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Histone deacetylase HDA-4-mediated epigenetic regulation in
space-flown C. elegans
Atsushi Higashitani 1,5✉, Toko Hashizume2,5, Mai Takiura1, Nahoko Higashitani1, Mika Teranishi1, Rika Oshima2, Sachiko Yano3,
Kana Kuriyama4 and Akira Higashibata 3✉

Epigenetic changes during long-term spaceflight are beginning to be studied by NASA’s twin astronauts and other model
organisms. Here, we evaluate the epigenetic regulation of gene expression in space-flown C. elegans by comparing wild type and
histone deacetylase (hda)-4 mutants. Expression levels of 39 genes were consistently upregulated in all four generations of adult
hda-4 mutants grown under microgravity compared with artificial Earth-like gravity (1G). In contrast, in the wild type, microgravity-
induced upregulation of these genes occurred a little. Among these genes, 11 contain the domain of unknown function 19 (DUF-
19) and are located in a cluster on chromosome V. When compared with the 1G condition, histone H3 trimethylation at lysine 27
(H3K27me3) increased under microgravity in the DUF-19 containing genes T20D4.12 to 4.10 locus in wild-type adults. On the other
hand, this increase was also observed in the hda-4 mutant, but the level was significantly reduced. The body length of wild-type
adults decreased slightly but significantly when grown under microgravity. This decrease was even more pronounced with the hda-
4 mutant. In ground-based experiments, one of the T20D4.11 overexpressing strains significantly reduced body length and also
caused larval growth retardation and arrest. These results indicate that under microgravity, C. elegans activates histone deacetylase
HDA-4 to suppress overregulation of several genes, including the DUF-19 family. In other words, the expression of certain genes,
including negative regulators of growth and development, is epigenetically fine-tuned to adapt to the space microgravity.
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INTRODUCTION
Environmental factors can influence not only genome instability
but also epigenetic mechanisms, such as DNA methylation and
histone modifications, leading to altered gene expression, certain
diseases, and aging1–5. Microgravity-induced transcriptional altera-
tions have been observed in several spaceflight experiments,
suggesting that epigenetic changes might occur in the space
environment6–8. However, research on epigenetic regulation of
plants and metazoans in the space environment has only just
begun to be reported9,10.
Recent multi-omics analyses from more than 50 astronauts and

hundreds of spaceflight samples show that mitochondrial
dysregulation is a consistent and central hub of the biological
effects of spaceflight11. In 2009, our C. elegans RNA Interference
Space Experiment (CERISE) was conducted to evaluate RNAi
activity and physiological changes during development from L1
larvae to adult under microgravity or 1G conditions12. Both
transcriptome and proteome analyses showed that the expression
of muscle proteins, cytoskeletal elements, and mitochondrial
metabolic enzymes were decreased by microgravity12. Intrigu-
ingly, mitochondrial perturbations have been reported to activate
epigenetic modifying enzymes such as histone H3K27 histone
demethylases JMJD-3.1 and JMHJD-1.2 in C. elegans13. In addition,
mammalian obesity and diabetic subjects have been reported to
alter DNA methylation levels of several gene promoters, PGC1α
and Tfam (the regulators of mitochondrial biogenesis)14,15. One of
the intriguing results from the NASA Twin study shows that certain
epigenetic changes in DNA methylation of immune and oxidative
stress-related pathways occurred during the astronaut’s second
6-month mission10.

DNA methylation at the fifth position of cytosine (5mC) plays an
important role as an epigenetic mark in mammals, but it is
thought to be at low levels or absent in the fruit fly Drosophila
melanogaster and the nematode Caenorhabditis elegans16,17. In
contrast, histone modifications are widely conserved in eukar-
yotes, including yeasts, plants, and metazoans18–22. Histone
modifications can be associated with transcriptional activation or
repression through chromatin structural dynamics. For instance,
acetylation and trimethylation of histone H3 at lysine 27 (H3K27ac
and H3K27me3) regulate transcriptional activation and repression,
respectively23,24. The level of the H3K27me3 modification is
controlled by cooperation with histone deacetylases (HDACs)
and methyltransferases (HMT)25,26. In particular, class IIa HDACs 4
and 5 in rat skeletal muscles are activated by hindlimb suspension,
and it leads to decreased expression of myosin heavy chain and
increased expression of MuRF-1 and MAFbox E3-ligases, which are
involved in rat muscular atrophy27,28.
Here we conducted spaceflight experiments in the International

