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Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental
laboratories, thanks to their fast and non-destructive nature able to capture materials’ features as
spectroscopic fingerprints. Nevertheless, these measurements frequently need theoretical and
computational support in order to unambiguously decipher and assign complex spectra. Linear-
response theory provides an effective way to obtain the higher-order derivatives needed, but its
applicability to modern exchange-correlation functionals and pseudopotential formalism remains
limited. Here, we devise an automated, open-source, user-friendly approach based on density-
functional theory and theelectric-enthalpy functional to allowseamless calculation from first principles
of infrared absorption and reflectivity, together with zone-center phonons, static dielectric tensor, and
Raman spectra. By employing a finite-displacement and finite-field approach, we allow for the use of
any functional, as well as an efficient treatment of large low-symmetry structures. Additionally, we
propose a simple scheme for efficiently sampling the Brillouin zone at different electric fields. To
demonstrate the capabilities of the present approach, we study ferroelectric LiNbO3 crystal as a
paradigmatic example, and predict infrared and Raman spectra using various (semi)local, Hubbard
corrected, andhybrid functionals.Our results also showhowPBE0and extendedHubbard functionals
(PBEsol+U+V) yield for this case thebestmatch in termof peakpositions and intensities, respectively.

Vibrational spectroscopies are one of the most powerful, fast and reliable
methods formaterials’ structure identification and characterization.Among
the different techniques probing atomic motions, infrared (IR) absorption
and Raman experiments are widespread in most experimental setups,
thanks to their low cost and precision in identifying microscopic features.
Despite these advantages, data interpretation for many cases calls for the-
oretical and computational support. Density-functional theory (DFT) is
most often employed as a reliable framework for accurate predictions of
such spectra, providing inprinciple exact estimates of the second- and third-
order derivatives of the energy functional that are needed to predict these
vibrational spectra. Over the past decade, many techniques have been
developed to efficiently obtain non-resonant spectra of insulating crystals,
such as linear-response theory1–5 for infrared absorption, second-order
response of the density matrix6 and the 2n+ 1 theorem7 for Raman cou-
plings.While being elegant and attractive, thesemethods come at the cost of
rather complex code implementations, limiting in practice applications to
selected semi-local functionals and often only to norm-conserving

pseudopotentials. This is especially the case for the third-order derivativesof
the total energy, required for the Raman calculations. One common expe-
dient for the latter is to resort to finite differences of the dielectric tensor
upon atomic displacements, computed using density-functional perturba-
tion theory (DFPT)8,9. However, this approach scales in general as 6Natwith
the number of atomsNat, a burden in low-symmetry systems, and becomes
out of reach for the non-linear optical susceptibility tensor, which has been
shown to be fundamental to achieve good agreement for Raman intensities
both in single crystals10 and powder spectra11. An alternative framework for
carrying out such derivatives is the finite numerical differentiation of forces
and polarization upon the application of a homogeneous electric field7,12–15.
With this technique, along with finite displacements16, one can compute
straightforwardly all the quantities needed for IR andRaman spectra, aswell
as allowing to use any functional (Hubbard corrected, hybrids, ...), and
pseudopotential formalism (norm-conserving, ultrasoft, PAW)17 with little
effort. Furthermore, the use of finite fields overcomes the expensive com-
putation and poor scaling of the finite dielectric tensor approach, allowing
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for the study of complex materials such as amorphous and defective
structures18–20. In fact, with the present approach, one would need to per-
form typically only 12 ground-state calculations in the presence of a
homogeneous electric field (see Eq. (19) and related discussion). While
appealing, this avenuehas seen scarce applicability, possiblydue to themany
steps and pitfalls related to the underlying algorithm, which can be highly
non-trivial even for expert users.

A key step forward is to streamline all of these operations through
a modern workflow manager, adhering in passing to the FAIR21

principles for data sharing, while being able of automatically sub-
mitting, parsing, and processing the outputs generated by multiple
calculations. In this study, we present a comprehensive formulation
for a unified finite-displacement and finite-field approach, along with
efficient Brillouin zone sampling, and encode this formalism in a self-
contained Python package that operates within the AiiDA
framework22,23, offering a scalable computational infrastructure for
automated and reproducible workflows and data provenance. To
showcase these capabilities, we demonstrate its effectiveness in pre-
dicting the infrared and Raman spectra of LiNbO3 using seven dif-
ferent functionals: LDA, PBE, PBEsol, PBEsol+U, PBEsol+U+V,
PBE0, and HSE06.

Results
The finite-displacement and finite-field method
Infrared and Raman spectroscopy are investigation methods probing
the atomic vibrations of materials. In both techniques, a source of light
shines on the sample, and the incident photons are either absorbed or
scattered by the material. In IR experiments, peaks of the absorption
spectra correspond to collective atomic motions in resonance with
that frequency, corresponding to long-wavelength polar optical
phonons. Raman spectroscopy records instead a scattered frequency
ωS; in this case, the excited lattice vibration corresponds to the
shift ± ων = ωL− ωS from the incoming laser frequency ωL, where the
plust (minus) sign refers to (anti-)Stokes process for which a phonon
is created (annihilated). Far from resonance the two phenomena can
be captured by the change in polarization P and the change in sus-
ceptibility χ, for IR and Raman respectively, leading to different
selection rules24 for the activated phonon modes which ultimately
provide a comprehensive fingerprint of the material. The former
mechanism is coupled to the Born effective charge Z�

I
5,25 of an atom I in

the unit cell, and the latter instead to the Raman tensor defined as dχ/
dτI in the Placzek approximation26–28, where χ is the electronic sus-
ceptibility tensor and τI the atomic displacement. In terms of these
quantities, the absorption intensities in the infrared regime of a nor-
mal mode ν with angular frequency ων are:

