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Atypical splicing variants in PKD1 explain most undiagnosed
typical familial ADPKD
Yvonne Hort1, Patricia Sullivan2,3, Laura Wedd1,4, Lindsay Fowles 5, Igor Stevanovski6,7, Ira Deveson6,7, Cas Simons4,8,
Andrew Mallett 9,10,11, Chirag Patel5, Timothy Furlong1, Mark J. Cowley 2,3, John Shine1 and Amali Mallawaarachchi 1,12✉

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of kidney failure and is primarily
associated with PKD1 or PKD2. Approximately 10% of patients remain undiagnosed after standard genetic testing. We aimed to
utilise short and long-read genome sequencing and RNA studies to investigate undiagnosed families. Patients with typical ADPKD
phenotype and undiagnosed after genetic diagnostics were recruited. Probands underwent short-read genome sequencing, PKD1
and PKD2 coding and non-coding analyses and then genome-wide analysis. Targeted RNA studies investigated variants suspected
to impact splicing. Those undiagnosed then underwent Oxford Nanopore Technologies long-read genome sequencing. From over
172 probands, 9 met inclusion criteria and consented. A genetic diagnosis was made in 8 of 9 (89%) families undiagnosed on prior
genetic testing. Six had variants impacting splicing, five in non-coding regions of PKD1. Short-read genome sequencing identified
novel branchpoint, AG-exclusion zone and missense variants generating cryptic splice sites and a deletion causing critical intron
shortening. Long-read sequencing confirmed the diagnosis in one family. Most undiagnosed families with typical ADPKD have
splice-impacting variants in PKD1. We describe a pragmatic method for diagnostic laboratories to assess PKD1 and PKD2 non-coding
regions and validate suspected splicing variants through targeted RNA studies.
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INTRODUCTION
Autosomal dominant polycystic kidney disease (ADPKD) is the
most common monogenic cause of kidney failure, affecting
approximately 1 in 1000 people1. The condition is primarily caused
by disease-causing variants in PKD1 and PKD2. Genetic diagnosis
of ADPKD is technically challenging due to six pseudogenes that
are >97% homologous in sequence to the genuine PKD1 gene1.
This sequence homology has driven the development of specific
genetic diagnostic techniques to robustly sequence PKD1 that
have focussed mainly on the analysis of the protein-coding
regions of PKD1, PKD2 and then the wider exome. These
techniques include long-range polymerase chain reaction (LR-
PCR) and Sanger sequencing, targeted next-generation sequen-
cing using probes specific to coding regions of cystic-related
genes (tNGS), exome sequencing and genome sequencing with
coding-based analysis1–6. The diagnostic yield from these studies
differs based on the clinical breadth of the cohort, ranging from
approximately 60% in phenotypically broad cohorts to >90% in
cohorts tightly selected for features typical of PKD1 and PKD2-
mediated disease1,3–5,7. Even with the most stringent coding-
based analysis, at least 7% of ADPKD families are left without a
genetic diagnosis7.
In recent years, there have been substantial advances in

understanding the breadth of ADPKD gained through investigat-
ing genetically undiagnosed patients. New genes have been
identified that contribute to the ADPKD spectrum, including

GANAB, DNAJB11, IFT140, ALG5, ALG8 and ALG95,7,8. Despite these
advances in disease knowledge and extensive coding-region
focussed analysis, there remains a cohort of patients with a typical
ADPKD phenotype who are without a genetic diagnosis. It is thus
an open question as to whether this is due to technical limitations
in identifying causative variants within PKD1 or PKD2 or the
existence of an unknown ‘PKD3’ gene that is associated with a
typical ADPKD phenotype.
We aimed to address this question by investigating a cohort

selected to have a typical ADPKD phenotype, a positive family
history and be undiagnosed on standard diagnostic genetic
testing. We aimed to investigate whether these patients had
variants in previously unidentified genes or, as other diseases
suggest, novel variants in the most likely genes of interest – PKD1
and PKD2. To approach this challenge, we applied sequencing
methods not previously extensively used in ADPKD, including
short and long-read genome sequencing combined with targeted
RNA sequencing.
We have previously shown that short-read genome sequencing

