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Predictive value of genomic screening: cross-sectional study of
cystic fibrosis in 50,788 electronic health records
J. P. Sugunaraj 1, H. M. Brosius1, M. F. Murray2, K. Manickam3, J. A. Stamm1, D. J. Carey4 and U. L. Mirshahi 4

Doubts have been raised about the value of DNA-based screening for low-prevalence monogenic conditions following reports of
testing this approach using available electronic health record (EHR) as the sole phenotyping source. We hypothesized that a better
model for EHR-focused examination of DNA-based screening is Cystic Fibrosis (CF) since the diagnosis is proactively sought within
the healthcare system. We reviewed CFTR variants in 50,778 exomes. In 24 cases with bi-allelic pathogenic CFTR variants, there were
21 true-positives. We considered three cases “potential” false-positives due to limitations in available EHR phenotype data. This
genomic screening exhibited a positive predictive value of 87.5%, negative predictive value of 99.9%, sensitivity of 95.5%, and a
specificity of 99.9%. Despite EHR-based phenotyping limitations in three cases, the presence or absence of pathogenic CFTR
variants has strong predictive value for CF diagnosis when EHR data is used as the sole phenotyping source. Accurate ascertainment
of the predictive value of DNA-based screening requires condition-specific phenotyping beyond available EHR data.
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INTRODUCTION
Attempts to model genomic screening for long QT syndrome
(LQTS) and arrhythmogenic right ventricular cardiomyopathy
(ARVC), using electronic health record (EHR) as the lone source
of phenotypic data has raised questions about the value of
genomic screening more broadly in the accurate identification of
genetic disease risk in low-prevalence cohorts.1–4

Cystic fibrosis (CF), like LQTS and ARVC, is relatively uncommon
but it does not meet the NIH definition of a rare disease.5 The
reported prevalence of these three conditions range from ~1 in
1250 to 1 in 3200.6–8

However, CF is distinct from LQTS and ARVC in that there has
been over 20 years of extensive proactive CF diagnostic efforts to
identify cases in adult, pediatric, and newborn care. These CF
diagnostic efforts, incorporating both genetic and non-genetic
diagnostic testing, have led to standardized diagnostic
approaches to suspected cases of CF.9 As a result, the EHR of
patients in major healthcare systems, contain a wealth of data
from the diagnostic workups of patients for whom either clinical
or laboratory findings have raised suspicion of the diagnosis.10

CF is an autosomal recessive disorder that affects one in 3200 in
the United States and is caused by bi-allelic pathogenic variants
(either homozygous or compound heterozygous pathogenic
alleles) in the cystic fibrosis transmembrane conductance reg-
ulator (CFTR) gene.11–13 The most common pathogenic CFTR allele,
F508del, accounts for ~70% of known CF-causing alleles.14

As non-DNA-based ascertainment is the first step toward
diagnosis in this low-prevalence monogenic condition, CF
provides a reasonable use case for examining the predictive value
of DNA-based screening when available EHR data is the lone
phenotypic source for case confirmation. Universal newborn
screening for CF has been in place in the United states since

2010; all states use immunoreactive trypsinogen (IRT) as the initial
screen followed by either repeat IRT (IRT/IRT) or DNA-based
testing (IRT/DNA) as the follow-up screen.15 Separate from IRT-
based newborn screening, a distinct second prompt for CF
diagnosis is the presence of symptomatic disease.9,16 In either
scenario, CFTR genetic testing has been employed as part of the
diagnostic follow-up to another prompt for more than 20 years.
“Genome-first” describes a screening process that starts with

detection of pathogenic DNA variants independent of any
demographic or clinical information.17 Genome-first approaches
to case identification of monogenic disease are increasingly
feasible in large cohorts with genomic sequence data.18–20 Despite
promising data regarding the use of this approach for two
conditions with observed screen positive rates of 1 in 190 to 1 in
256 (i.e. BRCA1/2 related cancer risk and Familial Hypercholester-
olemia), the efforts cited above using genomic screening in this
manner to identify less prevalent monogenic conditions have
demonstrated suboptimal performance characteristics for case
identification via this approach.1,2

