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Unlocking the potential: analyzing 3D microstructure of small-
scale cement samples from space using deep learning
Vishnu Saseendran 1✉, Namiko Yamamoto 1✉, Peter J. Collins2, Aleksandra Radlińska 2, Sara Mueller3 and Enrique M. Jackson4

Due to the prohibitive cost of transporting raw materials into Space, in-situ materials along with cement-like binders are poised to
be employed for extraterrestrial construction. A unique methodology for obtaining microstructural topology of cement samples
hydrated in microgravity environment at the International Space Station (ISS) is presented here. Distinctive Scanning Electron
Microscopy (SEM) micrographs of hardened tri-calcium silicate (C3S) samples were used as exemplars in a deep learning-based
microstructure reconstruction framework. The proposed method aids in generation of an ensemble of microstructures that is
inherently statistical in nature, by utilizing sparse experimental data such as the C3S samples hydrated in microgravity. The hydrated
space-returned samples had exhibited higher porosity content (~70 %) with the portlandite phase assuming an elongated plate-like
morphology. Qualitative assessment of the volumetric slices from the reconstructed volumes showcased similar visual
characteristics to that of the target 2D exemplar. Detailed assessment of the reconstructed volumes was carried out using statistical
descriptors, and was further compared against micro-CT virtual data. The reconstructed volumes captured the unique
microstructural morphology of the hardened C3S samples of both space-returned and ground-based samples, and can be directly
employed as Representative Volume Element (RVE) to characterize mechanical/transport properties.
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INTRODUCTION
With the advent of crewed missions as part of the Artemis
program1, interests are being renewed to sustainably prolong
human space expeditions. Invariably, this requires infrastructure
on extraterrestrial bodies to protect both humans and equipment
from the extreme environments. Given the cost of transporting
materials for deep space missions, it is envisioned that in-situ
resources such as lunar regolith formed into cement-like binders
can be employed for constructing habitats on extraterrestrial
bodies. However, there is very little understanding on the
hydration of cement-like binders in space. A recent study on
cement solidification in microgravity environment helped under-
stand the chemistry of hydration and microstructural formation in
the absence of gravity2,3. To gain deeper understanding on the
impact of microstructural morphology on the resulting mechanical
properties of cement, experimental or numerical simulations may
be employed. Moreover, tricalcium silicate (C3S) [Ca3SiO5: C3S in
cement notation], which constitutes ~50–70 % of Ordinary
Portland Cement (OPC) by mass4–9, is an important component
governing the hydration of OPC. Hence, the C3S microstructure
directly influences the physical properties of hardened cement
paste. Owing to the size limitations and high porosity of the
space-returned hydrated C3S samples2, conventional experimental
characterization techniques are not viable. Therefore, numerical
modeling is currently the only way to evaluate mechanical
properties and perform structure-property predictions of such a
highly porous material. To estimate the mechanical and transport
properties of cementitious systems using a numerical code, 3D
representations that accurately capture the microstructure mor-
phology are necessary. An obvious way is to use Microtomo-
graphy (micro-CT), noticing its limitations – (1) it becomes costly
when trying to evaluate statistical data of every sample, and (2)

due to size limitation or poor material contrast, some samples
cannot be measured. Note that 2D imaging is commonly used in
cement and concrete science, but that does not allow for
adequate representation of 3D features. A cost-effective method
is to use microstructure reconstruction techniques that computa-
tionally generate statistically equivalent microstructure of a target
2D exemplar.
In this study, to obtain comparative mechanical properties, sub-

volumes of C3S samples hydrated in both microgravity (μg) and
earth (1g) were generated using a deep learning-based texture
synthesis architecture. The reconstructed volumes containing
microstructural features may be directly employed as Representa-
tive Volume Elements (RVEs) in numerical codes. There is a high
discrepancy in the observed microstructural morphology in 1g
and μg samples2. The deep learning-based reconstruction
approach provides an efficient way to create a fairly large
ensemble of microstructures to generate design allowables. The
high-resolution 2D images obtained using SEM stored in the NASA
PSI database were employed for 2D to 3D reconstruction.
In the domain of computational materials science, aptly

representing microstructure is integral for the exploration of
physical and mechanical properties of materials. Due to the high
cost and effort involved in 3D material characterization, advanced
reconstruction methodologies are preferred to generate statisti-
cally equivalent 3D volumes from high-fidelity 2D scans. The crux
of microstructure reconstruction methodologies involves repre-
senting the material internal structure via statistical descriptors, as
opposed to a deterministic description achieved in conventional
3D scans. To reliably establish process-microstructure-property
linkage, it is vital to characterize material properties using a fairly
large virtual dataset. Hence, the ensemble of microstructures that
gives a comprehensive statistical representation of the material is
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preferred to predict homogenized macroscale properties10. In the
literature, there exist several microstructure reconstruction meth-
odologies, which may be broadly classified as statistical modeling-
based, visual features-based and AI-based11.
Typically, statistical representation of microstructure from a