is a robust diagnostic method in ADPKD, allowing the detection of
single nucleotide, short indel and structural variants1,4. However,
though the whole genome is sequenced, current diagnostic
laboratory protocols essentially limit analysis to protein-coding
regions of the genome. This particularly biases against the
detection of non-coding variants that may impact splicing. To
date, there has been limited study of potential atypical splice-
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impacting variants in ADPKD and how best to predict their
pathogenicity9–11. Another challenge for diagnostic laboratories is
in clarifying the pathogenicity of identified variants of uncertain
significance (VUS). Even if non-coding variants are identified,
pathogenicity confirmation of these variants typically requires
functional analysis that is not routinely performed in diagnostic
laboratories12. Pathogenicity can also be clarified in some
instances by phasing of variants (confirming which allele the
variant is present on), which is not usually possible with short-read
sequencing. More recently available long-read technologies, such
as Oxford Nanopore Technologies (ONT), have been shown to
inform phasing in other disease groups, but this has not been
previously applied in ADPKD13. Our previous studies in genome
sequencing diagnostics in ADPKD have informed this study, and
patients left undiagnosed from these previous cohorts were
assessed for suitability for this study1,4. In this study, we report for
the first time the combination of short and long-read genome
sequencing with whole genome analysis and RNA studies to
investigate ADPKD families without a diagnosis after standard
diagnostic genetic testing.

RESULTS
Over 172 patients were assessed for suitability for recruitment.
This included 28 patients from a cohort of typical ADPKD who had
undergone genome sequencing, 144 patients from a cohort of
suspected ADPKD who had undergone diagnostic genome
sequencing and a cohort of patients with typical and atypical
PKD reviewed at multidisciplinary kidney genetics clinics from
across Australia who had undergone diagnostic genetic test-
ing1,4,14. From this initial pool of over 172 probands, 9 families
were recruited who met the study inclusion criteria (Fig. 1).
Patients with atypical clinical features or no family history were
deemed ineligible as they did not meet the inclusion criteria.
Recruitment was restricted to those with a family history of ADPKD
in order to target analysis toward inherited germline rather than

mosaic variants. All patients had previously undergone standard
diagnostic genetic testing via LR-PCR of PKD1 and PKD2 coding
regions and massively parallel sequencing of this PCR-product (2
probands) or diagnostic genome sequencing with analysis
targeted to coding regions of a cystic kidney disease gene panel
(6 probands) or both (1 participant) (Supplementary Table 2). An
additional seven patients met the inclusion criteria and had a VUS
identified in PKD1 on initial diagnostic genetic testing but were
not consented to further research analysis and therefore did not
proceed to this study (Fig. 1).
Four of nine probands had ESKD (End Stage Kidney Disease),

and all had enlarged kidney lengths with numerous kidney cysts
on imaging (Table 1 & Supplementary Table 2). Five of nine
probands had extra-renal features of ADPKD reported (Supple-
mentary Table 2).
After genome sequencing and whole genome analysis, a

genetic diagnosis (identification of a Pathogenic or Likely
Pathogenic variant) was made in eight out of nine families, with
all having disease-causing variants in PKD1 (Table 1 and Fig. 2). An
additional family (FRPA007) had a VUS identified in PKD1. Six of
the disease-causing variants were shown through RNA studies to
impact splicing. Four of these splicing variants had been identified
on the initial diagnostic testing (including one coding variant) but
classified as of uncertain significance, with segregation studies not
able to clarify pathogenicity (Supplementary Table 2).

PKD1 intron 37 splice-impacting variants
Patient RBW403 had a clinical diagnosis of ADPKD made at 12
years of age in the context of a known diagnosis in his father, who
reached ESKD at 44yo (Table 1 and Fig. 3A). Through this study, a
novel variant was identified in intron 37 of PKD1 (c.11017-
25 A > G) that was predicted by in silico splice prediction tool,
introme, to interrupt the splicing branchpoint (Fig. 3C, D). This
variant was absent in control databases and not previously
reported in ADPKD cohorts. This variant had been detected on
both previously performed diagnostic tests (next-generation
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sequencing of LR-PCR amplicons targeted to PKD1 and PKD2 and
then genome sequencing) but predicted benign based on
available in silico tools. Introme predicted multiple potential
splicing impacts. The predominant interpretation was that this
branchpoint variant would largely result in the skipping of exon
38, introducing a premature stop codon. An alternate interpreta-
tion was that the presence of a wildtype cryptic splice site 156
base pairs upstream of the c.11017-25 A > G branchpoint variant
would result in retention of 180 bp of intron 37 at a reduced
frequency (Fig. 3D). RNA studies revealed evidence for both
splicing outcomes, with the skipping of exon 38 being far more
prevalent than intron retention. A review of control GTEx RNA data
suggests low-level (5%) natural alternative splicing of exon 38 in
kidney samples (Fig. 3B and Supplementary Table 3).
Two additional patients in this cohort (RPA028 and RPA014,