IνIR ¼ j�Zνj2
ων

; ð1Þ

associated to the imaginary part of the complex dielectric function5,18,29

ϵijðωÞ ¼ ϵ1ij þ 4π
Ω

X
ν

�Zν

i
�Zν

j

ω2
ν � ω2

; ð2Þ

which is connected to other measurable quantities, such as the energy loss
function and reflectivity spectrum5,18,29 (ϵ1ij is the high-frequency dielectric
tensor). The amplitudes are defined via the polarization vector

�Zν

i ¼
X
I;k

Z�
I;ik

eνI;kffiffiffiffiffiffi
mI

p ; ð3Þ

where eνI;k is the phonon eigenvector of the mode ν, describing the
collective dynamics of atoms (index I) in space (index k). In parti-
cular, the relationship to the reflectivity RðωÞ of optical waves
oriented perpendicularly to the surface and having their electric field

along a crystal optical axis q is

RðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ϵq̂ðωÞ

q
� 1ffiffiffiffiffiffiffiffiffiffiffi

ϵq̂ðωÞ
q

þ 1

�������
�������; ð4Þ

where ϵq̂ðωÞ ¼ q̂ � ϵðωÞ � q̂ and q̂ is the versor of q. The Raman scattering
intensities are instead, in the Placzek approximation26,27

IνRaman /
ω4
S

ων

ðnνðTÞ þ 1ÞjeS � αν � eLj2 ð5Þ

for Stokes processes for which ωS =ωL−ων, and where eL,S represent the
photon polarization vectors, orthogonal to their propagation vectors kL,S,
and nν(T) is the Bose-Einstein occupation function; αν is the Raman
susceptibility tensor

ανij ¼
ffiffiffiffi
Ω

p X
I;k

∂χij
∂τI;k

eνI;kffiffiffiffiffiffi
mI

p ; ð6Þ

wheremI is themass of the atom I andΩ the volume of the unit cell. In anti-
Stokes processes, the prefactor (nν(T)+ 1)must be replacedwith nν(T), and
ωS =ωL+ων. The ratio of Stokes and anti-Stokes peak intensities is
therefore temperature dependent, and, interestingly, can be used as a
microscopic thermometer30. In the harmonic approximation, the phonon
normal modes are obtained from the interatomic force constants (IFCs)

ΦIJ;ijða; bÞ ¼
∂2E

∂τaI;i∂τ
b
J;j

; ð7Þ

where E is the potential-energy surface, and a and b indicate the periodic
images with respect to the origin (i.e., the unit cell). The IFCs can be written
in terms of first-order derivative of atomic forces FI with respect to atomic
displacements, and thus can also be obtained using a set of small
displacement configurations in supercells, as discussed in the literature5,16,
rather than the more efficient density-functional perturbation theory
approach. One can exploit periodic-boundary conditions to conveniently
Fourier transform the IFCs, and rewrite the latter as a function of the
wavevector q; the mass-scaled of this Fourier transform is the dynamical
matrix describing the harmonic ion dynamics

DIJ;ijðqÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffimImJ

p
X
b

ΦIJ;ijð0; bÞeiq�ðR
b
J�R0

I Þ; ð8Þ

whereRb
J is the equilibriumposition of atom J in the l-th unit cell image. The

diagonalization of the dynamical matrix leads to the phonon frequencies
and eigenvectors

X
J;j

DIJ;ijðqÞeνJ;jðqÞ ¼ ½ωνðqÞ�2eνI;iðqÞ: ð9Þ

IR and Raman spectroscopies utilize photons which carry a negligible
momentum q ≈ 0, thus only probing phonons in the vicinity of the zone
center. For exactly q = 0, the phase factor in Eq. (8) becomes the unit,
allowing for the calculation of the IFCs via finite-displacements in the
primitive cell only, as thedisplacement patterns are defineduniquely in such
cell. Nevertheless, the evaluation of the dynamical matrix in the long-
wavelength limit, i.e., when q→ 0, in the case of polar materials requires a
proper treatment of its non-analytical behavior4,5, accounting for the
coupling betweenphononpolarizationdensities and electricfields, that adds
an extra cost for displacements that create a macroscopic electric field,
absent in periodic-boundary calculations of the primitive cell only. The
analytical shape of this coupling depends on the dimensionality of the
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material4,5,31,32 and on the multipolar order33. At the dipolar level, the
dynamical matrix in such limit reads

DIJ;ijðq ! 0Þ ¼ DIJ;ijðq ¼ 0Þ þ DNA
IJ;ijðqÞ ð10Þ

where the non-analytical contribution is

DNA
IJ;ijðqÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffimImJ
p WdðqÞ

Ω

X
l

qlZ
�
I;li

 ! X
l0

ql0Z
�
J;l0 j

 !" #
; ð11Þ

valid for q→ 0 and where Wd is the Coulomb screening whose shape
depends on the dimensionality d (see e.g., refs. 31,32). The directional
dependence of the polar optical phonon wavevector q of the dynamical
matrix gives rise to a shift in frequency and a change in eigenvector com-
pared to the transverse optical modes (i.e., �ZνðqÞ � q ¼ 0), giving rise to the
well known splitting between the longitudinal optical (LO) and transverse
optical (TO) modes25; this shift is largest when �ZνðqÞ k q. Analogously to
the IFCs, the Born effective charges and Raman tensors can also be defined
as derivatives of forceswith respect to amacroscopic electric field E4. For the
former we have:

Z�
I;ij ¼

∂FI;j

∂Ei

ð12Þ

while for the latter, the Raman tensor reads:

∂χij
∂τI;k

¼ 1
Ω

∂2FI;k

∂Ei∂Ej
: ð13Þ

In a finite-difference scheme, this means that a small homogeneous electric
field must be applied in order to carry out the numerical differentiation. In
periodic-boundary conditions, this can be accomplished by extending the
energy functionalE[ψ] to include a term12,13,34 accounting for the coupling of
the electric field and the total polarization of the system (often referred as
electric-enthalpy functional):