given 2D exemplar is achieved using statistical functions12–18 and
physical descriptors19–24. The former employs a stochastic
optimization strategy such that the chosen statistical features
(such as probability, lineal-path and cluster functions25) of the
exemplar closely match the reconstructed 3D microstructure. In
the latter approach, physical descriptors of the exemplar (e.g,
grain and pore size) are matched with that of the reconstructed
microstructural volume. With the advent of AI-based models in the
field of computer vision, several deep learning approaches based
on Convolutional Neural Networks (CNNs) are widely becoming
popular as they are well-suited to handle image data26–29.
In the context of microstructure reconstruction, deep learning

approaches may be classified as11: material-system-dependent
and material-system-independent. Notable works on the material-
system-dependent deep learning approaches include the ones by
Cang et al.30 and Li et al.31. These methods train the weights of the
employed network with images specific to a particular material
and needs to be retrained for a new material. On the other hand,
transfer learning approaches are material-system-independent
and circumvents the need for training weights with a set of
materials data. Such deep learning models employ pre-trained
weights using benchmarked datasets from the field of computer
vision. A few notable works based on transfer learning approaches
include the ones by Lubbers et al.28, Li et al.11, and Bostanabad26.
These models adopted the deep learning architecture, VGG-1932,
trained on ImageNet database33, and used the activations of its
network layers to generate reconstructions for a given target
microstructure. Note that such models still may require hyper-
parameter tuning to get the most optimal results for a given
material system.
By characterizing the exemplar as a Markov Random Field

(MRF), reconstruction methods based on texture synthesis34–38 are
widely becoming popular over the optimization-based
approaches. By defining the 2D exemplar as a Markovian field,
Lubbers et al.28 utilized activations of deep convolutional layers
developed by Gatys et al.39 to synthesize microstructures with
same texture representation. However, note that statistical
equivalency cannot be achieved in microstructure reconstruction
by visual similarity alone. The texture synthesis method is efficient
as it achieves reconstruction in a single pass, in contrast to global
and iterative procedures used in the traditional optimization
approach35. In addition, this approach preserves the material
descriptors (e.g., grain shape), and enables extending material
modeling to anisotropic materials and can synthesize 3D
microstructure from 2D cross-sections.
Recently, the deep learning-based reconstruction technique, a

subset of machine learning-based approach has also received
wide attention from the materials community11,26,27,30. In the field
of computer vision and graphics, Solid Texture Synthesis (STS)
methods40,41 are widely utilized to generate solid textures across a
set of slicing directions for a given 2D exemplar42–45. The STS
methods have been successfully applied to model 3D micro-
structure of various natural materials10,35,46,47, especially porous
media48,49. For a given set of coordinates in the 3D space, using
the STS method, a texture is added to a 3D surface by directly
evaluating a colormap function. For instance, Kopf et al.43

synthesized 3D texture solids from 2D exemplars using a non-
parametric texture optimization approach coupled with histogram
matching. These STS methods are fully automated and are able to
generate a broad set of textures. In short, the method addressed
the ill-posed nature of the problem by assuming that the
exemplar is a stationary texture and has spatial locality property.
More recently, Gutierrez and co-workers50 proposed another

framework of STS which adopts a compact solid texture generator
model that takes a multi-scale noise input and produces a 3D solid
texture based on a perceptual slice-based loss function. To
characterize the synthesized textures and optimize the loss
function, the activations in the hidden layers of pre-trained deep
CNN, VGG-1932 was used. This proposed deep learning-based
approach is computationally efficient and can be directly
employed for synthesizing 3D cement microstructure from a
high-resolution 2D exemplar51,52.
The goals of this work are 1) to develop an AI-assisted

framework to quantitatively characterize the 3D microstructures
of space-returned cement samples using statistical functions, and
2) to effectively reconstruct the 3D models based on 2D exemplars
through sensitivity study, aimed at samples with high porosity
( > 45 %) and of anisotropic-shaped phases. The space-originated
samples, including C3S cement samples studied in this work, are
expected to have higher porosity and unique phase growth due to
the effect of microgravity. Two impacts are expected from this
work: 1) quantitative information about 3D microstructure
information can be obtained even when only 2D images are
available about samples that are limited in size and quantity, and
2) the validated reconstructed 3D models can be useful for
process-structure-relationship study, to be compared with results
from hydration process modeling and to be used as an input for
micromechanics-based modeling. The generative framework
applied to volumetric texture synthesis in the field of computer
vision50 was used here to generate high-quality virtual volumes of
cement samples hydrated in space and ground. This unique
reconstruction methodology aided us in creation of statistical
ensemble of microstructures, and facilitated description of the
average 3D microstructure characteristics and their distribution in
the space-returned samples. We validated the reconstructed
volumes using statistical descriptors and further compared them
against micro-CT virtual data. Subsequently, this led to compar-
ison against the microstructural morphology of ground-based
samples. The framework outlined here, that involves the genera-
tion of statistically equivalent virtual volumes and their subse-
quent validation, can be applied to advance materials research
studies in space.