Space Station (ISS): we grew and analyzed four consecutive
generations of synchronous culture of wild-type and histone
deacetylase (hda)-4 mutant C. elegans. In wild-type C. elegans,
HDA-4 is expressed in the body-wall muscles and several neurons,
including motor neurons and other somatic nervous systems; it is
an ortholog of mammalian HDAC4 and 529–32. In our previous
spaceflight experiment, CERISE, the expression of hda-4 in wild
type was slightly but significantly increased under microgravity
(1.49 times that observed under the artificial 1G)12. However, this
CERISE space experiment investigated the effect of microgravity
on gene and protein expression only in the first generation, which
grows from L1 larvae to adults. It was unclear whether HDA-4
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dependent epigenetic changes in response to the microgravity
environment would occur not only in the first generation but also
across generations. Here, we compared the wild-type and the hda-
4 (ok518) mutant transcriptomes over four generations in two test
environments under microgravity and artificial 1G conditions. Our
results clarified the existence of HDAC-mediated epigenetic
regulation in C. elegans that is reproducible in all generations
under microgravity conditions.

RESULTS
Changes in gene expression between wild type and hda-4
mutant under microgravity conditions
Here, we succeeded in synchronously culturing four consecutive
generations of C. elegans in space microgravity by using a filtration
system (Fig. 1). A 10-μm mesh filter sufficiently separated the
parental adults and their progenies, and only progenies could be
transferred to the new culture bag. The last culture bag contained
adults (4th generation) and their progenies (5th generation larvae)
(Supplementary Fig. 1).
DNA microarray analyses were performed to determine the

gene expression profiles of wild-type and hda-4 (ok518) deletion
mutant specimens of adult hermaphrodite C. elegans synchro-
nously cultured for four generations under microgravity and
artificial 1G conditions (Fig. 1). Under microgravity, 39 genes were
consistently upregulated (fold-change >2.5; P < 0.05, Student’s t
test) in all four generations of the hda-4 mutant compared with
the equivalent generations of wild type (Fig. 2a). In the mutant,
these genes were also consistently upregulated in most (>2/4)
generations under microgravity compared with artificial 1G (Fig.
2b). These 39 genes were located across all autosomal and sex
chromosomes, and some were adjacent cluster genes. This
suggests that the expression of these genes was epigenetically
suppressed at the adjacent chromosomal level by the action of
HDA-4 in response to microgravity. Many of these genes have
unknown functions but some share the same domain: e.g., a
cluster of 11 genes with the DUF-19 (domain of unknown function
19) on chromosome V (Fig. 2).

To confirm the expression changes, the transcript levels of 6 of
the DUF-19–containing genes, T28A11.19, T28A11.2, C17B7.4,
T20D4.11, T20D4.10, and C03G6.5, were examined by real-time
reverse transcription polymerase chain reaction (RT-PCR) using
two independent space experiment samples. Consistent with the
microarray data (Fig. 2), all showed significantly higher expression
in the hda-4 (ok518) mutant than in the wild type under
microgravity, and significantly higher expression in the hda-4
(ok518) mutant under microgravity than in the mutant under
artificial 1G (Fig. 3). Intriguingly, under microgravity conditions,
some of the genes in wild-type (C17B7.4, T28A11.2) were slightly
but significantly upregulated under microgravity compared with
artificial 1G (Fig. 3).