Table 1 and Fig. 3A) were identified to have different variants in
intron 37 that were also predicted to interrupt the usual function
of the exon 38 acceptor splice site (Fig. 3C, D). RPA028 had a
different nucleotide substitution (PKD1 c.11017-25 A > C), inter-
rupting the same branchpoint as in RBW403. RPA014 had a variant
10 base pairs from the start of exon 38 (PKD1 c.11017-10 C > A)
that impacted the acceptor splice site through the inclusion of the
‘AG’ dinucleotide in the AG Exclusion Zone15. RNA studies in both
patients demonstrated a similar impact to that seen in RBW403,
with a combination of skipping of exon 38 and partial retention of
intron 37 (Fig. 3C).

Generation of novel cryptic donor splice site
Patient RPA019 had a clinical diagnosis of ADPKD made at 29yo
during screening as a potential kidney donor for her affected
brother (Table 1 and Supplementary Fig. 1A). Previous diagnostic
testing had identified a missense variant classified as a VUS in
exon 10 of PKD1 (c.1991 C > T). RPA019 underwent genome
sequencing and whole genome analysis, and no additional

phenotype-relevant variants were identified. Introme predicted
that the c.1991C > T variant would generate a new cryptic donor
site and result in an in-frame deletion of 36 amino acids
(Supplementary Fig. 1C). RNA studies supported this prediction
(Supplementary Fig. 1B). The variant was segregated to the
proband’s affected mother and was absent in population datasets,
though alternate amino acid substitutions at the same residue and
substitutions at the same nucleotide are reported in population
datasets. To our knowledge, this variant has not previously been
reported in ADPKD cohorts.

Intronic deletion causing critical shortening of intron length
19F00138 and her sister (RBW401) both had a clinical diagnosis of
ADPKD, with bilateral kidney enlargement, multiple kidney cysts
and multi-generational family history of ADPKD (Supplementary
Fig. 1D). Clinical short-read genome sequencing in 19F00138 had
been non-diagnostic. Re-analysis of the genome sequencing data
identified a 19 bp deletion within intron 31 of PKD1 that was
predicted to result in shortening of the intron beneath its critical
length and, therefore, intron retention16 (Supplementary Fig. 1E).
This variant was segregated to RBW401 and RNA studies in her
demonstrated retention of intron 31, creating a frameshifting
insertion (Supplementary Fig. 1F). This variant has been reported
previously in a patient with a de novo ADPKD phenotype17.

Extended donor splice site variant
RPA021 and her brother both had a clinical diagnosis of ADPKD,
with both undergoing kidney transplantation in their 50s
(Supplementary Fig. 2A, B). In our previous study1, a variant of
uncertain significance had been identified in intron 18 of PKD1
(c.7489+5 G > A). Though suspicious for being disease-causing via
disruption of the native splice site, there was insufficient evidence
to confirm pathogenicity without support from functional studies.
This variant has also been reported previously by our research
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group in an unrelated patient who was part of a cohort of
patients who underwent clinical PKD testing via short-read
genome sequencing4. The patient in this previous study (Pt
D158) was not known to be related to FRPA021 and did not share
ethnicity4. RNA studies in RPA021 demonstrated that the
c.7489+5 G > A variant in PKD1 resulted in the retention of 93
base pairs of intron 18, introducing a premature stop codon
(Supplementary Fig. 2C, D).