F ½ψ; E� ¼ E½ψ� �Ω E � ½Pion þ Pel½ψ��; ð14Þ

wherePion andPel are the ionic and electronic polarizations, respectively; the
latter being described by the modern theory of polarization35,36. Such
functional, while not bounded from below, admits local minima repre-
senting self-consistent stationary solutions12,13, if E is properly chosen. We
note that in many implementations (such as the present one) the electric
enthalpy functional is not directly minimized37,38, but it is recast in a non-
local operator which couples neighboring k-points and which is solved self-
consistently among all k-points (see refs. 39–41 for details). The self-consistent
solution of the functional guarantees the simultaneous evaluation of
Hellmann-Feynman forces, and electronic polarization, at convergence. As
a consequence, the electronic polarization (that comes for free) can be
exploited to extract its first and second-order derivatives with respect to an
electric field7,13,18. These correspond respectively to the high-frequency
dielectric tensor ϵ∞, used to calculate the screened Coulomb interaction in
Eq. (11)4,31,32, the full complex dielctric tensor (Eq. (4)), and the non-linear
optical susceptibility χ(2), key in non-centrosymmetric crystals where the
Fröhlich contribution (seeEq. (17)) to theRaman tensor couldbe sizable10,11.
Their relationship with the electronic polarization derivatives is as follows:

ϵ1ij ¼ δij þ
4π
Ω

∂Pel
i

∂Ej
; ð15Þ

χð2Þijk ¼ 2π
Ω

∂2Pel
i

∂Ej∂Ek
: ð16Þ

For non-vanishing χ(2), the Raman tensor in 3D solids is modified as
follows10,11,42:

∂χij
∂τI;k

ðqÞ ¼
∂χij
∂τI;k

� 8π
Ω

P
lqlZ

�
I;lkP

s;s0qsϵ
1
ss0 qs0

X
l0

χð2Þijl0 ql0 ; ð17Þ

which gives a second q dependence contribution to the Raman spectra
intensities (the first being given by the change in phonon eigenvectors and
frequencies).

Numerical differentiation
The possibility of consistently describing homogenoues electric fields allows
to access any derivative in atomic displacements and electric field, while
being easily applicable to advanced functionals and pseudopotential
formalisms15,17.We calculate here the tensors for infrared and Raman cross-
sections using a central derivative formulation. These derivatives are per-
formed around E ¼ 0, which resembles the common experimental setup
where an external electromagnetic source is negligible, either natural or
artificial. Indicating (by dropping the indices) as A either a force or the
electronic polarization, we calculate its m-th derivatives with a numerical
accuracy of n-th order via the discretization formula:

∂mA
∂Em

i

¼ 1
ΔEm

i

Xn=2
l¼�n=2

cml A l � ΔEi

� �þOðΔEn
i Þ; ð18Þ

where ΔEi>0 is the small electric field, which we refer to as the finite
difference step, along the i-th Cartesian direction, and cml are the central
derivative coefficients that can be automatically found using the Fornberg’s
algorithm43. The discretization is performed using uniform steps such that
l ¼ � n

2 ; . . . ; 0; . . . ;
n
2 is always an integer number and the applied fields are

evenly spaced (see Fig. 1a). This is at variance with the approach of calcu-
lating gradients for Bravais lattices with finite differences of ref. 44, to use
standard expressions for the higher-order andmixed derivatives. Formixed
second-order derivatives of A, i.e., for the Raman and non-linear
susceptibility tensors, we exploit a formula devised in ref. 18 to reduce the
number of calculations: we assign Ei ¼ E j ¼ λ and express the mixed
derivative as:

∂2A
∂Ei∂Ej

¼ 1
2

∂2A

∂λ2
� ∂2A

∂E2
i

� ∂2A

∂E2
j

" #
; ð19Þ

where eachsecond-orderderivative is evaluated throughEq. (18); this canbe
visualized schematically in Fig. 1(a). For example, using a 2nd-order
numerical accuracy, we would need only 12 self-consistent field (SCF)
calculations with a non-zero electric (ΔE-SCF) field to determine all the
tensors’ components needed both for IR and Raman spectra, even in low-
symmetry systems such as amorphous materials18,20; this number can be
reduced if one exploits the symmetries of the material. In fact, there could
exist symmetries belonging to the point group of the crystal that transform
an electric field direction into another. For example, if the crystal satisfies
inversion symmetry, this is sufficient to reduce by a half the number of
ΔE-SCF calculations needed, since forces and electronic polarization
produced by ΔEi are connected by a similarity transformation to the one
produced by �ΔEi; keeping the previous numerical example, we would
need then just 6ΔE-SCFcalculations. For highly-symmetric crystals, such as
cubic Si, only two independent electric field directions must be evaluated
(e.g., along Z and the mixed direction XZ); in this case, the number of
calculations reduces further to only 2. In general, the number of ΔE-SCF
calculations needed scales with the numerical accuracy n of the central
formula asN n ¼ 6 � n, not accounting for symmetries. Interestingly, it can
be noticed from Fig. 1 that the evaluation of the numerical derivatives at
n > 2provides automatically derivatives at lower accuracyn; this is helpful to
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check the convergence a posteriori with respect to the finite step size ΔE.
Some benchmarks and illustrations on a prototypical material are provided
in the Supplementary Discussion.

