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SANS-CNN: An automated machine
learning technique for spaceflight
associated neuro-ocular syndrome with
astronaut imaging data
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Spaceflight associated neuro-ocular syndrome (SANS) is one of the largest physiologic barriers to
spaceflight and requires evaluation and mitigation for future planetary missions. As the spaceflight
environment is a clinically limited environment, the purpose of this research is to provide automated, early
detectionandprognosisofSANSwithamachine learningmodel trainedandvalidatedonastronautSANS
optical coherence tomography (OCT) images. In this study, we present a lightweight convolutional neural
network (CNN) incorporating an EfficientNet encoder for detecting SANS fromOCT images titled “SANS-
CNN.”Weused6303OCTB-scan images for training/validation (80%/20%split) and945 for testingwitha
combinationof terrestrial images andastronautSANS images for both testing and validation. SANS-CNN
was validated with SANS images labeled by NASA to evaluate accuracy, specificity, and sensitivity. To
evaluate real-world outcomes, two state-of-the-art pre-trained architectures were also employed on this
dataset.We useGRAD-CAM to visualize activationmaps of intermediate layers to test the interpretability
of SANS-CNN’s prediction. SANS-CNN achieved 84.2% accuracy on the test set with an 85.6%
specificity, 82.8% sensitivity, and 84.1% F1-score. Moreover, SANS-CNN outperforms two other state-
of-the-art pre-trained architectures, ResNet50-v2 and MobileNet-v2, in accuracy by 21.4% and 13.1%,
respectively. We also apply two class-activation map techniques to visualize critical SANS features
perceived by the model. SANS-CNN represents a CNN model trained and validated with real astronaut
OCT images, enabling fast and efficient prediction of SANS-like conditions for spaceflight missions
beyond Earth’s orbit in which clinical and computational resources are extremely limited.

Spaceflight-associated neuro-ocular syndrome (SANS) refers to a unique
constellation of neuro-ophthalmic imaging and clinical findings observed
in astronauts after long duration spaceflight (LDSF)1,2. These findings
include unilateral/asymmetric/bilateral optic disc edema of different

Frisén grades, chorioretinal folds, posterior globe flattening, hyperopic
refractive error shift, and cotton wool spots3. Although terrestrial analogs
have been helpful in understanding SANS, there is no terrestrial
equivalent and ongoing research is being conducted to further
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understand the underlying pathogenesis of this neuro-ophthalmic
phenomenon4–8.

Assigned by the National Aeronautics and Space Administration
(NASA), SANS has an elevated Likelihood and Consequence Ratio for a
planetary mission to Mars, indicating potential long-term health con-
sequences to astronauts, thus serving as one of the largest physiologic bar-
riers to future spaceflight9–11. Mitigation research include lower body
negative pressure12,13, pressurized goggles14, nutrition15, and understanding
genetic predispositions to developing SANS8.While countermeasure efforts
are promising, anticipated missions that expose astronauts to microgravity
longer than what is known continue to require critical analysis of SANS
progression. Moreover, anticipatory guidance for employing such coun-
termeasures for SANS requires timely evaluation during deep-space
exploration. On board the International Space Station (ISS), imaging
modalities including optical coherence tomography (OCT), fundus ima-
ging, and orbital ultrasound have been instrumental in providing high-
quality analysis of SANS progression3,16–18. On deep space missions beyond
Earth’s orbit, such as the mission to Mars and beyond, critically analyzing
these images will be particularly challenging. Additionally, increases in
transmission latency for these large data images to Earth may be a large
barrier for an expert reader on Earth to critically analyze SANS progression
in a timely fashion, particularly as spacecraft continues to travel farther from
Earth19–21. This isolation from an expert evaluator of SANS progression
during these missions may be mitigated with an automated, expert system
that can analyze imaging data onboard the spacecraft. A primary con-
sideration of such a system in the spaceflight environment is the limited
computational capacity.

In this paper, we report the development, validation, and accuracy of
a deep learning architecture with lightweight Convolutional Neural
Networks (CNNs) designed specifically to detect SANS findings on OCT
B-scans for future deep space exploration entitled “SANS-CNN”. We
utilize SANS images provided and labeled by NASA to validate this
architecture. We compare SANS-CNN to state-of-the-art, publicly
available pre-trained architectures to interpret the robustness of such a
system for spaceflight. The twoprimary aims of this architecture are: (1) to
provide an accurate model that properly detects SANS-like features and
(2) to utilize efficient and lightweight CNN predictions for the compu-
tationally limited spaceflight environment. The development of technol-
ogy for detecting and evaluating SANS progression may serve to provide
astronauts immediate guidance on whether escalation of SANS counter-
measures (e.g., lower body pressure) is warranted during deep-space
missions.