Histone H3K27 trimethylation changes in response to
microgravity
To study changes in H3K27me3 in adult C. elegans grown under
microgravity, chromatin immunoprecipitation (ChIP)—genomic
PCR with anti-H3K27me3 antibody was applied to the intergenic
regions of the T20D4.12 to 4.10 gene locus; two regions, #01 and
#02, were studied (Fig. 4a). Specimens analyzed were all 3rd-
generation L1 larvae or adults. In wild-type adults, H3K27me3
levels in both regions were significantly higher under microgravity
than under artificial 1G (Fig. 4b). In the hda-4 mutant, the basal
level of H3K27me3 under artificial 1G was lower than that in wild
type, and the degree of H3K27me3 induction by microgravity was
severely reduced (Fig. 4b). In L1 larvae, H3K27me3 levels in the
hda-4 mutant were higher than in the adult stage, and were
slightly but significantly higher than in the wild type under both
microgravity and artificial 1G (Fig. 4b). These results suggest that
the sites examined in the locus of T20D4.12 to 4.10 are highly tri-
methylated at the early larval stage and are maintained under
silencing conditions. The state of H3K27me3 then changes via
epigenetic enzymes such as HDA-4, if the specimen is subjected to
microgravity during growth. We also tested epigenome changes
in H3K27ac, H3K27me1, and H3K27m2 in the same locus, but all
modification levels were lower and could not be further evaluated
due to sample quantitative limitations.

Fig. 1 Schematic diagram and illustration of the spaceflight experiment to assess microgravity impact on epigenetic regulation in C.
elegans. a Diagram shows the timeline of the spaceflight experiment “EPIGENETICS”. b The start of the experiment was initiated by injecting
the L1 larva solution in a syringe into a culture bag and incubating in an upper microgravity box and an artificial 1G centrifuge box of CBEF
(Cell Biology Experiment Facility). After culturing for 5 days (1st generation) and 4 days (2nd to 4th generations), 2 ml of L1 larval progenies
were aspirated with a syringe while being filtered through a 10 μm mesh filter, and transferred to a new culture bag. The remaining culture
bags (adults and L1 progenies mixture) were frozen at −95 °C in MELFI (Minus Eighty degree Celsius Laboratory Freezer).
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hda-4 mutant displays pronounced growth suppression in
spaceflight and overexpression of the T20D4.11 gene
We have previously discovered that the C. elegans body length
changes in response to environmental conditions such as fluid
dynamics and microgravity12,33. Reproducible in this study, the
length of wild-type C. elegans was slightly but significantly (by
3.3%, p= 0.011) reduced in adulthood when they were grown
under microgravity compared with artificial 1G (Fig. 5a). This
reduction was even more pronounced in the hda-4 (ok518)mutant
(by 4.8%, p= 0.00001). In addition, the body thickness of the
mutant was significantly reduced (Supplementary Fig. 1).
There are more than 80 paralogs of DUF-19–containing genes in

the C. elegans genome. Despite comprehensive RNAi experiments
involving each of these genes, no knockdown-related phenotype
has been observed34. This is because there are many DUF-19 gene
families in the genome, so even if each gene function is disrupted,
the phenotype may not be obtained. In addition, it may be
difficult to observe the knockdown phenotype if the original

genetic function adversely affects growth and survival and is
usually rarely expressed. Therefore, we investigated the phenom-
ena caused by overproduction of the DUF-19–containing gene
T20D4.11 driven by the promoter of the body-wall muscle myosin
myo-3 gene (Supplementary Fig. 2). The body length in adults was
significantly lower (by 8.2%, p= 0.0001) in one of the T20D4.11
overexpression lines compared with the vector control (Fig. 5b).
Therefore, we consider that the reason that the hda-4 mutant is
shorter than the wild-type grown at microgravity is probably the
higher expression of DUF-19-containing genes such as T20D4.11
(Fig. 3). In addition, the overexpressed adult hermaphrodite
reduced brood size, the progenies did not hatch frequently
(embryonic or early larval lethality), and many survived showed
growth retardation (Fig. 5c). These results suggest that DUF-19-
containing genes function as negative regulators of growth and
development in response to some stress and environmental
conditions.

Fig. 2 Changes in gene expression induced in hda-4 (ok518)mutants grown under microgravity conditions. a DNA microarray analysis was
compared through four generations of wild-type and hda-4 mutant strains grown under microgravity in two independent replicate
experiments. All 39 genes were significantly upregulated in the hda-4 mutant (>2.5-fold, p < 0.05 using Student’s t test). Statistical analysis was
performed between the mean values of the four generations of wild-type and hda-4 mutants. Their chromosome positions and expression
levels (fold-change values) were indicated. b Changes in gene expression (fold-change values) of 39 genes in the (a) of hda-4 mutants grown
under microgravity and artificial 1G conditions. Asterisk (*) indicated genes containing a domain of unknown function DUF-19.
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DISCUSSION
Here we carried out a spaceflight experiment using C. elegans to
study whether some of the transcriptional changes caused by
microgravity are controlled by epigenetic changes. Comprehen-
sive gene expression analyses using the hda-4 genetic mutant and
wild-type revealed that there are 39 genes whose expression in
adult C. elegans in response to space microgravity is suppressed
by the action of HDA-4.
Polycomb Repression Complex 2 (PRC2), which includes histone