A genome-first approach to case identification for autosomal
recessive diseases in general, and to CF specifically, has not been
previously examined in a large sequenced cohort. Given the
existence of available diagnostic approaches and the anticipated
robust diagnostic workup data of suspected cases in the EHR, we
hypothesized that modeling a genotype-first screening approach
to CF case identification using EHRs would perform better than
previous efforts in LQTS and ARVC.
In this manuscript, we report the results of applying a genotype-

first approach to CF case identification within the DiscovEHR
dataset that links de-identified exome sequence data with
participant’s de-identified EHR data.21 The data for this study
came from 50,778 adult and pediatric participants in the
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DiscovEHR dataset recruited through the Geisinger MyCode
Community Health Initiative (MyCode) in Pennsylvania. IRT-
based newborn screening for CF began in Pennsylvania in 1995;
therefore, any documented cases in individuals older than 23
years in Pennsylvania would be expected to have almost
exclusively occurred through clinical presentations with signs or
symptoms.

RESULTS
The DiscovEHR WES database (n= 50,778) was queried for CF-
causing variants, defined as those variants identified in the CFTR2
database as CF-causal, and variants identified as pathogenic or
likely pathogenic in the ClinVar database.

Genome-first positives
The exome sequence database query identified 24 cases with bi-
allelic CF-causing CFTR variants (Fig. 1). Expert EHR review
confirmed the diagnosis of CF in 21 individuals, who were then
labeled true positives (TP); CF could not be confirmed definitively
in three individuals (Table 1). This was due to insufficient evidence
for, rather than evidence against, a CF diagnosis; these individuals
were therefore labeled as “possible” false positives (FP).

Genome-first negatives
The EHR-associated diagnostic codes for the 50,754 without bi-
allelic pathogenic CFTR variants were queried. Two cases from this
group had ICD codes consistent with a CF diagnosis and a mono-
allelic CFTR pathogenic variant (Fig. 1). These cases underwent
expert chart review which confirmed the diagnosis of CF in 1 who
was then labeled a false negative (FN). Chart review concluded
that the second case has CFTR-Related Metabolic Syndrome
(CRMS) variant (Table 1) and was then labeled a true negative (TN).
Six individuals had diagnosis codes for CF in EHR but did not
harbor any pathogenic CFTR variants. Chart review indicated no

evidence of CF and were labeled as true negatives. The remainder
of the cases without bi-allelic CFTR variants and no ICD codes
consistent with a CF diagnosis were also labeled as TN.

Genetic variants in charts undergoing open review
Table 2 displays the details of the 14 CFTR variants relevant to
these 26 cases. The F508del variant accounted for 73% of the 52
CFTR alleles. The cases discussed above that were ultimately
identified as TN and FN were CFTR compound heterozygotes with
F508del and S1235R (TN, with CRMS) and F508del and R1239S in
the (FN). Importantly the S1235R variant has been judged non-
pathogenic in both CFTR2 and ClinVar, and R1239S has not been
evaluated for inclusion in either database. In addition to evidence
of R1239S pathogenicity in case #22, there is additional
bioinformatic support for the pathogenicity of this variant from
our studies (see Table S2) and others.22

The three possible FP cases are all F508del compound
heterozygotes. The variant L206W found with F508del in two
unrelated men over 60 years of age is considered pathogenic in
both CFTR2 and ClinVar databases. The third possible FP case was
a F508del/Q1476X compound heterozygote in a woman over 70
years of age; the Q1476X allele is described in ClinVar as
pathogenic but is not present in CFTR2. Chart review documented
that this patient underwent clinical CFTR testing in 2009 that
revealed only the F508del heterozygous state. It was further noted
that this patient’s clinical genetic testing at that time consisted of
a limited evaluation for 23 known pathogenic variants; this
evaluation was carried out 4 years prior to the documentation of
Q1476X as a pathogenic variant in 2013 in ClinVar (see Table 2).

Data concordance in clinical and research CFTR variant results
The concordance of clinical CFTR test results from individuals
managed in Geisinger CF clinic and compared to exome
sequencing results is displayed in Fig. 2. The 20 evaluable cases
had 100% concordance.