Methodology
Pre-trained Encoder
Utilizing pre-trained models for transfer learning tasks has shown tre-
mendous promise in healthcare22–24, physics-driven simulation25, drug-
discovery26, and computational biology27. Pre-trained models are archi-
tectures previously trained on a large data set, and then the weights of these
models are transferred and trained on a downstream task. For example, a
popular deepconvolutional neural network calledResNet28 has been trained
using 3.2 million ImageNet29 and images have been used for many down-
stream tasks for ophthalmology. Similar architectures with residual blocks
have seen many adoptions in challenging downstream tasks for ophthal-
mology such as image-to-image translation, image inpainting, and image
segmentation30,31. In Fig. 1, our proposed Efficient and Interpretable Deep
ConvNet architecture is given, which consists of an encoder which takes the
OCT B-Scans as input, a decoder, and an output for predicting between
SANSandNormal cases.The encoder consists of a pre-trainednetworkwith
multiple residual and downsampling blocks, as shown in Fig. 2.

The basic structure of ResNet consists of a residual unit with two
consecutive convolution layers and a skip connection that adds the feature
tensor of the input with the output28. However, the authors improved upon
this, utilized pre-activation with batch-normalization to address the van-
ishing gradient problem, and proposed a new architecture called ResNet-v2
with new residual and downsampling blocks. In terms of efficiency, two
other architectures have proposed modified learnable blocks which utilize
fewer parameters: MobileNet32 and EfficientNet33. Similar to ResNet, the
authors of both these models improved upon their architecture and pro-
posed two new architectures, MobileNetV232 and EfficientNetV233. For our
experimentation, we use pre-trained encoders of these three architectures.
Moreover, all of them were trained on ImageNet2012 datasets29. The dif-
ference and similarities of these three architectures are given in Table 1.

Building Blocks
First, we use the ResNet50-v2 architecture for our pre-trained encoder. The
encoder consists of residual downsampling and residual identity blockswith
pre-activation.We illustrate bothof these residual blocks inFig. 3 (I) and (ii).
The residual downsampling blocks have three sub-blocks successively with
Batch-Normalization,ReLU, andConvolution.Also, a skip connectionwith
the convolution layer is added from the first sub-blocks ReLU with the last
convolution layer’s output. The first and last convolution has kernel size,
k = 3 and stride, s = 1. The second and skip-connection convolutions have
stride, s = 2. Kernel size and stride are utilized to determine the receptive
field of the convolution operation to extract intrinsic spatial information

Fig. 1 | Proposed Deep Learning Architecture for SANS Classification. The
encoder consists of Identity blocks which utilize convolution, batch-normalization
and activation layers to learn inherent features and Downsampling blocks which
down samples the spatial features to half the size using stride=2 convolution. The

decoder consists of a Global average pooling layer to averaging the 2D feature in the
depth axis and threeDense layers for flattening the 2D spatial features to 1D features.
The labels utilized are “Normal” and “SANS”, and we utilize supervised cross-
entropy loss function to train the model.
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from the images. We use a small kernel size and stride size to extract fine
local features,whichhelpswithbetterdownstreaminformationaggregation.
On the other hand, downsampling layers are employed to decrease the
image features spatially (typically half of the original by using stride = 2) for
the convolution operation to work on, which helps with utilizing less
memory. By combining small kernel and stride size and using down-
sampling after each stage, we minimize the overall number of parameters,
which effectively helps with overall memory utilization and redundant
feature extraction.

Next, we use the MobileNetV2 pre-trained encoder, consisting of
downsampling and identity blocks. Both of these blocks are visualized in
Fig. 3 (iii) and (iv). Unlike ResNetV2, the MobileNetV2 uses post-
activation. Both downsampling and identity blocks consist of three sub-
blocks. The first and last sub-blocks have Convolution, Batch-normal-
ization, and ReLU activation layers. The second sub-block has Depth-
wise Convolution, Batch-normalization, and ReLU activation layers.
The identity block has a skip connection from the input and is added
with the output of the last ReLU layer. The first and last convolution has
kernel size, k = 3 and stride, s = 1. The depth-wise convolution has
stride, s = 2.