METHODS
Process parameters - C3S hydration in microgravity
and ground
The mixture comprised C3S mixed with lime-water at a water-to-
cement (w/c) ratio of 2.0 by mass (5g of C3S and 10g of lime-
water). Lime-water was used instead of pure water to circumvent
the unrealistic rapid initial reaction at such high w/c. The
experiments were conducted using commercially available plastic
bags onboard the ISS as well on the ground. The plastic bags allow
the water and cement to remain separated until the desired
mixing time. Both space and ground samples were mixed at same
condition: temperature 20 ± 2 °C, 1 ATM pressure and 35% relative
humidity. The hydrating C3S paste was manually mixed until
homogeneity is achieved. Both ground and space processed
samples were allowed to remain in the sealed bag for the entire
duration of hydration undisturbed held at controlled temperature
20 ± 2 °C. The space samples were allowed to hydrate aboard the
ISS for 42 days prior to returning to Earth which allowed for a
significant degree of hydration. Note, the only process variable
between the space and ground is gravity. For more details on
experimental setup and procedure refer to2.

Microscope observations
Space samples returned to ground were immediately retrieved to
conduct analysis and for subsequent comparison with the ground-
based samples. Polished samples were prepared at day 152 after
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initial hydration, and Backscattered Electron (BSE) micrographs of
fracture surfaces were obtained using FEI Q250 at 500x
magnification2. In total, 20 images of space samples and 30
images of the ground samples were examined and stored in the
NASA PSI database. The resolution of the BSE images [~1536 x
1024 pixels] was 0.54 μm. Exemplars for 3D reconstruction were
then chosen from the NASA PSI database. Image analysis was
carried out to discern the C3S hydration products - calcium silicate
hydrate (C-S-H), portlandite (CH), and porosity in both space-
returned and ground-based samples (C-S-H and CH; cement
chemistry notation C = CaO, S = SiO2, and H = H2O followed
throughout this paper).

Micro-CT imaging and analysis
Micro-CT images were acquired using a Zeiss Xradia 620 Versa X-ray
Microscope at the Penn State Center for Quantitative Imaging. For
1g and and μg samples, a specimen size ~10 x 6 x 6 mm was
extracted and fixed atop a specimen mount (Supplementary Fig. 1).
For details on scan setup and parameters, see Supplementary Note
1 and Supplementary Table 1. The threshold bound to discern each
phase was determined from the porosity, CH and C-S-H estimates
resulting from the image analysis of BSE micrographs presented in
Table 1. The phase-discerned 3D virtual samples (Supplementary
Fig. 2) were then evaluated using the low-order probability
distribution functions (see Supplementary Note 2).

Deep learning-based microstructure reconstruction
The details of the deep learning-based 3D reconstruction frame-
work as originally described by Gutierrez et al.50 is briefly
presented here. Figure 1 shows the training framework of the
proposed generator network that produces a solid texture from a

multi-scale 3D noise input, following the solid texture synthesis
model50. This CNN-based model generates high-quality 3D virtual
volumes that are statistically equivalent to the target exemplar(s).
The training framework is illustrated on the 1g sample in Fig. 1, in
which a convolutional neural generative network, G, is trained to
synthesize solid microstructure texture, v ¼ GðZjθÞ, from a multi-
channel 3D white noise inputs, Z= {z0, . . . , zK}. The CNN-based
compact solid texture generator through multi-scale architecture
of convolution, concatenation and upsampling operations trans-
form the white noise, Z, into a solid texture, v. It starts at the
coarsest scale, wherein, the volumetric noise sample is processed
with a set of convolutions, followed by an upsampling operation
to reach the next scale. This is then concatenated with an
independent noise sample from the next scale that is also
processed with a set of convolutions. This proposed fully
convoluted neural generator network allows for synthesizing
rectangular volume textures of any arbitrary size driven by the size
of the input. For more details about these blocks of operation
used in the generator network following a multi-scale architecture,
see50. The learnable generator parameters, θ, to produce the solid
color texture, v ¼ GðZjθÞ, are the weight, bias, mean and variance
of the batch normalization layers in channel concatenation
operation, and kernels and bias of the convolution block.
The generated volumes, v, are then compared to the given