Coding PKD1 variants
The RG_0044 family had a multi-generational history of ADPKD
(Supplementary Fig. 3). Participant RG_0044.0048 had previously
undergone diagnostic genetic testing via next-generation

sequencing of LR-PCR amplicons targeted to PKD1 and PKD2,
and no clinically significant variants had been identified. Genome
sequencing and analysis identified a previously reported, likely
pathogenic missense variant in PKD1 p.(Gly960Ser) that had not
been identified on the previous diagnostic testing18. This variant
was appropriately segregated to six affected and unaffected
family members (Supplementary Fig. 3).
RPA017 had a clinical diagnosis of ADPKD made at 34yo (Fig. 4

and Supplementary Table 2). She was motivated for a genetic
diagnosis to inform IVF and PGD. Her mother (RPA015) was
diagnosed with ADPKD with CKD 3a in her 50s in the context of a
diagnosis in her mother. RPA017’s father (RPA016) had normal
kidney ultrasound at 72yo. Genome sequencing in RPA017
identified a nonsense variant in exon 31 of PKD1. However,
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segregation by LR-PCR and Sanger sequencing demonstrated that
this variant was absent in her affected mother and unaffected
father (paternity confirmed). Subsequent genome sequencing in
RPA015 identified a nonsense variant in exon 5 of PKD2 that was
absent in her affected daughter. Both variants met ACMG criteria
for likely pathogenic, though the inheritance pattern in the family
was unclear. In addition, PGD for PKD1 variants is contingent on
multigenerational linkage studies. The information from short-

read sequencing was not adequate to inform these linkage studies
as the parent of origin of the PKD1 pathogenic allele was
unknown. To clarify the inheritance in this family, ONT long-read
sequencing was performed to facilitate variant phasing, which
demonstrated that the PKD1 variant identified in RPA017 was
present on the allele she inherited from her father. Sanger
sequencing showed that the variant was absent in her father’s
peripheral blood DNA, strongly suggesting this was a de novo
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variant in RPA017(Fig. 4). Phasing also confirmed that RPA017 had
not inherited the affected PKD2 allele from her mother. This
information was used to inform linkage studies for PGD.

Undiagnosed
Research analysis performed in RPA007 identified a VUS,
p.(Gln2824Arg) in PKD1 that segregated to her affected mother.
Whole genome analysis in RPA007 with both short and long-read
genome sequencing did not identify any additional variants of
interest. Copy number variant analysis was uninformative. No
splicing impact was predicted by introme. The PKD1
p.(Gln2824Arg) variant is absent in population databases, pre-
dicted pathogenic by in silico tools and has not been previously
reported in PKD cohorts. This information alone is insufficient to
clarify the pathogenicity of this variant.

DISCUSSION
Pathogenic variants in PKD1 and PKD2 have been shown to be
responsible for disease in most patients with a typical phenotype
of ADPKD. However, genetic sequencing in ADPKD cohorts
consistently results in approximately 10% of patients being left
without a genetic diagnosis4,5,7. This study shows that most of
these undiagnosed families have splice-impacting variants in PKD1
that were uncertain or undetected on standard diagnostic genetic
testing. We demonstrate the value of sequencing and, impor-
tantly, analysis of the protein-coding and non-coding regions of
PKD1 and PKD2, combined with targeted RNA studies to confirm a
genetic diagnosis. For the first time, we show the value of long-
read sequencing in ADPKD to inform the phasing and inheritance
of variants.
Utilising a genetic diagnosis to inform clinical care requires a

definitive genetic result. Cascade testing can only be offered in
families with a definitive genetic diagnosis, and this is the same for
using genetic results to inform family planning. This highlights the
value of improving diagnostic yield for families with ADPKD and
the value of the results of this study, which demonstrates that a
significant proportion of undiagnosed families have variants that
affect gene splicing. There is increasing evidence for similar
variants across other disease groups, where, for example, RNA-
sequencing in a cohort of patients with undiagnosed muscle
disease identified a diagnosis through aberrant splicing in 35% of
patients19. RNA-sequencing often requires analysis of a tissue of
interest rather than using blood RNA12,19,20. In kidney disease, RNA
extracted from kidney tissue or urothelial cells is technically more
challenging to access12. We demonstrate a practical approach for
evaluating suspected splicing variants in ADPKD using RT-PCR of
total RNA extracted from peripheral blood. This pragmatic,
targeted approach provides functional evidence to classify VUS
that results in substantial splicing defects without requiring access
to kidney tissue and is achievable for a diagnostic laboratory to
replicate21. Developing protocols for diagnostic genetic labora-
tories to identify and then confirm coding or non-coding aberrant
splicing variants is key in improving current genomic diagnostic
rates12. The high diagnostic yield in our study highlights the
importance of diagnostic laboratories analysing beyond the
coding region in patients with a typical ADPKD phenotype by
using robust in silico tools, such as Introme22. Importantly, we also
show that RT-PCR can then be used to evaluate potential splicing
variants identified through this broader analysis. The homologous
PKD1-pseudogenes produce mRNA transcripts that are approxi-
mately 97% homologous to the 5′ regions of PKD1 mRNA;
therefore, this RT-PCR method requires the use of unique primers
to avoid inadvertently amplifying transcripts from the PKD1-
pseudogenes23.
A confirmed genetic diagnosis is increasingly becoming the