Lastly, we incorporate the EfficientNetV2 pre-trained encoder, which
consists of Squeeze-and-excitation blocks. The block is illustrated in Fig.
3(v). The block consists of three sub-blocks, with the first and third con-
sisting of Convolution, Batch-Normalization, and Swish activation layers.
The second sub-block consists of Global-average pooling, Convolution,

Swish activation, Convolution, and Softmax activation layers. The output of
the second sub-block is element-wise multiplied by the first sub-block’s
output. The convolution in the sub-blockhas a kernel size, k = 3, and the rest
of the convolution in other sub-blocks has a kernel size, k = 1. As Efficient-
NetV2 only utilizes this block for downsampling and regular blocks, the
stride size is changed in the first sub-block depending on the block defini-
tion. The stride size is chosen as, s = 2 for downsampling and s = 1 for a
regular block.

Decoder
The decoder consists of a global average pooling layer, followed by three
dense layers as illustrated in Fig. 2. The global average pooling takes the
average of the spatial dimensions and transforms it into a 1D feature vector.
The three dense layers consist of 256, 64, and 2 neurons. The first two dense
layers are followed by a dropout layer which randomly drops activations to
zero. We use drop rate of 0.6 and 0.2 (out of 1) for the dropout layers
successively. We use two neurons in the last layer for predicting SANS or
Normal class. The downstream task is a supervised-classification task, as the
ground-truth values of one hot-encoded vector.

Objective function
For training we incorporate weighted categorical cross-entropy loss as
shown in Equation (1). Here, yi is the ground-truth class and y0i is the
predicted class. The c signifies the number of samples, wi signifies weight
values, and cat denotes that is a categorical loss. The weight values were

Fig. 2 | Building blocks of SANS-CNN which incorporates ResNet50-v2,
MobileNet-v2 and EfficientNet-v2 identity blocks. ResNet50-v2 and MobileNet-
v2 utilize separate learnable blocks for identity and down-sampling, whereas

EfficientNet-v2 utilizes the same block for both. Here, K = kernel size, S = stride.
ResNet50-v2 and EfficientNet-v2 have a skip connection in down-sampling block,
but MobileNetV2 does not have a skip connection.

Table 1 | Comparison of ResNet50-v2, MobileNet-v2 and Efficient-v2 architectures regarding activation function, activation
functionplacement, utilities distinct downsamplingblock, skip-connectionoperation, skip-connection in downsamplingblock,
and presence of depth-wise convolution

ResNet50-v2 MobileNet-v2 EfficientNet-v2

Activation function ReLU ReLU Swish and Softmax

Activation function placement Pre-activation Post-activation Post-activation

Utilities distinct downsampling block Yes Yes No

Skip-connection operation Element-wise Addition Element-wise Addition Element-wise multiplication

Skip-connection in downsampling block Yes No Yes

Has depth-wise convolution No Yes No
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chosen based on the number of samples per-class.

Lwcat
¼ �

Xc

i¼1

wiyi log y0i
� �

Equation 1. Weighted categorical cross-entropy loss.

Data preprocessing
For our experimentation, we use the OCT-B scans that are separated for
training, validation and testing based on unique astronauts. The control
images are from pre-flight, in-flight and post-flight OCT volumes. The
SANS images were taken from both in-flight and post-flight OCT volumes.
For training, we utilized 2506 SANS and 3797 Normal OCT B-scans. For
validation, we incorporated 627 SANS and 950 Normal OCT B-scans. In
order to evaluate on a hold-out test set, we utilized 467 SANS and 478
Normal images. All images were normalized to have values between 0–1
from 0–255-pixel intensities for training, validation and testing and the
images were pre-processed to have a resolution size of 512 × 512.