While this approach is advantageous, we also highlight that the choice
of the field magnitude is restricted. As already stated before, the electric-
enthalpy functional (14) has no global minimum, and long-lived meta-
stable states exist only belowa certain criticalfieldEc, whereZener tunneling
is suppressed12,34.Anestimateof suchcritical value canbeperformedusing12:

ejEc � aij ’ Egap=Ni ð20Þ

where e is the electric charge, ai the lattice vectors defining the unit cell, Egap
the electronic band gap, and Ni the number of k-points sampling the
Brillouin zone in the i-th crystal direction. For semiconductors with small
band gaps this critical field can be very small, limiting in practice the
convergence due to numerical noise. In these circumstances, a balancemust
be found; nevertheless, for the majority of cases this does not represent an
actual limitation. The last subtlety lies in the choice of the logarithm branch
when calculating the Berry-phase polarization; a detailed explanation of the
issue along with practical solutions can be found in the Supplementary
Methods.

Directional sampling
An additional subtle issue related to the Berry phase formalism used in the
electric-enthalpy formulation is the dense sampling of the Brillouin zone
required to achieve well converged values of the polarization. In fact, the
polarization is a k-space integral of a Berry connection35,36, and the dis-
cretized formula for the gradient converges slowly with respect to the
k-point distance14 (see also SupplementaryDiscussion).One can express the
electronic polarization using the string-averaged discretized Berry phase
formulation35,36 along the direction of a reciprocal lattice vector bi as:

Pel � bi ¼
2e

N ðiÞ
?Ω

XN ðiÞ
?

l¼1

Im ln
YNðiÞ
k �1

j¼0

det½SðkðiÞl;j ; kðiÞl;jþ1Þ�: ð21Þ

Here, Snmðk; k0Þ ¼ hunkjumk0 i represents the scalar product between
Bloch’s state of band n and k-point k, and state of band m and k-point k0.

Assigningmomentarily i = 1 tobi as awayof example, thenN ð1Þ
? ¼ N2 ×N3

is the number of k-point strings parallel to b1, each such string having
N ð1Þ

k ¼ N1 k-points defined as k
ð1Þ
l;j ¼ kð1Þl þ ðj=N1Þb1, where kð1Þl belongs

to the plane (b2, b3), corresponding to a slice of the full meshN1 ×N2 ×N3,
and is indexed by l. The total electronic polarization is then given by

Pel ¼ 1
2π

X3
i¼1

aiðPel � biÞ; ð22Þ

where ai are the direct lattice vectors. In this way, the calculation of the
polarization in real space requires to evaluate Eq. (21) for each (reciprocal)
lattice vector and on top of very dense meshes. Once the self-consistent
electronic charge-density is found, hence the Kohn-Sham Hamiltonian is
fixed, one can increase straightforwardly the amount of k-points needed for
accurate polarization calculations, bydiagonalizingnon self-consistently the
Kohn-Sham Hamiltonian at the desired grid and thus avoiding the
expensive self-consistent cycle. Yet, such diagonalization can be computa-
tionally demanding. A smart solution is to compute each Pel ⋅ bi
contribution at a different sampling, noticing that the right-hand side of
Eq. (21) converges faster with respect to N ðiÞ

? , and consequently one
can simply increase the number of k-points along bi, i.e., by increasing Ni

only. This allows to scale linearly with the number of points in the string,
instead of increasing all Ni (cubic scaling), at the price of performing three
calculations instead of a single, overallmore expensive, calculation on a very
dense mesh. Importantly, one needs to carefully check convergence with
respect to both the number of “orthogonal” k-pointsNðiÞ

? and the number of
k-points per string N ðiÞ

k ¼ Ni. Unfortunately, in the case of a finite electric
field, a non-local operatorwhichcouples neighboring k-points is introduced
in the Hamiltonian39–41. This means that, on one hand, one cannot simply
diagonalize in a post-processing step the Hamiltonian, and on the other
hand, one is in principle not justified to split the calculation in three parts as
formerly explained. We then seek a sampling strategy that can
simultaneously alleviate the k-points scaling, and that can still provide
accurate polarizations. Themain idea is to perform a single calculation with
a special k-point grid. We can exploit the fact that we are interested in
calculating the induced polarization by an homogeneous electric field,
contrary to other type of calculations where the direction of the induced
polarization, e.g., due to atomic displacements, is less obvious (one can still

Fig. 1 | Illustration of the numerical derivative discretization and of the appli-
cation of the directional sampling scheme applied to a simple lattice. a Schematic
illustration of the discretization needed in Eqs. (18) and (19) for derivatives with
respect to the electric field in the directions i = {x, y} and for mixed derivatives along
(λ, λ). The black dots represent the applied electric fields used in the SCF calculations
to evaluate the electric-field-dependent A (forces or polarization) used in Eqs. (18)
and (19), while the dashed colored circles are associated to the accuracy n achieved in
the numerical differentiation (here shown up to order n = 6). b, c Square reciprocal
lattice showing possible k-point samplings (black dots) of the BZ generated via Eqs.
(23)–(24) for the electric field E shown in crystal coordinates. b shows the case when
the electric field is parallel to a lattice vector; in this scenario, more k-points are

generated along such direction, by using d∥, where the induced polarization is
expected to be larger. The increased number of k-points in such direction improves
the convergence of the calculated polarization via Eq. (21). A more accurate
polarization can then be obtained by decreasing the value of d∥, which in this case
turns to linearly increasing the number of k-points. c shows the special case
~E1 ¼ ~E2 � ~E= ffiffiffi

2
p

, where the induced polarization is expected along the mixed
direction. Since the polarization is a sum of the polarization projected along b1 and
b2, Eq. (22), then the k-points are increased along both directions by using d∥. The
generated mesh is equivalent to a uniformmesh defined by a single k-point distance
d≡ d∥. In this case, when more accurate values are desired, the number of k-points
will scale quadratically when decreasing d∥.
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exploit the strategy proposed above, if an electric field is absent). Let’s
assume that the induced polarization by an electric field is larger in the
direction of the applied electric field,meaningwe can focus on computing it
more accurately along such direction, and mimic the strategy reported
previously, but using a sole, electric field-dependent, directional k-point
mesh. To explain this further, let ~E ¼ ð~E1;