50,746 TRUE NEGATIVES
Cases without EHR 

evidence of diagnos�c code sugges�ng CF

24 POSITIVES
with bi-allelic 

pathogenic CFTR variants

50,754 NEGATIVES 
without bi-allelic 

pathogenic CFTR variants

32 Cases 
underwent open EHR chart 

review by 2 CF clinical experts
50,778 Sequenced Cohort

1 FALSE NEGATIVE
Case with EHR evidence of diagnos�c       

code sugges�ng CF, sufficient EHR evidence to support 
a CF diagnosis, and one pathogenic CFTR variant 

21 TRUE POSITIVES
Cases with EHR evidence of diagnos�c      

code sugges�ng CF and sufficient EHR evidence to 
support a CF diagnosis

3 (poten�al) FALSE POSITIVES
Cases without EHR evidence of diagnos�c 

code sugges�ng CF and insufficient EHR evidence to 
support a CF diagnosis

1 TRUE NEGATIVE
Case with EHR evidence of diagnos�c       

code sugges�ng CF, insufficient EHR evidence to support 
a CF diagnosis, and one pathogenic CFTR variant

6 TRUE NEGATIVES
Cases with EHR evidence of diagnos�c       

code sugges�ng CF, insufficient EHR evidence to support 
a CF diagnosis, and no pathogenic CFTR variants

Fig. 1 EHR-based Genomic Screening for CF. In a database of 50,778 participants, there were 50,754 negatives, namely cases without bi-allelic
pathogenic CFTR variants, and 24 positives, namely cases with such variants. Amongst the negatives, eight had EHR data suggesting a CF
diagnosis, six of those had no CFTR pathogenic variants, and two had a single pathogenic variant. Open chart review concluded that one of
the heterozygotes was a false negative and one was a true negative. The remainder of the negatives, those without bi-allelic CFTR variants or
EHR data consistent with CF were also considered true negatives. Open chart review was pursued for all 24 positive cases. The diagnosis of CF
was confirmed in 21 cases. In the remaining three cases the diagnosis could not be confirmed due to insufficient available evidence
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Predictive value of exome sequencing
Using the TP, FP, TN, and FN designations described above
(displayed in Fig. 1 and Table 3), we calculated positive predictive
value of 87.50% (69.23 to 95.61), negative predictive value of
99.99% (99.98–100.00), sensitivity of 95.45% (77.16–99.88), and a
specificity of 99.99% (99.98–100.00).

DISCUSSION
CF cases in the MyCode Cohort
In the United States, the prevalence of CF in individuals of
northern European background is 1:3200 (or 0.03%), with a carrier
frequency of one in 28 individuals.6 The 22 confirmed CF cases in

this MyCode cohort yields an empiric prevalence of 1:2300 (or
0.04%) individuals with CF, and we observed a carrier rate of one
in 25 individuals (data not shown).
The positive predictive value (PPV) of screening tests are known

to be influenced by the prevalence of the disease in the
population that is being screened; more prevalent disease tends
to correlate with higher PPV.23 It is therefore noteworthy that the
population prevalence of CF, LQTS, and ARVC are estimated to be:
CF 1:3200, LQTS 1:2500, and AVRC 1:1250.6–8 Although the authors
did not calculate PPV in their manuscripts, a liberal estimate of
PPV using the same definitions for EHR-based TP and FP would be
3.2% for LQTS and 0% for ARVC.1,2 A PPV of 87.5% was found for
CF in our study.
This study carried out a genome-first DNA-based retrospective

analysis of clinical data in a cohort with an average of 14 years of
EHR data and an average age of 63 years. In this setting we
demonstrated excellent predictive value for genetic screening-
based identification of CF.
Newborn screening for CF is usually based on IRT, a non-DNA-

based test. Kloosterboer et al. reported a sensitivity of 80.2% for
the IRT/IRT screening algorithm.24 There have been numerous
strategies proposed to improve the performance characteristics of
the newborn CF screen.25 Vernooij-van Langen et al.26 carried out
screening in 145,499 newborns in the Netherlands. The strategy
that performed the best used two non-DNA screens (IRT and
pancreatitis-associated-protein) followed by a two DNA screens
(panel and sequencing) to get a sensitivity of 95.0%, a specificity
of 100% and a PPV of 87.5%. The current study using DNA
sequencing in a non-newborn cohort had a sensitivity, specificity,
and PPV similar to the Vernooij-van Langen study.
Of the 26 potential cases reviewed with DNA data, 22 were

classified as definite CF, three were not classified as CF due to
insufficient data, and one was classified as CRMS. The individual
with CRMS, was judge a TN. This case had absence of bi-allelic
pathogenic CFTR variants and an EHR showing a negative sweat
test result as part of a diagnostic CF workup. So although EHR
diagnostic coding included a CF diagnosis, that has been revised
to CRMS. It is noteworthy that the DiscovEHR exome sequence
data, array genotype data, and clinical genetic tests results, when
available, were completely concordant.
The exome sequence data identified three possible previously

undiagnosed CF cases that were conservatively judged FP (see
evidence support pathogenicity for these variants with milder
disease phenotypes in Bioinformatic Narrative in the supplements).