Hyper-parameter Tuning
For training all the models, we used Adam optimizer for adapting the
parameter learning rates34. The initial learning rate, we used the Adam
optimizer with an initial learning rate of lr ¼ 0:0001: We utilized a mini-
batch of b ¼ 16 and trained allmethods for 30 epochs. For the classweights,
we chose0.83 formajority (Normal) and1.257 forminority (SANS) training
samples. We used the Keras Deep learning library (https://keras.io/) with
Tensorflowbackend (https://www.tensorflow.org/) to train ourmodels. For
training, we utilized two callbacks: “Reduce Learning rate on Plateau” and
“Model Checkpointer”. The first callback reduced the learning rate by 0:1 if
the validation loss did not decrease for six epochs. Whereas the other call-
back saves the best snapshot of the model weights for each epoch.

Metrics
We used three standard metrics for calculating the Accuracy, Sensitivity
(True Positive Rate), Specificity (True Negative Rate), Precision (Positive
Predictive Value) and F1-score. The metrics are calculated as follows in
Equation (2):

Accuracy ¼ 1
N

X TPþ TN
TPþ TNþ FNþ FP

Sensitivity ¼ 1
K

X TP
TP þ FN

Specificity ¼ 1
K

X TN
TN þ FP

Precision ¼ 1
K

X TP
TP þ FP

F1� score ¼ 1
K

X 2TP
2TP þ FP þ FN

:

Equation 2. Equations to calculate accuracy, sensitivity, specificity,
precision, and F1-score. Here, N is the number of samples, and K is the
number of classes (K = 2). TP=True Positive, FP=False Positive, FN=False
Negative, TN = True Negative.

Results
Quantitative results
As seen in Table 2, the best-performing model, EfficientNet-v2, achieved
84.2% accuracy, 85.6% specificity, 82.8% sensitivity, and an 84.1% F1-score.
Compared to that, ResNet50-v2 achieved differences of 17–23% less across
all six metrics. In contrast, MobileNet-v2 achieved a difference of 12.1%
improvement in sensitivity but got lower precision, specificity, F1-score and
accuracy. It is evident that EfficientNet-v2 has better overall performance in
this SANS vs. Normal images recognition task.

Qualitative results
For producing “visual justifications” for decisions made by our
ConvNet models for accurate classification, we use GRAD-CAM35, and
GRAD-CAM++36. These techniques utilize back-propagated gradients to
show important regions of the images from the perspective of a specific
layer, intensified for the classification decision’s maximum probability. In
Fig. 3, we visualize the differences in activations of three blocks of the
encoder layers for three of our models on a SANS image. Stage N is the last
convolution blocks’ output before the global average pooling layer.

Table 2 | Performance comparison of deep learningmodels on
SANS and Normal OCT B-scans

Model Accuracy Sensitivity Specificity Precision F1-score

EfficientNet-v2 84.2% 82.8% 85.6% 85.5% 84.1%

MobileNet-v2 71.1% 94.9% 46.6% 64.5% 76.8%

ResNet50-v2 62.8% 63.1% 62.5% 63.3% 63.2%

Fig. 3 | Visualization of back-propagated gradient activation maps using GRAD-CAM and GRAD-CAM++ on our three architectures. Here, Conv Block N is the
output of the last block of the encoder, the Conv Block N-1 and Conv Block N-2 are preceding block’s outputs.
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Similarly, Stage N-1 and Stage N-2 are the previous convolution block’s
outputs. From Fig. 1, row 1, it is apparent that MobileNetV2 had sparsely
activated signals in choroidal fold region. However, in row 2, ResNet50v2
had concentrated activated signals and activations in the choroidal folds and
the unimportant region of Bruch’s Membrane (BM) and retinal pigment
epithelium(RPE). In contrast, our best architecture, EfficientNetV2, had the
best output for choroidal folds manifested in the RPE and BM as well as the
cotton wool spots manifesting below the retinal nerve fiber layer (RNFL).
This visualization conforms to the patterns seen in the outputmetricswhere
EfficientNevV2 performs the best in most metrics while ResNet50v2 is the
lowest performing. This qualitative illustration compliments our model’s
overall explainability and knowledge transferability.