~E2;
~E3Þ be the electric field in the

lattice reference system. The product Pel ⋅ bi is then expected to be larger
where ~Ei is larger, and, as a consequence, one can increase NðiÞ

k ¼ Ni
weighted upon the relative value of ~Ei with respect to the the other
components of ~E. To automate the choice of Ni in a weighted manner, we
start by defining two quantities: an orthogonal and a parallel k-point
distance, d⊥ and d∥, respectively. The orthogonal distance represents a
minimum distance between k-points in the BZ, thus usually producing
smallNi - this quantity is used as a reference minimum forNi in the unique
mesh, resembling essentially Ni employed for orthogonal meshes in the
three calculations strategy. The parallel distance instead is used to define a
weighted Ni which should be greater than its reference minimum, defined
previously by the orthogonal distance, when ~Ei is considered large enough
(see Fig. 1b, c). To quantify the relative magnitude of ~Ei, and consequently
choosing the weighting, we assign the following weights:

wi ¼
j~Eij

maxfj~E1j; j~E2j; j~E3jg
; ð23Þ

aiming at increasingNi for lattice directions where the electric field is larger,
and where we expect the induced electric polarization to be greater. Finally,

we can assign the number Ni of the mesh as:

Ni ¼ max wi
jbij
dk

;
jbij
d?

( )
: ð24Þ

This methodology is easy to implement and generates meshes that sig-
nificantly reduce the number of k-points needed instead when using a
uniform sampling, i.e., Ni = ∣bi∣/d, where d is a constant k-points distance
(see Supplementary Discussion for detailed numerical experiments). This
scheme allows for linear scaling of k-points with respect to 1/d∥ when the
applied electric field is perfectly aligned along one of the lattice vectors, as it
can be seen in the simple case of Fig. 1b. In orthorombic systems this is
particularly convenient, as the three lattice vectors are parallel to the three
Cartesian axis. In general, when the electric field direction is not parallel to
one of the lattice vectors, the number of k-points scales as a power of 1/d∥. In
the extreme case when ~E1 ¼ ~E2 ¼ ~E3, then the number of k-points will
scale cubically with respect to the parallel distance, equivalent to a uniform
mesh defined by a single k-point distance d≡ d∥. This is schematically
depicted in Fig. 1c for a simple case in 2D.

Computational workflow
In this section,wefinally present the computationalworkflows that allows to
simulate the desired spectra—infrared, Raman, or both—in an automated
fashion. We designed two main independent workflows as AiiDA
WorkChains22: one carryingout solely thefinitedisplacement calculations

Fig. 2 | Schematic representation of the automated workflow for the calculation
of infrared and Raman spectra. Computational workflow scheme of the IRa-
manSpectraWorckChain and of its sub-workflows, the Dielec-
tricWorkChain and the PhononWorkChain. The inputs can be easily, fully

defined via the get_builder_from_protocol while specifying only a
StructureData and a Code. The black circles on top of boxes mean that the
calculation starts using charge density and wavefunctions from a previous
calculation.
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for phonon modes to evaluate the IFCs, which we called Pho-
nonWorkChain, and the other for the mixed total-energy derivatives via
the homogeneous electric fields, the DielectricWorkChain. When
joined together, the above two provide the IRamanSpec-
traWorkChain, as schematically outlined in Fig. 2.

The IRamanSpectraWorkChain takes as inputs a structure, a
code and other details on how to run the workflows (e.g., SCF parameters,
wall-time, parallelization options, and so on). These information are then
split and/or shared between the two sub-workflows. Both start running an
initial SCF ground-state calculation,meant to produce the charge density ρ0
andwavefunctions {ψi} that will be used as a starting point for the next runs.
We represent this restart throughout the flowchart of Fig. 2 using a rotating
white arrow in a black circle, and we use the dashed arrows to indicate that
thefileshave been copiedover to a freshnew folder.When these calculations
are finished, the PhononWorkChain generates the structures with irre-
ducible atomic displacements, using Phonopy16, and computes their for-
ces. The latter are then used to produce the matrix of IFCs in the unit cell
(although the PhononWorkChain is designed to compute the IFCs in a
generic supercell), which are employed in a post-processing step to obtain
the phonon frequencies and eigenvectors by diagonalizing the corre-
sponding dynamical matrix, Eq. (10), for q→ 0. In parallel, the Die-
lectricWorkChain evaluates Ec through a non-SCF calculation and
extracts the numerical accuracy n and the electric field step ΔE, as follows:
when the critical value is larger than 10−4 Ry a.u. (we use Rydberg atomic
units; 1 Ry a.u. ≈ 36.3609 V/Å), a 4th-order numerical expansion is chosen,
otherwise a 2nd order is used. The 4th-order allows to achieve a greater
numerical accuracy for finite differences; thus, it is utilized whenever it is
possible to apply an electricfield above threshold. If the electricfield that can
be applied is smaller than 10−4 Ry a.u., a 2nd-order expansion is sufficient,
thus avoiding calculations that would be affected by too much numerical
noise28; the amplitude of the electric field step in fact may result too small to
produce significant digit changes in forces and polarization, hence possibly
worsening the numerical derivatives even if adding extra points to the
formula. The step ΔE is instead selected according to:

ΔE ¼

10�3

n if Ec>10�3;

round ðEc ;5Þ
n if 10�4<Ec ≤ 10�3;

round ðEc ;6Þ
n if Ec ≤ 10�4;

