Leusink, G. Coronaviruses and
people with intellectual disability: an exploratory data analysis. J. Intellect. Dis-
abil. Res. 64, 475–481 (2020).

P. Yang et al.

12

npj Flexible Electronics (2022)    33 Published in partnership with Nanjing Tech University

https://doi.org/10.1109/AICAS.2019.8771604
https://doi.org/10.1109/AICAS.2019.8771604


126. Gondalia, A. et al. IoT-based Healthcare Monitoring System for War Soldiers
using. Mach. Learn. Procedia Comput. Sci. 133, 1005–1013 (2018).

127. Tang, B. et al. Kinetic investigation into pH-dependent color of anthocyanin and
its sensing performance. Dye. Pigment. 170, 107643 (2019).

128. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
129. Aziz, O. et al. Validation of accuracy of SVM-based fall detection system using

real-world fall and non-fall datasets. PLoS One 12, e0180318 (2017).

ACKNOWLEDGEMENTS
This study was financially supported by the State Key Laboratory of Mechanical
System and Vibration Project (Grant no. MSVZD202108) and the open project of
National Research Center for Translational Medicine, Shanghai (Project no. TMSK-
2021-146). We also thanks to the Base for Interdisciplinary Innovative Talent Training.

AUTHOR CONTRIBUTIONS
P.F.Y., G.F.W., F.W.H. and Z.N.Z. conceptualized the work. P.F.Y. wrote the original
draft; A.L. and Z.N.Z. reviewed and edited the manuscript. G.F.W. and Z.N.Z. provided
overall supervision of the work.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Gaofeng Wei or
Zhinan Zhang.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

P. Yang et al.

13

Published in partnership with Nanjing Tech University npj Flexible Electronics (2022)    33 

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors
	Introduction
	Bibliometrics analysis of wearable sweat sensors
	The process of monitoring sweat
	Benefits and challenges of measuring sweat
	Sweat sampling and control
	Sweat composition and application prospects
	Electrolytes
	pH
	Sodium
	Chlorine
	Potassium
	Calcium

	Metabolites
	Lactate
	Glucose
	Uric acid (UA)
	Cortisol

	Xenobiotics
	Drug
	Alcohol
	Heavy metals ion

	Sustainable energy supply system
	Intelligent monitoring and prediction analysis

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