exemplar(s) {u1, . . . , uD} corresponding to the desired view along
D 2 1; 2; 3f g directions among the three-dimensional Cartesian
coordinates. By optimizing the parameters, θ, the generator
reproduces solid textures using the features extracted from the 2D
exemplar. This is achieved by a 3D slice-based loss function, by
comparing the feature map, F, of the 2D slices vd,n (nth slice along
dth direction) to that of the exemplar, ud. In a classical CNN-based
optimization approach, batches of virtual volumes need to be
synthesized during training which a priori requires a prohibitive
amount of memory. To cope with such memory limitations and
computational complexity inherent to high resolution exemplars
(for instance, pixel resolution of BSE micrograph utilized as
exemplar in Fig. 1 is 0.54 μm), only comparisons between 2D
slices, vd,n, of the synthetic solid and exemplar, ud, are performed
during training. Here, the feature maps of both target image and
2D slices of the generated solid microstructure are extracted using
the pre-trained deep CNN descriptor (D) network, VGG-1932. The
feature maps, Fl, are intermediate outputs in a pre-trained deep
CNN. When the descriptor, D, is evaluated on an image, it results

in feature maps, D :2 RN1 ´N2 ´ 3 7!fFlðxÞ 2 RNl ´Mlgl2L, where L is

Table 1. Summary of individual phase composition (%) of hydration
products and porosity per image analysis (±SD) of 1g and μg samples.

Ground (1g) Microgravity (μg)

Porosity 47.0 ± 14.2 70.3 ± 1.4

Porosity - MIP [2] 48.4 69.4

C-S-H 41.6 ± 12.0 21.2 ± 1.2

CH 11.3 ± 2.8 8.5 ± 1.4

Fig. 1 Deep learning-based 3D microstructure reconstruction of a target BSE image illustrated on 1g sample, where the CNN generator,
GðZjθÞ, synthesizes the microstructural volume, v, from a 3D multiscale noise input, Z. 2D slices of the generated microstructure volumes,
vd,n, are compared to the exemplar, ud, corresponding to desired view along the direction, D 2 1; 2; 3f g with the aid of perceptual slice-based
loss function, L, defined in Equation (1). Descriptor network, D, based on pre-trained deep CNN, namely, VGG-19 is utilized here. Figure
adapted with permission from50, John Wiley & Sons.
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the VGG-19 layers considered, with each layer, l, comprising Nl

spatial values and Ml channels. Gram matrix, Gl
i;k ¼ P

kF
l
i;kF

l
j;k , aids

in understanding how similar the feature map, Fli;k is to its

transpose, Flj;k ; where l= number of layers, k= number of

channels. The dot product (Gl
i;k) gets larger when the feature

vectors get more similar. Thus, the Gram matrix, G, characterizes
how well correlated are the textures using the feature maps
represented as VGG statistical features of the microstructure. A
Gram matrix-based loss function is then defined, which is a
measure of the difference in textures of the target image and the
2D slices of the reconstructed microstructure. On training, the
parameters of the generator, θ, are optimized by minimizing the
loss function between the exemplar, ud, and 2D slices, vd,n,
extracted from the synthesized volume50:

Loss ¼
X

l2L
Gl Flðvd;nÞ
� �� Gl FlðudÞ

� ��
�

�
�f
2 (1)

where �k kf is the Frobenius norm, vd,n denotes the slices of the
generated 3D microstructure, and ud is the BSE exemplar. The loss
function (Eq. (1)) is evaluated on 2D slices extracted from the
synthesized microstructure (Fig. 1), leading to a memory efficient
training. In the reconstructed 3D microstructure, v 2 Rt ´ h ´w ´ 3 (4D
tensor of size - thickness, height, width and three-channel, i.e., RGB),
vnD is given as the nth 2D slice of the generated solid orthogonal to
the dth direction. This efficient single-slice based training enables
utilization of high resolution 2D micrographs as exemplars. The
current reconstruction framework can also be easily adapted to input
grayscale images (single-channel) without any significant modifica-
tion52, and was thus utilized with μg and 1g BSE micrographs. The
parameters were optimized using the Adam algorithm53 with an
initial learning rate 0.1 over 3000 iterations. For all reconstructions, a
multi-step learning rate scheduler was employed which decayed the
learning rate by a factor 10 at epochs 300, 1000 and 2000.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS AND DISCUSSION
Image analysis of 2D exemplars
The first objective was to discern the C3S hydration products -
calcium silicate hydrate (C-S-H), portlandite (CH), and porosity in
both space-returned and ground-based samples. The raw BSE
images stored in the NASA PSI database were used. To identify the
bounds between the various phases, a greyscale histogram-based
image segmentation utilizing the overflow method54 coupled with
the local minima was employed. The overflow method has been
proven to identify the histogram bound between phases that
have a large difference between their atomic numbers, for
instance, porosity and C-S-H matrix. The boundary between C-S-
H and CH, may then be identified from a local minimum value. In
addition, prior to the segmentation, the BSE images were
subjected to histogram enhancement (with 0.3% saturated pixels)
followed by Sigma filter55 (σ = 2.0). For image analysis in
cementitious systems, the Sigma filter has been widely employed,
especially to identify the Interfacial Transition Zone (ITZ) between
the cement paste and aggregates in concrete56. The workflow of
greyscale histogram-based BSE image segmentation followed by
phase identification is provided in Supplementary Fig. 4.
The phase-segmented BSE images were then used to compute