standard of care for families with genetic disorders and is being

utilised across all inherited kidney diseases, including
ADPKD1,4,24–26. A genetic diagnosis allows early definitive diag-
nosis in ADPKD, which can provide prognostic information and
allow for early institution of treatments, including vigorous
hypertension management and tolvaptan for those predicted to
have more rapidly progressive disease4. Genetic diagnosis also
allows for informing the selection of kidney donors and for family
planning. In this cohort alone, several families utilised a confirmed
genetic diagnosis to inform PGD of embryos. In many jurisdictions,
such as Australia, New Zealand and the United Kingdom, national
health service subsidies are available for ADPKD families for IVF
and PGD, highlighting that providing genetic counselling to
ADPKD families is an essential aspect of their care27. ADPKD is one
of the most common monogenic conditions screened for in IVF
and PGD28. There is also increasing evidence of nocturnal
hypertension in children with ADPKD, suggesting that guidelines
regarding the diagnosis of ADPKD in childhood may be modified
in the future to recommend early intervention for these children29.
Imaging results can be variable in paediatric populations, whereas
genetic diagnostics allows reliable, definitive diagnosis29,30.
Classifying VUS is currently a challenge for diagnostic labora-

tories, particularly in ADPKD, where variants are often private to
families and multiple samples from large pedigrees are typically
not available to perform segregation studies to clarify pathogeni-
city. We also demonstrate the additional value of long-read
sequencing in understanding the pathogenicity of variants in
ADPKD. Long-read technologies have the additional advantage of
allowing the phasing of variants, which has obvious applications
in confirming bi-allelic inheritance in autosomal recessive disease.
In autosomal dominant disorders, long-read sequencing allows
the opportunity to identify the parental allele on which a de novo
variant occurs. This is valuable in understanding inheritance in
complex families, such as we demonstrate in family FRPA017.
Another unique application is in informing linkage studies for
couples undergoing PGD for de novo ADPKD. For couples
undergoing PGD, detailed phasing studies are performed to
identify accurate markers that are then used to ascertain affected
vs unaffected embryos. For patients with PKD1-mediated disease,
this requires samples from multiple generations of the affected
family, as direct sequencing of PKD1 is hampered by the presence
of the homologous pseudogenes. This makes PGD challenging to
access for patients with de novo PKD1-disease, who are the only
affected person in their family. In this situation, which impacts
10% of patients with ADPKD, long-read sequencing can provide
important phasing information that can allow these patients to
access PGD of embryos31. Long-read data may additionally be
used to detect structural variants that are missed by short-read
sequencing, although we did not detect any relevant events
here13.
In order to maximise the study size, this cohort was collected

from a larger pool of over 172 patients from across Australia who
had undergone standard diagnostic genetic testing for PKD. Given
the high yield of diagnostic testing in ADPKD and the strict
inclusion criteria of this study, only 16 patients from this larger
pool met the inclusion criteria, of which 9 consented to
participation. Inclusion was deliberately limited to patients with
a family history of ADPKD to focus on germline rather than mosaic
variants, restricting the eligible pool of patients32. Our results are
comparable to other disease groups and highlight that previously
unrecognised or undetected splice variants may be causative in
these families33. Our smaller cohort size means there is value in
applying this method to a larger cohort.
Our results show that for families with a typical ADPKD

phenotype, variants are most likely to be found in PKD1 and
PKD2 rather than other PKD-associated genes and that most of
these variants are splice-impacting. We provide evidence of the
value of diagnostic laboratories expanding the analysis to non-
protein-coding regions to improve diagnostic yield in ADPKD – we
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achieved this through WGS, though other validated sequencing
methodologies could also be utilised. Importantly, we describe an
achievable method for assessing uncertain variants that are
predicted to impact splicing in this common disorder. ADPKD is
the most common inherited kidney disorder and contributes to
approximately 10% of kidney failure cohorts4. Improving diag-
nostic rates allows for improved management through earlier
institution of treatment and access to holistic care that includes
genetic counselling. Importantly, improving the understanding of
the underlying genetic basis for all families with ADPKD is a critical
step in developing personalised therapies for this common
genetic disease.