CF patients managed in 
GHS CF Clinic

202

Clinical CFTR testing
187

MyCode Volunteer 
Exome sequenced 

20

Non-participant or not yet 
sequenced MyCode

participants
167

Concordant CFTR 
Variant Results

20*

Discordant CFTR 
Variant Results

0

No Clinical CFTR testing
15

Fig. 2 Data concordance in clinical and research CFTR variant results. Twenty of the 22 confirmed CF patients in the cohort also received their
care in the Geisinger CF clinical program and had clinical CF genetic testing results available in their EHR. In the 20 cases with DNA data from
both sources there was 100% pathogenic variant calling concordance

Table 3. Screening predictive statistics

Diagnostic
category

ES positive, n (%) 24 (0.05)

CF TP 21

No CF FP 3a

ES negative, n (%) 50,754 (99.95)

No CF TN 50,753

CF FN 1

Sensitivity, % (95% CI) 95.5 (77.2–99.9)

Specificity, % (95% CI) 99.99 (99.98–100.00)

PPV, % (95% CI) 87.5 (69.2–95.6)

NPV, % (95% CI) 99.99 (99.98–100.00)

Accuracy, % (95% CI) 99.99 (99.98–100.00)

Disease prevalence, %
(95% CI)

0.04 (0.03– 0.07)

Individuals with or without CF are categorized as TP, FP, TN, or FN based on
exome sequence variants previously classified as pathogenic. Screening
predictive statistics are calculated as described in Methods. ES exome
sequence, CF cystic fibrosis, TP true positive, FP false positive, TN true
negative, FN false negative, PPV positive predictive value, NPV negative
predictive value, 95% CI 95% confidence interval. a“potential” false positive
– insufficient EHR data to rule in or rule out diagnosis
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In one of these individuals there had been clinical suspicion of CF
and a record of completed clinical genetic testing for CF at an
outside institution. The other two (cases 24 and 25) had no
evidence of clinical testing for CF in their EHR, but exome
sequencing identified bi-allelic pathogenic variants (F508del and
L206W), which have been classified as a CF-causing combination
in both the CFTR2 and ClinVar databases.

Improving variant databases
This work relied on the existence of robust variant interpretation
databases, and the importance of maintaining and expanding
these datasets was highlighted by two of the cases. The clinical
testing of case 26 with the heterozygous combination of F508del
and Q1476X in 2009 failed to identify a second pathogenic allele;
her second pathogenic allele identified in this study was first
entered into public data in 2013.
One previously not observed variant that we encountered was

R1239S; this variant was found in combination with F508del in
case 22 (designated FN). Designation of R1239S as a newly
recognized pathogenic variant is supported by our patient’s CF
diagnosis as well as the bioinformatics analysis in Table S2, and its
addition to ClinVar through this work may help future variant
interpretation.
CF is a disease that is most prevalent in people of European

ancestry, and the MyCode cohort has 98% European-Americans
(see Table S1). It will be important to seek replication of our
findings for CFTR-CF in more diverse cohorts where there is a
greater potential for additional pathogenic variants not currently
in the databases.

Modeling genome-first population screening using EHRs
Growing enthusiasm for using DNA-based screening is tempered
by legitimate concerns that this could lead to over-diagnosis and
over-estimates of risk.27 As discussed above, some early attempts
to use DNA-based screening of EHR data in cardiac genetic
conditions appear to lend support to these concerns. However,
the landmark publications on LQTS and AVRC highlight significant
limitations linked to those conditions, including: (1) expert
disputes over what to interpret as pathogenic genetic variants,
(2) a lack of targeted condition-specific diagnostic evaluations in
the EHR data associated with cases presenting with partial
phenotypes (i.e. minor diagnostic criteria), and (3) the likelihood
that we currently have an incomplete understanding of condition-
specific genotype-phenotype correlations (i.e. questions of critical
environmental factors for ARVC).1,2

With regard to these limitations in the setting of these two
cardiogenetic conditions, the first is being overcome through
efforts such as ClinVar and ClinGen,28 the second can be
overcome in clinical settings where patients are called back for
more extensive phenotyping,29 and the third will require more
research into basic genotype-phenotype correlation.2