lysine methyltransferase (HMT/KMT), induces trimethylation of
histone H3 lysine 27 and recruits HDAC and DNA methyltransfer-
ase (DNMT) to further inhibit transcription35–37. In addition, HMT/
KMT promotes trimethylation after deacetylation of lysine residues
of histone by HDAC38. Therefore, HDACs and HMT/KMTs work
together to cause epigenetic silencing. Consistent with this, a
significant increase in H3K27me3 at the T20D4.12 - T20D4.10 locus
under microgravity was observed in wild-type adults compared
with artificial 1G, but a little in the hda-4 mutant (Fig. 4). We
consider that the induction levels of these genes in microgravity-
grown C. elegans are downregulated by HDA-4 to adjust to

appropriate expression levels in the space environment. This
microgravity-induced epigenetic modification will be reset in the
germ cells of the next generation. In C. elegans spermatogenesis,
epigenetic modifications occur throughout the genome39, and
PRC2 maintains the state of H3K27me3 during embryogenesis40.
In the embryo, H3K27me3 is enriched across genes that were
silent in the parental germline41. Nine HDACs have been identified
in the C. elegans genome, of which HDA-1 is primarily involved in
germ cell development and embryogenesis42. HDA-1 is essential,
unlike HDA-4, and knockdown-related phenotypes have been
observed in embryonic lethal and defects in gonadogenesis34.
Therefore, the increase in H3K27me3 at the T20D4.12 to T20D4.10
gene locus in L1 larvae may be due to HDA-1-mediated
epigenome modification. In addition, this methylation may occur
more strongly in adult germ cells with reduced H3K27me3 levels
in the absence of HDA-4. Due to the sample limitations, this study
was limited to analysis of the H3K27me3 status of 3rd-generation
L1 larvae and adults, but future space experiments with C. elegans
will examine more global epigenetic changes in response to
microgravity.

Fig. 3 Changes in gene expression of 6 DUF-19-containing genes, T28A11.19, T28A11.2, C17B7.4, T20D4.11, T20D4.10, and C03G6.5
assessed by quantitative real-time PCR. Expression levels were analyzed in 8 samples each of wild-type and hda-4 mutants grown in either
microgravity or artificial 1G (2 independent lines over four generations). The eft-2 gene was used as the internal standard. Data are shown as
box and whiskers to indicate median and range. Statistical analysis was performed in each condition using one-way ANOVA followed by Tukey
post hoc test.
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Merkwirth et al.13 reported that perturbations in the mitochon-
drial electron transport chain enhance the expression of the
H3K27 histone demethylases JMJD-3.1 and JMHJD-1.2 in C.
elegans. This converts the H3K27me3 inactive chromosomes into
the H3K27me1 active chromosomes, which transcriptionally
induces several effectors of unfolding protein response in the
mitochondria. Interestingly, at least 19 genes among the 39 genes
identified in this study are reported to be induced by JMJD-3.1
under mitochondrial perturbation13. In particular, the DUF-19-
containing genes C03G6.5, C17B7.4, C36C5.12, T20D4.10, T20D.4.11,
T20D4.12, T28A11.2, T28A11.16, T28A11.19, and T28A11.20 are more
than sevenfold upregulated by JMJD-3.1. Since here we found that
overexpression of one of these genes, T20D4.11, negatively
affected growth and development, we propose that a series of
DUF-19-containing genes may be involved in growth inhibition
under mitochondrial stress conditions.
We have previously reported that space-flown C. elegans display