8>><
>>: ð25Þ

where the electric field units are again expressed in Ry a.u. and round(x,y)
rounds the number x to the y digit after the decimal point. These choices
should guarantee larger values of the finite step to reduce the numerical
noise on forces and polarization, and at the same time higher accuracy to
remove the step size dependence of the finite-difference formula, which can
be verified a posteriori when n > 2 (see also Fig. 1a). We point out here that
eventually the user can still enforce the accuracy n and/or the ΔE value that
will be used in Eqs. (18) and (25). Once an electric field is chosen and the
ground-state SCF calculation is finished, a symmetry analysis is performed
to find the independent directions Ê of the electric fields to apply, where Ê is
a versor. For each such independent direction a MP mesh is determined
throughEq. (24) and a series of SCF calculations are then launched atE ¼ 0
with the correspondingmesh restarting from the ground-state density of the
previous SCF. The reason for computing SCF calculations at E ¼ 0 with
these meshes is twofold: first, they provide the ground-state charge density
and wavefunctions for the next finite electric field calculations, resulting in
faster convergence of the self-consistent cycles, and, second, they guarantee
the same level of convergence on forces and polarization for the finite
differentiation. Once finished, electric-enthalpy calculations start for each
independent direction Ê at the smallest step value ΔE ¼ ΔE � Ê, to provide
an adiabatic switching of the perturbation. If the numerical accuracy n is
greater than 2, further SCF calculationswith homogeneous electricfields are
run, restarting from the previous steps till themaximumvalue ðn=2ÞΔE; this
loop corresponds to increasing/decreasing the value of l in Eq. (18). At this
point, the computed forces and polarizations are gathered together to

perform the numerical differentiation following Eqs. (18) and (19) to obtain
the second- and third-rank tensors (12)-(13)-(15). As a final step, the
IRamanSpectraWorkChain joins all the information in a unique
AiiDA data type, named VibrationalData, able to efficiently store
large arrays and information in theAiiDArepository anddatabase, andwith
provenance graph for full reproducibility22. This data type is a self-contained
Python class, and it is provided with a number of post-processing methods
and features that allow the user to compute powder and single-crystal
polarized vibrational intensities and frequencies, along with the symmetry
labels of the respective phonon modes. We also implemented an
IntensitiesAverageWorkChain which performs the spherical-
average spectra, important in Raman for non-centrosymmetric crystals11

when in a polycrystalline powder form.
As mentioned earlier, the inputs of these workflows can be fully cus-

tomized further by the user. We do not report here the full list of these
inputs, which can be explored through the usual command line interface of
AiiDA22 and through the on-line documentation made available (https://
aiida-vibroscopy.readthedocs.io/en/latest/). However, we emphasize the
possibility of fully defining the entire set of inputs required via a limited
subset, as alreadydone inotherAiiDApackages45: in similar fashion to ref. 45,
we identify the fundamental inputs to be the code, i.e., the Quantum
ESPRESSO46–48pw.x binary, associated with the computer, that runs the
calculations, the relaxedstructure and theprotocol, a stringdefining
in a general and user-friendly fashion the accuracy of the simulation. This
minimal set, used through the get_builder_from_protocol
method45 designed for all the workchains, provides the user with a pre-filled
builder (the main unit in AiiDA used to run workflows) ready to be
submitted. This is adequate for non-experts in the field that might be
interested in simulating spectra of a given structure with minimal compu-
tational knowledge, but is also very precious in the context of high-
throughput searches or for teaching or testing.

All-functionals LiNbO3 spectra
We showcase the strength of this approach by studying the ferroelectric
phase of LiNbO3 (space group R3c, no. 161) for which the vibrational
spectra have long been debated in the literature49–52 and exhibit large LO-TO
phonon splittings at Γ49 that are ideal for exploring different exchange-
correlation functionals. We selected three commonly used local and semi-
local functionals, LDA, PBE and PBEsol; Hubbard-corrected PBEsol in the
standard and extended version, namely DFT+U53,54 and DFT+U+V55–57;
and two of the most used hybrids functionals for inorganic crystalline
materials, HSE0658,59 and PBE060.

Through the use of the IRamanSpectraWorkChain, we carried
out the simulation of the vibrational spectra for all the functionals above and
compare our results to experimental measurements from the
literature11,51,52,61,62. In particular, we compare the simulations presented in
Fig. 3 with different experimental Raman single-crystal polarization setups
where LO modes are filtered out52; in Fig. 4 with single-crystal and poly-
crystalline powder Raman spectra including the LOmodes11,51,61; and in Fig.
5 with single-crystal infrared absorption62 and reflectivity spectra51. We
make use of the Porto notation for Raman setups: the labels within the
parenthesis refer to the polarization of light eL and eS, the external labels to
the propagation of light kL and kS. When only TO modes are shown, the
external labels are not specified. For spectra showing LO modes, we set
q∥kL− kS in single crystals, while polycrystalline powder spectra are
modeled via the spherical-average procedure, as outlined in ref. 11. The
conventional cell is used to define the Cartesian directions, aligning the Z
axis along the c axis and the X axis along the a axis (Y is chosen to obtain a
right-handed reference system). The single-crystal data of ref. 52, reported in
Fig. 3, allow us to compare directly the intensities (TO modes only). The
experimental LO and TO frequencies were reported in ref. 52, and are
summarized, alongwith the theoretical predictions, in SupplementaryTable
1. We ranked the spectra in the plots in function of the statistical estimator
jΔωj ¼PN

ν¼1 jωexp
ν � ωtheo

ν j=N , where N is the number of active modes
detected. All the functionals show good agreement with experiments and
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with the results of the literature49–52. PBEsol+Usc+Vsc, PBE, and the two
hybrids show competitive results among each other, while PBEsol, PBEsol
+Usc and LDAhave quantitative larger discrepancies. In particular in Table
1 we report statistical estimators for the comparison of the theoretical and
experimental phonon frequencies (LO and TO) and intensities (only TO,
Fig. 3). These spectra setups allowed to accurately estimate the error of the
intensities evaluated through the minimization of the relative error:

ΔIðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
ν¼1 ðItheoν � fIexpν Þ2PN

ν¼1 ðfIexpν Þ2

vuut ð26Þ

where f represents the unknown scaling factor between theoretical Itheo and
experimental Iexp intensities, due to the use of arbitrary units in the
experimental spectra. The smallest absolute error on frequencies jΔωj is
provided by the PBE0 functional with 7.3 cm−1, and on intensities jΔIj by
the PBEsol+Usc+Vsc functional with 16%. It is to note that the latter also
shows a very good jΔωj of 10.7 cm−1, about 3 cm−1 apart from the best
performing functional for this material, whereas the former has 24% error
for jΔIj, 8% more with respect to PBEsol+Usc+Vsc. We also report the
renormalized absolute error jΔωj�, for which the frequencies are shifted by
the baremean errorΔω before themodulus average; this gives some insights
whether the discrepancy arises from a systematic error, e.g., due to the
geometry used. Interestingly, after renormalization, most of the functionals
get rather close error values.While thismight be due to the renormalization

of the phonon frequencies due to the thermal expansion, which tends to
soften the vibrational modes, all the theoretical spectra were performed at
the experimental lattice geometry (see the Method section), meaning the
systematic error is unrelated to this effect. While other thermal contribu-
tions should in principle be accounted for, their inclusion would require
more sophisticated levels of theory63–65 which go beyond the scope of the
present work. Moreover, at the conditions of the experiments, such con-
tributions are expected to produce only minor phonon shifts51. Given these
points we might conclude in this case that such errors are intrinsic to the
functionals.We proceed in the following with amore qualitative analysis of
the other calculated spectra, as the experimental data we refer to come from
different sources. In Fig. 4 we show the result of the complex interplay of
long-range interactions, Eq. (11), and the non-linear dielectric response
which renormalizes the Raman intensities, Eq. (17). It can be noted again
that all functionals are able to describe well both the peak positions and the
intensities of the different experimental measurements. In particular, the
intensity of the LO mode at around 870 cm−1 is reproduced correctly. The
dashed lines in the figure highlight the error committedwhenneglecting the
χ(2) contribution in Eq. (17), which is relevant for the accurate prediction of
the intensity. As already found in ref. 11, the spherical average employed to
compute the spectra of the polycrystalline sample of Fig. 4c correctly
reproduces the asymmetric lineshapes of the experimental peaks, which can
be understood as an average of all the possible q→ 0 splittingmodes which
the incident light happens to activate in a polycrystalline powder sample.
The absorption and reflectivity infrared spectra reported in Fig. 5 show very

Fig. 3 | Polarized single-crystal Raman spectra of ferroelectric LiNbO3 as
obtainedwith sevendifferent exchange-correlation functionals, and compared to
experimental measurements52. The scattering geometries are reported in par-
enthesis. The theoretical spectra are ordered according to the error jΔωj (shown in

Table 1), from smallest (pink, PBE0) to largest (blue, LDA). Hubbard-corrected
PBEsol+Usc and PBEsol+Usc+ Vsc are labeled just Usc and Usc+ Vsc, the sub-
script sc refers to the self-consistent calculation ofU andV77,78. Theoretical intensities
are smeared with a 8 cm−1 wide Lorentzian.
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Fig. 5 | Absorption and reflectivity spectra in the IR regime of ferroelectric
LiNbO3 as obtained with seven different exchange-correlation functionals, and
compared to experimental measurements51,62. a Infrared absorption using polar-
ized light for E (left panel) and A1 (right panel) symmetry modes. b Normal

reflectivity spectra of Z-cut single crystal; upper and lower ticks for each panel
correspond to 1 and 0, respectively. The order of theoretical spectra and the labels are
as in Fig. 3. Theoretical intensities are smearedwith a constant 12 cm−1 broadening; a
Lorentzian function is used for (a).

Fig. 4 | Polarized single-crystal and powder Raman spectra of ferroelectric
LiNbO3 as obtained with seven different exchange-correlation functionals, and
compared to experimental measurements51,62. a, b Raman spectra of single-crystal
polarized setups; the scattering geometry is reported in the Porto notation. c Raman
spectra of polycrystalline powder sample; the theoretical spectra are computed using

the spherical average formula11. In each panel, the dashed lines show the computed
spectra when the second term in Eq. (17) is neglected. Theoretical intensities are
smeared with a constant 12 cm−1 broadened Lorentzian. The theoretical spectra are
reported in order of decreasing error jΔωj, and Hubbard-corrected PBEsol are
abbreviated only with their corrective parameters, as in Fig. 3.
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good agreement with the experimental measurements51,62. For a more
quantitative comparison, here we compare in Table 2 the static dielectric
tensor ϵij(ω = 0) for the ordinary and extraordinary components, which can
be measured from absorption measurements. The theoretical predictions
are close to the experimental values.We note that it is difficult here to assess
accurately the theoretical errors, as the experimental evaluation of this
quantity is usually subject to deviations, as it can be seen in Table 2.
Nonetheless, once again, PBE, PBEsol+Usc+Vsc and the two hybrids
show a remarkable agreement with the experimental results reported51,66.