In the case of CF, examined in this work, the limitations
observed in the LQTS and ARVC examples are largely overcome
through the use of: expert consensus on pathogenic CFTR variant
calls, a clinical data source (i.e. Geisinger’s EHR) where compre-
hensive diagnostic phenotyping and clinical genetic testing of
suspected cases is common, and a gene-disease example with
clearly established diagnostic criteria that are routinely inter-
rogated by expert clinicians in suspected cases. In this setting
there is little evidence of over-estimate of CF risk given the finding
that 87.5% (21 out of 24) of those who screened positive had
confirmed CF, and there is little expectation of over-diagnosis
since the remaining cases who lack sufficient diagnostic evidence
could potentially undergo a clinical evaluation and secondary
screening with sweat chloride testing to reach a clear conclusion.
Prior to this CF example, given the data on LQTS and AVRC, it

would have been tempting to conclude that poor PPVs were

inescapable when pursuing population-based DNA-screening for
monogenic disease risk in unselected patient groups. However,
since this work demonstrates that a desirable PPV can be attained
for CF, further research focused on a deeper examination of the
factors surrounding these three conditions that result in dramatic
differences in PPV should be pursued.
CF is a particularly well-studied monogenic condition. CF is a

recessively inherited disorder with nearly 100% penetrance in
homozygous or compound heterozygous individuals. Proactive
efforts aimed at case identification and diagnosis have occurred
within healthcare for more than two decades. A large number of
pathogenic variations in the CFTR gene are known, the
molecular consequences of those changes are understood,
and expertly curated publically available databases containing
these variants exist. The sweat chloride test has been in use for
60 years.9,30,31 This routinely employed test provides non-DNA-
based laboratory evidence of CFTR dysfunction and can be
employed to confirm CF diagnoses. CF is clinically distinct
without commonly encountered phenocopies.32 The range of
clinical manifestations of CF including the mild end of the
spectrum is well studied.
Together these features have allowed us to test genome-first

screening through a cross-sectional study design using the
Geisinger EHR, which has been in place for over 20 years, as the
sole clinical data source.
With this design and in this setting, we were able to measure

both the PPV and the NPV, as well as the sensitivity and specificity
of using DNA variant detection as a primary screening technique.
Our strict definition of FP led to 3 FP cases amongst 24 positives,
even though 2 of those 3 are probable CF and would likely be
converted to TP on follow-up evaluation. Therefore, the measured
PPV of 87.5% for genome-first case detection of CF in this cohort is
perhaps mildly suppressed by our retrospective EHR-based study
design and demonstrates the need for condition-specific pheno-
typing beyond the available EHR data for incidental or secondary
genetic findings.
CF likely constitutes a gold-standard for the performance of

genome-first case identification for monogenetic conditions in
population cohorts where the individuals tested have a low prior
probability. It is likely that the prospective use of genome-first
screening will vary in its diagnostic accuracy and predictive value
depending on the cohort and the evidence-base surrounding the
chosen gene-condition pair. Importantly, the application of
genome-first screening will need to accommodate for additional
variables such as age-related penetrance (e.g. for cancer or heart
disease) in those gene-condition pairs where it is a major factor
and there are no secondary clinical tests of gene function such as
the sweat chloride test.
It seems likely that an evidence-based genome-first gene-

condition pair list will be a more restricted list of gene-condition
pairs compared to the list for secondary findings within data
generated for unrelated diagnoses.33,34 Minimum gene-condition
test performance standards may be needed in order to support
the employment of genome-first screening outside of the research
setting. The development of expert consensus criteria could help
establish when a gene-condition pair has the sufficient evidence-
base to support population screening.
Since there is an existing population screen for CF that is

effective and does not use DNA as the primary screening tool, CF
may be amongst the conditions least likely to see significant
changes in diagnoses if a DNA-based population screening were
pursued. However, using CF as an exemplar in this finding, we
demonstrate that an accurate ascertainment of the predictive
value of DNA-based screening requires condition-specific pheno-
typing beyond available EHR data.
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METHODS
Cohort description
The study cohort consisted of individuals who consented to participate in
MyCode, an Institutional Review Board (IRB)-approved program to create a
biorepository of blood, serum, and DNA samples for broad research use,
including genomic analysis. This study was reviewed by the Geisinger IRB
and determined to not be human subjects research as defined in
45CFR46.102(f) in written consent (Study #2017–054). Data obtained from
analysis of MyCode samples is linked to Geisinger EHR; study participants
have a median of 14 years of EHR data, providing a longitudinal database
of clinical diagnosis, procedures, medications, and laboratory results. As
part of the DiscovEHR collaboration between Geisinger and the Regeneron
Genetics Center, DNA samples undergo microarray genotyping and whole
exome sequencing (WES). The data analyzed for this study consisted of
exome variants from the first 50,778 participants, including children. The
cohort characteristics have been described previously18 and are summar-
ized in Table S1. This study was approved by the Geisinger Institutional
Review Board (IRB).