Discussion
The results from SANS-CNN demonstrate a robust detection of SANS
findings with lightweight CNNs compared to state-of-the-art pre-trained
architectures.Given that prolonged optic disc edemaand chorioretinal folds
have been observed to lead to potential significant visual impairment ter-
restrially (e.g., chorioretinal folds-related maculopathy or idiopathic intra-
cranial hypertension)37–40, the automatic evaluation of SANS for immediate
insight to onboard members is critical for deep space exploration. As
mitigation strategies continue to develop for SANS, there is a necessity for
guidance on how long astronauts should employ these countermeasures
during spaceflight.Countermeasures such as LBNPandgoggles have shown
promise for counteracting SANS13,14. LBNP attenuates the cephalad fluid
shifts during spaceflight that result from a reduction in hydrostatic pressure
in microgravity. These cephalad fluid shifts have been hypothesized to be a
critical component to SANS development. In a randomized crossover trial
in a terrestrial setting, Hearon et al. observed that LBNP at night mitigated
an increase in choroidal area and volume measured by OCT during supine
bed rest, suggesting that this countermeasure during sleep on spaceflight
missions may counteract SANS. During prolonged exposure to micro-
gravity thanwhat is known, SANSmay continue to progress despite nightly
LBNP. Automated and timely evaluation of SANSmay provide guidance to
whether further escalation of lower body negative pressure beyond just
nightly use is necessary to attenuate SANS progression.

The utilization of SANS-CNN can be further validated with terrestrial
analogs of SANS.Head-down tilt bed rest is a promising terrestrial analog of
SANS which mimics cephalad fluid shifts in spaceflight and has been
observed to produce optic disc edema and chorioretinal folds41. In con-
junctionwith countermeasures during head-down tilt bed rest, SANS-CNN
may help to provide an objective evaluation of SANS-like progression with
terrestrial analogs.

Several limitations exist for this study that may be considered for
future technical development. First, the labelled OCT data provided by
NASA spans across many years with different evaluating experts which
limits the uniformity of data. This can be addressed with prospective
studies in SANS with uniform labelers. Secondly, given the natural lim-
itation of humans that go to space and the relatively recent discovery of
SANS, the number of SANS images may be increased in the future to
provide amore robust training dataset. This limitation can be approached
with deep learning transfer learning techniques that can build upon larger
datasets with terrestrial data to strengthen a smaller training dataset42,43.
However, SANS has no terrestrial equivalent; thus, utilizing astronaut
SANS images from future spaceflights will be of utmost importance.
Though we achieved over 80–85% on five different metrics, there is room
for improvement to enhance the architecture to achieve accuracies above
95%. Given, the model is receiving OCT B-scans image inputs for healthy
and SANS patients, some B-scans from the SANS patients might not
contain apparent SANS indicator (like choroidal folds or cotton wool
spots), which might explain the model’s score not reaching 90% or
beyond. In the future, our team seeks to investigate whether pre-training
on non-SANS publicly available retinal degenerative images (e.g., age-
related macular degeneration and diabetic macular edema) can improve
the overall performance of ourmodel. Additionally, we seek to explore the

incorporation of Generative Adversarial Networks to generate synthetic
SANS data to improve the model further20,44,45. Lastly, in the extra-
terrestrial environment with limited resources such as an exploratory
mission traveling away from Earth, optimizing computational utilization
and lightweight aspects of such an automated system is critical for systems
resourcefulness. Thus, continuing to optimize the computational effi-
ciency of this system is of utmost importance.

Automated detection of SANS during deep-space exploration where
clinical resources are limitedmay provide necessary and timely guidance on
countermeasure utilization. SANS-CNN is designed specifically for astro-
naut ophthalmic health and demonstrates robust detection of SANS-like
conditions when compared to existing state-of-the-art architectures. This
work is a part of a comprehensive ocular framework tomonitor SANSwith
deep learning and extended reality46–51. Future directions include developing
and merging models with other modalities onboard the ISS such as fundus
photography, which is useful for detecting optic disc edema, chorioretinal
folds, and cotton wool spots. As OCTA information becomes available,
labelled data with SANS can bemerged within SANS-CNN to provide even
more robust SANS detection with additional choroidal vasculature data.
Further research of SANS-CNN includes employing additional terrestrial
neuro-ocular pathologies (e.g., papilledema in idiopathic intracranial
hypertension) to further understand and delineate the similarities, differ-
ences, and spatial features of this unique microgravity phenomenon from
terrestrial diseases. This may also help to further understand the etiology of
SANS and its possible multi-factorial pathogenesis. Further prospective
research with this machine learning model, including comparing astronaut
terrestrial data to their SANS data, may further our understanding and
ability to detect SANS.

Data availability
Due to the nature of the research, the supporting astronaut data is not
available.

Code availability
Code available upon reasonable request.
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