Discussion
In this paper, we have presented a comprehensive and efficient approach
that utilizes finite displacements and finite fields to calculate seamlessly
various vibrational spectra, ranging fromabsorption and normal reflectivity
spectra in the infrared regime, to Raman spectra, including non-
centrosymmetric crystals and fine-grained materials (spherical-average
method), with any modern exchange-correlation functional and pseudo-
potential formulation (norm-conserving, ultrasoft, PAW). This approach
requires 12 self-consistent electric field calculations for the prediction of
Raman tensors, as opposite to 6 ⋅Nat when taking the derivative of the
dielectric tensor with respect to atomic displacements8,9, which remains
impractical in large or low symmetry systems. The approach we employ
becomes extremely useful when generating coupling tensors in low-
symmetry supercells, Eq. (6), to incorporate temperature and quantum
effects64,65,67, or to train a tensorial machine-learning potential for molecular
dynamics simulations. The formalism has been implemented as a highly
optimized, automatic workflow package for the prediction of vibrational
spectra. The technical and practical challenges have been successfully
addressedwith the help of theAiiDA infrastructure22, which empowered the
design of fully reproducible, reusable, user-friendly workflows for one of the
most important class of spectroscopic techniques for materials character-
ization. As such, we believe it will be broadly useful to both the computa-
tional community and the experimental community at large. Furthermore,
we have shown that the workflows can effectively operate with state-of-the-
art functionals and can be employed for a comprehensive analysis of both
single crystals and powder spectra. Importantly, all the code, workflows and
the documentation are open and available to the community (see Code
Availability). In conclusion, we believe that the present approach will be
helpful for the computational and experimental community and will pave

the way for accelerated materials characterization of materials displaying
complex, challenging chemistry.

Methods
Computational details
The infrared and Raman calculations were carried out using the workflows
developed, relying on aiida-phonopy68 for pre- and post-processing and
aiida-quantumespresso22,23, having Quantum ESPRESSO46–48 as DFT
quantum engine. Before performing the vibrational spectra calculations, the
positions of the atoms in the LiNbO3 primitive cell are optimized at fixed
experimental lattice geometry69 for all functionals until the total energy and
forces acting on atoms are less than 10−4Ry/atom and 5 ⋅ 10−5 Ry/Bohr,
respectively. Norm-conserving pseudopotentials from the Pesudo-Dojo
library70 are used for the LDA and hybrid functionals, employing PBE
pseudopotentials for the latter, and pseudopotentials from the SSSP PBE(-
sol) precision (version 1.1)70–76 library for all other cases. A cutoff of 90 Ry is
used for the wavefunctions; 4 and 12 times greater cutoffs are used for the
charge density (respectively for Pseudo-Dojo and SSSP based pseudopo-
tentials). The Brillouin zone is sampled uniformly with a 0.3Å−1 k-points
distance, leading to a 5 × 5 × 5 mesh for the primitive cell containing 10
atoms. TheHubbard parameters are computed following the self-consistent
procedure exploitingdensity-functionalperturbation theory, as explained in
refs. 77–79, using a q-point distance of 0.4Å−1, orthogonalized atomic
orbitals78,80 for the occupation matrices, and with onsite (intersite) para-
meters converged within 0.01 (0.005) eV (a very conservative threshold).
The hybrid calculations are performed using a 90 Ry cutoff and a single
q-point mesh for the exact-exchange operator, and the adaptively com-
pressed exchange (ACE) technique81 is used to speed up the convergence of
the calculations. Finally, finite differences are carried out using a 0.01Å
displacement distance and a denser k-point distance of 0.15Å−1 for the
phonon calculations (in the PhononWorkChain), and an electric field
step of 5 ⋅ 10−4 Ry a.u., a 2nd-order numerical accuracy, and a k-point
distance of 0.15Å−1 in the parallel direction of the applied electric field for
the electric-field derivatives (as carried out in the
DielectricWorkChain).

Data availability
The data produced in this work can be found on the Materials Cloud
Archive82.

Table 2 | Ordinary and extraordinary dielectric components of LiNbO3 from experiments and from seven different exchange-
correlation functionals

LDA PBEsol+Usc PBEsol PBE PBEsol+Usc+ Vsc HSE06 PBE0 Exp.51 Exp.66

ϵo0 48.1 45.3 44.6 43.1 39.4 43.2 43.0 40.2 41.5

ϵe0 29.6 31.8 27.7 26.3 24.3 25.6 25.7 23.7 26

Ordinary and extraordinary static dielectric components, ϵo0 and ϵe0, as obtained with seven different functionals (ordered from left to right according the the mean average error shown in Table 1), and
compared to the experimental results51,66. Other experimental values are reported in ref. 51.

Table 1 | Statistical error estimators between predictions and experiments52 for E and A1 LO-TO modes

LDA PBEsol+Usc PBEsol PBE PBEsol+Usc+ Vsc HSE06 PBE0

jΔωj 22.2 15.1 15.1 11.0 10.7 7.9 7.3

Δω 22.2 14.1 15.1 10.5 10.6 5.7 5.2

jΔωjmax 45.4 44.3 35.4 38.8 28.7 27.1 24.8

jΔωj� 8.1 8.9 6.7 7.3 6.2 6.9 6.2

jΔIj 34 25 22 23 16 25 24

Statistical error estimators given in cm−1 for frequencies ω and in percentage for the Raman intensities I (the intensities are compared for TO modes only; see Fig. 3 and Supplementary Discussion). The
estimators are: jΔωj ¼PN

ν¼1 jΔων j=N is the mean absolute error; Δω ¼PN
ν¼1 Δων=N is the mean error; jΔωmax j is the absolute max difference; jΔωj� ¼PN

ν¼1 jΔων � Δωj=N is the mean absolute error for
frequencies shiftedby theirmeandifference; jΔIj ¼ 100 �min

f
fΔIðfÞg represents thepercentage error of the optimal scaled intensities;N is the number of consideredmodesandΔων is the differencebetween

experimental and theoretical functional mode frequency.
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Code availability
The source code is made available open-source on GitHub (https://github.
com/bastonero/aiida-vibroscopy). It is also distributed as an installable
package through the Python Package Index (https://pypi.org/project/aiida-
vibroscopy/). A live demonstration of the code is hosted on https://aiida-
vibroscopy-demo.readthedocs.io/en/latest/index.html, whereas the full
documentation with tutorials can be found at https://aiida-vibroscopy.
readthedocs.io/en/latest/.
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