reduced levels of mitochondrial enzymes as well as muscular and
cytoskeletal proteins12. Therefore, it is speculated that mitochon-
drial activity is somewhat reduced and epigenetic modification by
JMJDs is promoted in all four generations. It leads to upregulation
of the expression of several genes, including the genes containing
DUF-19. In the wild-type grown under microgravity, histone
deacetylase HDA-4 and KMT are assumed to be activated in
parallel, and conversely, H3K27me3 epigenetic modification is
enhanced and the expression level of these genes is suppressed.
Namely, certain genes including DUF-19 family, which are
negative regulators of growth and development, are epigeneti-
cally fine-tuned via histone modifications to adapt to the
microgravity environment (Fig. 6).
In conclusion, here we clarified that HDAC-mediated epige-

netics occurs during the growth of a metazoan species in the
space microgravity environment. In the future, we expect that
comprehensive tissue-specific epigenome changes associated

with various histone modifications will be revealed in relation to
the pathophysiological effects of long-term spaceflight.

MATERIALS AND METHODS
Spaceflight experiment
In this study, the N2 Bristol (wild-type) strain and RB756 hda-4 (ok518)
deletion mutant were used. To synchronize the growth of the worms, an
egg preparation was made in a laboratory at the Kennedy Space Center as
described previously28. All L1 larvae (each strain, 9,000 worms) were kept
in a 1-ml plastic syringe in M9 buffer containing 5mg/L cholesterol (M9C)
until the initiation of the experiment. The synchronized culture was started
by injecting 9000 L1 larvae through a NIPRO-manufactured connection
port into a NIPRO culture bag containing a 14ml suspension of E. coli OP-
50 in S-basal medium (OD600= 5) in the International Space Station (ISS)
Japanese Experiment Module KIBO. After culturing at 20 °C for about
4 days in the ISS’s Cell Biology Experiment Facility (CBEF), a 2 ml
suspension of the next generation of L1 larvae was filtered through a
10 μm nylon mesh filter (Semitec Corporation, Japan) and inoculated into a
new culture bag. The remaining culture bag was frozen at −95 °C in the ISS
freezer MELFI. Each culture was repeated 3 times in the same way to
produce samples for a total of four generations. Two independent replicate
experiments were performed for each strain in microgravity and artificial
1G conditions with centrifuge in the CBEF.

Expression analyses
Approximately 1000 adult worms were collected by thawing the frozen
culture samples on ice and washing them three times by natural
sedimentation in ice-cold M9 buffer to remove larvae and bacterial food.
RNA extraction, microarray analysis, and real-time RT-PCR analysis were
performed as described previously28,29. The following primer pairs were used
for PCR amplification: T28A11.19 (forward: 5ʹ-CGA GTG AGT TAG AGA GAA
GAA GAA TTA GAA-3ʹ, reverse: 5ʹ-TCT GCT CCA AAT CCA GAA AAA GT-3ʹ),
T28A11.2 (forward: 5ʹ-AAA AGA CAA CTG CAT GAA AAA GGA-3ʹ, reverse: 5ʹ-
GCC GAC TCC GAT GAA ATG A-3ʹ), C17B7.4 (forward: 5ʹ-CGA ATT GTG CAA
AAA CAT GGT T-3ʹ, reverse: 5ʹ-GCG AGT CCT CCT CTC CAC AAG-3ʹ), T20D4.11
(forward: 5ʹ-AGA ACT TGT GGA GGA GCC ATGT-3ʹ, reverse: 5ʹ-AGT CAGC GTC

Fig. 4 ChIP analysis of H3K27me3 levels at the T40D4.12-4.10 locus. a H3K27me3 levels were analyzed in the intergenic region of the
T40D4.12-4.10 locus on Chromosome V. The red-colored gene is a gene containing the DUF-19 domain. b The graphs show the recovery rates
for region #01 and #02, as a relative ratio of DNA after ChIP with the anti-H3K27me3 monoclonal antibody compared to the input DNA in
adults wild-type and hda-4mutant, respectively. Due to the sample limitations, L1 larvae study was limited to analysis of the H3K27me3 status
at the region #01. These samples (about 300 worms each) grew as third generation under artificial 1G or microgravity conditions. Biological
triplications in each sample condition (n= 3) were analyzed by ChIP-qPCR using one-way ANOVA followed by Tukey post hoc test. Error bars
indicate S.D.
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GCA TTG TTT G-3ʹ), T20D4.10 (forward: 5ʹ-CAG TTG CGA CTG GAG CAG AA-3ʹ,
reverse: 5ʹ-GGA CAG ACC CAT GAT GCA AGA-3ʹ), C03G6.5 (forward: 5ʹ-
GCATGAAGAAGGAGATTACTGAAACA-3ʹ, reverse: 5ʹ-ACC GGA AAG ATT GAC
AAA TTG C-3ʹ), and eft-2 (forward: 5ʹ-GAC GCT ATC CAC AGA GGA GG-3ʹ,
reverse: 5ʹ-TTC CTG TGA CCT GAG ACT CC-3ʹ). The real-time RT-PCR data were
normalized to eft-2, which encodes an actin isoform, as a housekeeping gene.
The analyses were performed in technical triplicate for each of the eight
culture lines (four generations, two independent replicate experiments).