area fraction of each phase. The porosity content in the samples
were evaluated using Mercury Intrusion Porosimetry (MIP)2. The
area fraction of porosity (averaged across all BSE images) in both
1g and μg samples were found to be in good agreement with the
results obtained from MIP (Table 1). It should be noted that the
porosity presented here is the total porosity, the value measured
after mercury infiltrated throughout the sample. MIP exhibits its
limitation with identifying pore size distribution, however, this
total porosity measurement is useful for comparative study in our
work. The identified greyscale bounds were used to visualize
various phases in the samples and are presented in Fig. 2. Both CH
and C-S-H phase fractions have not been evaluated in the past,
and were obtained here for both 1g and μg samples, see Table 1.
In addition to the high porosity in μg samples (70%; as opposed

to 47% in 1g samples), a stark difference in size, shape and
distribution of the portlandite phase was also observed (Fig. 2). In

Fig. 2 Raw BSE micrographs modified by histogram enhancement followed by sigma-filter (left column). Greyscale histogram-based
thresholding utilizing the overflow method was employed to identify the porosity bounds (middle column). Phase assigned BSE images of
hydrated C3S 1g and μg samples (right column) [size: ~1536 x 1024 pixels, magnification: 500x].
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the case of 1g samples, the CH crystals are uniformly distributed in
the C-S-H matrix. Whereas, in μg samples, due to the lack of
directional force they assumed an elongated plate-like morphol-
ogy. The spatial pore size distribution directly affects the physical
and mechanical properties of the hydrated cement samples.
Therefore, from the perspective of exploring process-structure-
property relationship, it is meaningful to have a statistical
representation of the microstructure as opposed to a deterministic
one, obtained by interrogating a certain instantiation of small
subvolumes.

Qualitative assessment of microstructure reconstruction
The primary objective of this analysis was to compare the visual
characteristics of the reconstructed microstructures with the
chosen 2D exemplars. The reconstructed 3D microstructures of
both 1g and μg hydrated samples, and the respective BSE
exemplar are provided in Fig. 3. An initial exemplar size 512 x 512
pixels (276.5 x 276.5 μm2) was chosen randomly from an original

micrograph of size 1536 x 1024 pixels. The orthogonal sections
show that the microstructural topology of the exemplars are very
well captured in both reconstructed 1g and μg samples. In
particular, the elongated plate-like characteristics of the CH crystal
is visible in the orthogonal slices (see Fig. 3). The deep learning-
based model employed here extracts the microstructural features
using a fixed descriptor network, VGG-1932, and synthesizes a
volume that is statistically equivalent to the target image. In the
case of μg samples, the challenge is to reproduce the rather
elongated plate-like morphology of the portlandite phase, as well
as the spatial distribution of porosity. The value of the loss
function during training of 1g and μg samples is provided in Fig. 4.
Convergence occurred after 1500 iterations for both samples for
an exemplar size of 512 x 512 pixels.
Furthermore, micro-CT virtual samples were also compared

against the reconstructed microstructures of both 1g and μg
samples. Visual comparison with phase-segmented volumes
(portlandite and porosity) following the greyscale histogram-
based segmentation is provided in Fig. 5. Micro-CT sub-volume
was extracted to compare against the reconstructed 3D volumes
using 512 x 512 pixels exemplars (resolution 0.54 μm). The distinct
plate-like morphology of the μg sample was visible in both the
reconstructed and micro-CT virtual sample (Fig. 5). In the case of
1g sample, the portlandite phase is uniformly distributed, and was
well captured in the reconstructed volume. The micro-CT virtual
images further corroborated this observation. The synthesized 3D
volumes of both samples showed similar microstructural char-
acteristics to that of the 2D target images, as well as micro-CT
virtual data, showcasing that the methodology can generate
realistic ensemble of 3D microstructures.

Microstructure reconstruction validation using statistical
descriptors
The hydrated cement paste (both 1g and μg samples) contain
random pore distribution, e.g., see the segmented porosity phase
of 1g sample in Fig. 5. Moreover, the CH and C-S-H phases also
follow clustering and connectivity such that one of the
characterization approaches is probabilistic representation.
Among such class of methods, the low-order probability distribu-
tion functions - two-point correlation function, S2(r), lineal-path

Fig. 3 Qualitative comparison of reconstructed 3D microstructure and their respective orthogonal views along with the 2D exemplars for
both 1g and μg samples. Chosen BSE exemplar size: 512 x 512 pixels (resolution 0.54 μm, edge-length 276.5 μm).