Genotype analysis
WES for the DiscovEHR collaboration has been described previously.21,35

WES variants were confirmed using genotyping data when the markers
were available. The same DNA samples were genotyped using the Infinium
OmniExpressExome microarray Beadchip (Illumina, San Diego, CA).
Following project level quality controls (genotype and sample call rates
>98%, Hardy-Weinberg equilibrium p > 1e-06, and allelic counts greater
than or equal to 2), 59,273 samples and 889,966 variants remained for
downstream analysis. Of the CFTR variants identified in the patients in the
present study, a subset (Q39X, R117H, L206W, G542X, G551D, S1235R,
c.489+ 1 G>T, and c.3718–2477 C>T) was available as markers on the
BeadChip; all samples with markers on the BeadChip confirmed WES calls,
providing a confirmation of the patient genotype status.

Variant annotation and pathogenicity assessment
Sequence variants were annotated to coding DNA and functional proteins
using the NCBI RefSeq Gene definitions, selecting for the transcript with
the longest coding sequence among the transcripts with a Locus
Reference Genome (LRG) annotation, and excluding transcripts without
annotated start and stop codons (SNP & Variation Suite, Golden Helix,
Bozeman, MT).36,37 All variants were transcribed to RefSeq NM_000492.3
and translated to NP_000483.3.
The Clinical and Functional Translation of CFTR database (CFTR2, as of 31

August 2018) and the ClinVar database (as of September 15, 2018) were
used as the source of validated pathogenic and non-pathogenic CFTR
variants.38,39

EHR diagnostic code review
CF ICD10 codes (E84.0, CF with pulmonary manifestations; E84.11,
meconium ileus in CF; E84.19, CF with other intestinal manifestations;
E84.8, CF with other manifestations; E84.9, CF, unspecified) identified all
EHRs among the 50,778 participants who had a relevant CF diagnosis. This
list was cross referenced with the list of cases with bi-allelic pathogenic
CFTR variants; cases not previously identified through the variant process
were sent for open chart review by 2 CF experts (described below) to
adjudicate their CF diagnosis.

Clinical open chart review
Twenty-six cases with either pathogenic bi-allelic CFTR variants identified
by DNA analysis (WES plus array), or a CF diagnosis in the EHR without
pathogenic bi-allelic CFTR variants underwent open chart review by
experienced CF clinicians (CF physician and CF program nurse coordi-
nator). All relevant clinical data were extracted from the EHR, including
clinical history as available in progress notes, diagnoses, biochemical
parameters, commercial genetic testing, prescription history, spirometry
results, and radiographic studies. CF diagnoses was confirmed when an
individual had both a clinical presentation of the disease and evidence of
CFTR dysfunction or abundant clinical evidence of CF.
CF was also considered present in the following: [1] CFTR dysfunction,

defined as sweat chloride >60mmol/L, and clinical CFTR genetic analysis
showing a combination of two CF-causing CFTR pathogenic variants found
in CFTR2 or ClinVar, as per current guidelines from the CF Foundation, [2] if

absent sweat chloride testing then CF diagnosis required genetics that
were consistent with CF causing pathogenic variants and consistent clinical
features, such as longitudinal care by CF physicians, bronchiectasis, and
exocrine pancreatic insufficiency. No diagnosis was assumed in those
patients lacking sufficient clinical information, irrespective of genetic
results.

Concordance of CFTR variant identification in clinic testing and
research exome testing
The list of patients currently managed in the Geisinger CF clinic and their
clinical genetic test results were extracted from EHR. The subset who were
sequenced and genotyped as volunteers in MyCode were identified.
Correlation of variant findings in clinical testing and research sequencing
was determined. Clinical genetic testing data was not available on cases of
confirmed CF where disease testing and management was carried out at a
non-Geisinger facility.

Statistical analysis and graphs
Standard statistical analyses and all data were plotted using GraphPad
Prism (La Jolla, CA).
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