Body length measurement of space-flown and transgenic
adults
The body lengths of wild-type and hda-4 mutant C. elegans that were
space-flown, and C. elegans that harbored the T20D4.11 transgene and
remained on Earth, were quantified using an Olympus BX51 microscope
system with a DP73 digital camera (Olympus, Tokyo, Japan) as described
previously28,29. Observations were performed immediately after thawing
the frozen samples for spaceflight and after fixing the transgenic samples
with sodium azide. More than 20 worms were randomly selected for each
condition of spaceflight samples.

Fig. 5 Changes in body length of space-flown C. elegans. a We plotted the length of 3rd-generation adults of wild-type and hda-4 mutants
grown under artificial 1G or microgravity was indicated (n= 20<, respectively). Data are shown as box and whiskers to indicate median and
range. Statistical analysis was performed using one-way ANOVA followed by Tukey post hoc test. b Adult length of transgenic lines of vector
control and T20D4.11 driven by the myo-3 promoter grown on NGM E. coli OP-50 agar plate for 4 days (n= 10, P < 0.01 using Student’s t test).
Data are shown as box and whiskers to indicate median and range. c Five L1 larvae of vector control and T20D4.11 transgenic lines were
cultured on 6 cm NGM E. coli OP-50 agar plates for 7 days. The L1 larva became an adult (Parent) and its progenies (F1) were visualized with
injection markers (Prab-3::mCherry, Pmyo-2::mCherry and Pmyo-3::mCherry, Supplementary Fig. 2). Several sizes of F1 progenies were observed
on the vector-control line. On the other hand, in the T20D4.11 transgenic line, F1 progenies became smaller, and some dead larvae and
embryos were observed (right panels).

Fig. 6 Schematic illustration of epigenetic control by HDACs in
space microgravity. The expression of certain genes, including
negative regulators of growth and development such as the DUF-19
gene(s), is epigenetically fine-tuned to adapt to the space
microgravity in C. elegans.
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ChIP analysis of H3K27me3 levels
ChIP assays were performed using ~300 adults from the 3rd-generation in
each experimental condition, monoclonal antibody against H3K27ac,
H3K27me1, H3K27m2, and H3K27me3 (MAB Institute Inc. Japan. Cat. No.
MABI0309, MABI0321, MABI0324, and MABI0323), and a ChIP solution kit
with anti-mouse IgG magnetic beads and control mouse IgG (MAB Institute
Inc. Japan. Cat. No. MABI0822). ChIP-qPCR was performed with optimized
PCR primer sets at the T40D4.12 to 4.10 locus: region #01 primer set
(forward: 5ʹ-AAC AAT TCC GGC ATC AAC AT-3ʹ, reverse: 5ʹ-TCT GCC AAC T
GT CGT TGT TC-3ʹ) and region #02 primer set (forward: 5ʹ-AAA AAG AGT C
AC TTG TAA CAG GAA CA-3ʹ, reverse: 5ʹ-CAG TCA CTG GTG CGG TGT AA-3ʹ).

Statistical analysis
Statistical analyses were performed using one-way ANOVA followed by
Tukey post hoc tests in RStudio software and Student’s t test. The
minimum p value for significance was 0.05. Similar alphabet(s) in any two
groups indicate no significance and different alphabets in any two groups
represent significant difference between the two groups.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data of this study are available from the authors upon reasonable request. All
global gene expression data are MIAME (Minimum Information about a Microarray
Experiment) compliant and are deposited in the GEO (Gene Expression Omnibus)
database as the accession number of GSE173985.
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