Fig. 4 Loss function plotted against number of iterations for 1g
and μg samples. BSE exemplar size - 512 x 512 pixels, resolution 0.54
μm.
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function, L2(r), and two-point cluster function, C2(r) have been
found to be effective14,25. In this work, these low-order probability
functions have been adopted as quantitative evaluation metrics to
compare the statistical equivalence of microstructure reconstruc-
tion to that of the micro-CT virtual sample (ground truth). These
functions were used for statistical and quantitative description of a
particular phase under consideration (see Supplementary Note 2
for details). Note, owing to the uncertainty surrounding the
randomness of individual phase distribution, the mechanical
properties (stiffness and strength) can exhibit fluctuations among
the reconstructed microstructural volumes. The two-point correla-
tion function, S2(r), describes short-range phase connectivity,
whilst the two-point cluster function, C2(r), aids in describing
specific characteristics of the spatial distribution and continuity of
clustering, such as percolation of a particular phase. The lineal-
path function, L2(r), characterizes long-range phase connectivity.
Furthermore, these low-order statistical functions were employed
to characterize voids in concrete and correlate them to both
mechanical and physical properties, such as hydraulic conductiv-
ity57,58. Here, the spatial distribution of portlandite and porosity
content within the synthesized 3D volume is compared against
micro-CT virtual samples using the statistical descriptors as a
means of quantitative validation. Moreover, these low-order
functions also serve as indicators for the applicability of the
chosen volume to serve as a RVE52.
Characterizing the spatial distribution of portlandite clusters in

both 1g and μg samples is vital, as the connectivity and
distribution of the portlandite phase strongly governs the
mechanical and transport properties in hydrated cement pastes.
Hence, the statistical descriptors can be used to fully describe the
morphology of the portlandite phase as well as porosity by
extracting them from both reconstructed and micro-CT sub-
volumes (Fig. 5). Figure 6 presents the low-order probability
functions - S2(r), C2(r), and L2(r) with mean fit evaluated against the
portlandite phase for both 1g and μg samples. The functions were
evaluated on 2D slices of three orthogonal cut plane sweeps for
both micro-CT and reconstructed sub-volumes. The distance
between two points, r of a test vector is normalized with the
edge length of the considered volume. For all volumes, probability
functions are obtained in X, Y, and Z direction.
A high S2(r) indicates that more phase clusters exist in that

specific direction16,17. In the reconstructed 1g volume, the CH
phase is clustered along X and Y directions between normalized
path length 0.1 and 0.2 (Fig. 6b). On the other hand, micro-CT
virtual sample exhibited only very little variation within the same
limits along all three directions. In addition, the reconstructed

volumes captured both phase connectivity and isotropy of the
portlandite phase in the case of 1g sample, represented by plots in
Fig. 6d and f, respectively. The S2(r) values of the reconstructed μg
sample volume showed minor perturbations between ~0.08 and
0.2 due to the difference in the initial slope (Fig. 6a). This indicates
that relatively more clustered portlandite content is present in the
micro-CT virtual sample compared to the reconstructed volume.
The two-point cluster function C2(r) provide information about

the connectivity and clusters of a particular phase and can be used
to study the spatial distribution of portlandite such as clustering
and connectivity in both micro-CT and reconstructed volumes. In
case of μg sample, it can be noted from the micro-CT virtual
sample that C2(r) is slightly higher in the Z direction, indicating
that portlandite clusters dispersed along the Z direction is larger
than the other directions (Fig. 6c). This is indicative of the
previously mentioned plate-like morphology of the CH phase in
the μg sample. In general, the reconstructed microstructural
volume presented here, captured the portlandite cluster disper-
sion observed in the μg sample. However, between 0.1 and 0.2
normalized path length, it is found that C2(r) varies slightly
between the reconstructed and micro-CT volumes. In addition, the
anisotropy of the portlandite distribution for both reconstructed
and micro-CT volumes can be noted in Fig. 6c. Plots in Fig. 6d and
d indicate that C2(r) converges to zero indicating discontinuous
portlandite cluster formation. This is also evident from the visual
inspection of both reconstructed and micro-CT volumes in Fig. 5.
L2(r) values for both reconstructed and micro-CT volumes along

X, Y and Z directions are same, indicating isotropic phase
connectivity of the portlandite (Fig. 6e). The deep learning-
based methodology successfully captured the portlandite con-
nectivity in the 1g sample as noted in Fig. 6f. The L2(r) values for
both reconstructed and micro-CT volumes are identical in this
case. It can also be noted that L2(r) is zero when normalized path
length is over ~ 0.2 for both samples, indicating that no
portlandite clusters pass parallel to X, Y, and Z directions.
The mean fit of probability functions for the porosity content is

provided for both 1g and μg samples (Fig. 7). Unlike the
portlandite phase, porosity connectivity is not restricted to any
specific direction (for instance, see Fig. 5). Minor variation in
inflection point ( ~ at 0.15) of the S2(r) values was observed
between the micro-CT and reconstructed volumes for 1g sample
[Fig. 7b]. The two-point cluster function, C2(r) is used to represent
the spatial distribution of porosity such as clustering and
connectivity in both micro-CT and reconstructed volumes. It is
observed that L2(r) approaches zero when the normalized path
length is over 0.5 (Fig. 7e and f), as there are no porosity clusters