METHODS
Enrolment and inclusion criteria
We enrolled patients with typical ADPKD clinical features and a
family history of ADPKD who were without a genetic diagnosis
after diagnostic sequencing of PKD1 and PKD2 or a larger cystic
gene panel that included the PKD1 and PKD2 genes. Patients
undiagnosed from our previous studies were assessed for
suitability for this study (Fig. 1). In addition, patients were
recruited from clinical sites across Australia. Family members
were recruited as required and available. Ethics approval for the
study was obtained from the RPAH Human Research Ethics
Committee (HREC/18/RPAH/726). All participants provided written
informed consent. The authors have received and archived written
patient consent. All data included is de-identified.
Clinical, family and imaging data were obtained during the

clinical review or review of medical records. Kidney lengths were
based on ultrasound measurements as kidney ultrasound is the
Medicare-funded imaging modality available for the assessment
of ADPKD patients in Australia. The kidney function was calculated
using the CKD–EPI equation.

Short-read genome sequencing
All probands underwent short-read genome sequencing using
DNA extracted from peripheral blood samples. Genome sequen-
cing was performed on the HiSeqX sequencing system (Illumina
Inc., California, CA, USA) after either PCR-based library preparation
(Illumina HiSeq X TruSeq Nano DNA HT Sample Prep Kit) or PCR-
free library preparation (KAPA Hyper PCR-free kit, Roche). The
sequencing was performed within an ISO17025-accredited labora-
tory at the Kinghorn Centre for Clinical Genomics within the
Garvan Institute. All samples were processed via a custom
bioinformatics pipeline based on GATK best practice, which was
optimised for the identification of germline variants1,4. Reads were
aligned to the hg37 reference sequence. Sequence variants were
filtered using Seave34. CNV and structural variant analysis was
performed using ClinSV35. Introme was used to assess for variants
predicted to impact splicing22. Control PKD1 splice junction usage
was obtained using GTEx V8, filtered to include only kidney
samples36. Initial variant analysis was targeted to coding and
intronic and promoter regions of PKD1 (NM_001009944.3) and
PKD2 (NM_000297.4), with all variants (ranging from predicted
high to low impact) manually reviewed. Analysis was then
expanded to phenotype-driven whole genome analysis. Variants
were classified according to American College of Medical Genetics
(ACMG) Guidelines30,37. Sanger sequencing (with prior LR-PCR
amplification if within the PKD1-pseudogene homologous region)
was performed to confirm all single nucleotide and short indel
variants identified on genome sequencing and for family studies.

RNA studies
RNA functional studies were performed to assess variants
predicted to impact splicing in PKD1. Total RNA was extracted

from venous blood (Macherey-Nagel Nucleospin RNA Blood Kit)
for RT-PCR studies. If the variant of interest was within the PKD1-
pseudogene homologous region, amplification was performed
with at least one of the primer pairs being unique to the PKD1
sequence in order to avoid amplifying PKD1-pseudogene tran-
scripts (see Supplementary Table 1 for primer sequences). Sanger
sequencing was performed on this PCR product. See Supplemen-
tary Methods for further details. RNA studies were performed
within a research laboratory at the Garvan Institute.

Long-read sequencing
In families who remained negative after short-read genome
sequencing or for whom phasing could inform variant interpreta-
tion and classification, long-read sequencing was performed. High
molecular weight DNA was sheared to ~20 kb fragment size using
Covaris G-tubes. Sequencing libraries were prepared from ~1.5 to
5 µg of sheared DNA using native library prep kits (SQK-LSK110)
and sequenced for 72 h on a PromethION (FLO-PRO002, R9.4.1)
flow cell. Raw ONT sequencing data was converted to BLOW5
format with slow5tools (v0.3.0)38, then base-called using Guppy
(4.0.11 or later). Resulting FASTQ files were aligned to the hg38
reference genome using minimap2 (v2.14-r883)39, and Longshot
(v0.4.1)40 was used to identify and phase variants within the PKD1
locus. Long-read sequencing was performed within a research
laboratory at the Garvan Institute.
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