Fig. 5 Qualitative comparison of reconstructed 3D microstructure against micro-CT virtual volume for 1g and μg hydrated samples. The
portlandite phase and porosity for each sub-volume was extracted using greyscale histogram-based thresholding approach. A micro-CT
virtual sub-volume with edge length ~275 μm was extracted to perform further quantitative evaluation.
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that pass through the volumes parallel to all three directions.
However, as noted in Fig. 7c and d, C2(r) does not converge to zero
indicating that continuously connected porosity clusters do exist
in both samples that pass through the whole volume. This can also
be visually confirmed from the extracted porosity phase (Fig. 5).
Here, for both samples the spatial distribution of porosity in terms
of clustering and connectivity was well represented in the
reconstructed volume.
The quantitative analysis carried out on both portlandite and

porosity phases using the low-order statistical functions helped to
evaluate the volumes synthesized using the deep learning-based
approach. As noted from the plots in Figs. 6 and 7, the deep
learning-based model is able to aptly represent the 1g sample. In
case of μg sample, despite the minor perturbations, this approach
can be utilized to generate a statistical ensemble leading to a
probability analysis, rather than a deterministic one. Although the
synthesized microstructures differ from the measured virtual
samples visually, their variation using probability distribution
functions are minor. Furthermore, this also implies that the

statistical descriptors only capture lower-order statistical equiva-
lence here. Hence, high-order evaluation metrics, such as moment
invariants38 may be utilized and will be the subject of our future
work. It must be noted that the reconstruction methodology
currently employs the pre-trained network VGG-19. Ideally, in the
domain of 2D to 3D microstructure reconstruction involving
transfer learning approaches, a materials science-philic descriptor
network such as MicroNet59 is preferred. Study on the influence of
optimum descriptor network for microstructure reconstruction will
considered in our future work. Currently, there does not exist any
computational method to obtain micro-scale geometric model of
cement hydrated in space (except micro-CT scanning). Hence, the
presented methodology fills this gap by generating RVEs to
investigate process-structure-property linkage of such space-cured
material systems. Additionally, the presented methodology can
also be employed for the generation of microstructures of
hydrated cement paste (ground-based), and unlike the state-of-
the art, circumvents the need to know the parameters such as

Fig. 6 Quantitative evaluation of reconstructed topology of the portlandite phase using statistical descriptors: two-point correlation
function, S2(r). (a) μg sample, (b) 1g sample; two-point cluster function, C2(r) (c) μg sample, (d) 1g sample and lineal-path function, L2(r) (e) μg
sample, (f) 1g sample. Volume edge-length ~ 275 μm; 2D exemplars (512 x 512 pixels) from Fig. 3.
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mineral composition, water/cement ratio, cement fineness,
particle size distribution as a priori60–64.

Implications of exemplar size & resolution on 3D
reconstruction
The objective of this analysis was to understand the field of view
and resolution of the 2D exemplar, and their influence on 3D
microstructure reconstruction using the proposed deep learning-
based methodology. For accurate representation of various
hydration phases in the reconstructed volumes, especially in case
of μg samples, wherein, elongated plate-like portlandite phase
occurs, selection of 2D exemplar is vital. The field of view of the 2D
exemplar must be such that the ~100− 115 μm long portlandite
phase is aptly captured. Hence, with a spatial resolution of 0.54
μm, at least ~200 x 200 pixels are required to amply capture the
portlandite phase in the μg sample. During training, the extracted
feature maps of the 2D exemplar is compared against a perceptual
loss function. Thus, the exemplar that is inputted in the solid

texture synthesis framework (Fig. 1) governs the characteristics of
the synthesized microstructure. The statistical features of the
exemplar represented as feature map is acquired by the
descriptor. Hence, the chosen exemplar must contain relevant
phases for efficient microstructural reconstruction. Therefore, a
few guidelines in relation to the selection of exemplar for training
pertaining to the μg sample is provided here based on a sensitivity
study (see Supplementary Discussion for details).
To minimize utilization of computational resources and thus

reduce training time, high fidelity smaller exemplar size is
preferred (Supplementary Fig. 5). Training a network utilizing an
exemplar of size 512 x 512 pixels and VGG-19 would require more
than 12 GB memory50,52. As GPU memory is a limiting factor
during the training process, it was decided to choose ROI of size
2562 and 5122 pixels as exemplars. The microstructural topology
represented in each ROI differs (Supplementary Fig. 6).
Based on common design guidelines, the recommended RVE

size for mechanical characterization must be at least 5 – 10x that

Fig. 7 Quantitative evaluation of porosity content using statistical descriptors: two-point correlation function, S2(r). (a) μg sample, (b) 1g
sample; two-point cluster function, C2(r) (c) μg sample, (d) 1g sample and lineal-path function, L2(r) (e) μg sample, (f) 1g sample. Volume edge-
length ~ 275 μm; 2D exemplars (512 x 512 pixels) from Fig. 3.
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of the characteristic heterogeneity size of the phase. For hydrated
cement paste, typically RVE size in the range 150 – 200 μm is
recommended65,66. To highlight the effect of exemplar size on
reconstruction of 3D microstructures of both samples, statistical
descriptors were utilized to aid the sensitivity study (Supplemen-
tary Fig. 7). The portlandite phase in 1g sample is uniformly
distributed in the matrix (Fig. 2). Owing to the high resolution of
BSE micrographs (0.54 μm / pixel) here, an exemplar of size 256 x
256 pixels (138.2 x 138.2 μm2) is sufficient for 1g sample. For the
given resolution, a 512 x 512 pixels (276.5 x 276.5 μm2) exemplar
size is recommended for the μg sample.
An advantage of the deep learning-based model presented here

or any similar model, is that the synthesized volume is not
constrained to size of the 2D exemplar. In the absence of a high
resolution or input image that is limited by size, the presented
methodology can be used to generate microstructural volumes
that are larger than that of the exemplar. This also paves the way in
synthesizing not just 3D micro-scale models of hydrated cement
paste as demonstrated here, but also 3D macroscopic mortar and
concrete models augmenting to the current state-of-the art67–69.
A prime challenge of texture synthesis algorithms (or in general,

for any reconstruction algorithm), is to provide a solution to the
resolution vs. field of view dilemma. Here, the selection of
exemplar window size and how it influences the reconstructed
virtual volumes was demonstrated. Hence, in the absence of
guidelines, a judicious selection of exemplar window with ample
spatial resolution is recommended, especially when the recon-
structed volumes are used to predict specific properties. This will
circumvent simulations having spurious effects introduced by the
artefacts in the reconstructed virtual volumes. Although, the
current deep learning-based generative framework exhibits
computational efficiency, one notable caveat concerning the
reconstruction is when utilizing small exemplars. This is attributed
to the descriptor network that are usually pre-trained using larger
images (for instance, VGG-19 is trained on ImageNet dataset33). In
addition, the most salient checker-board effects that are typical to
generative texture-based stochastic reconstruction exists here too.
One way to remove this artifact is by adding a weighted term to
the loss function (Equation (1)). This weight combination will then
need to be determined via a trial and error approach27. Moreover,
influence of pre-trained descriptor networks, in particular, non-
VGG architectures on microstructure reconstruction is also
undetermined and is beyond the scope of current work.
In the field of materials science, data-driven modeling relying on

2D to 3D reconstruction has become a norm over the past few
years to predict mechanical and/or physical properties. Here, a
deep learning-based microstructure reconstruction approach was
employed to investigate the microstructural characteristics of
highly porous cement samples cured in a microgravity environ-
ment. The unique cement samples hydrated in space were limited
by sample size and exhibited distinct microstructure morphology
owing to the lack of gravity. Both qualitative and quantitative
assessments indicated that the synthesized 3D microstructures are
stable in comparison to micro-CT virtual data. In particular,
reconstructed volumes successfully captured randomly oriented
elongated plate-like morphology of the portlandite phase con-
tained in space-cured samples. Moreover, the reconstructed
volumes exhibited similar probabilistic distribution and were able
to capture microstructural differences inherent to both space and
ground. Random distribution of hydrated portlandite and porosity
phases contained within a cement paste hydrated in space were
characterized using low-order probability distribution functions.
Through experimentation, the required minimum edge length of
reconstructed virtual volumes to account for unique plate-like
morphology (for a given exemplar resolution) of portlandite phase
has been introduced. The reconstructed volumes presented here
can be directly utilized as RVEs in advance micromechanical-based
numerical codes for mechanical characterization. In addition, the

presented work is computationally efficient, material-system
independent, and can be easily extended to other multiphase
materials and soil samples with sparse experimental data. Hence,
the methodology presented here paves the way in creation of an
ensemble of microstructures that are inherently statistical in nature
(as opposed to fully deterministic) such as the space-hydrated
cement, provided there is enough resolution in the exemplar to
represent the various hydration phases. Thus, by generating
statistical equivalent RVEs, probabilistic estimation of mechanical
properties can be obtained using sparse experimental data and
may be utilized as a standardized tool for upcoming materials
research studies in space. In future, focus will be laid on
incorporating higher-order evaluation metrics as well as validation
of other material systems, such as typical heterogeneous materials.
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