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Microstructureof electrodesdetermines theperformanceof electrochemical devices suchas fuel cells
and batteries. The efficiency and economic feasibility of these technologies depend on the stability of
the microstructures throughout their lifetime. Although modeling techniques were proposed for
determining electrode performance from 2- or 3-dimensional microstructural data, it is still extremely
challenging to predict long-term structural degradation bymeans of numerical simulations. One of the
major challenges is to overcome the difficulties in obtaining experimental data of an identical sample
through the degradation process. In this work, a machine learning-based framework for predicting
microstructural evolutions with limited amount of un-paired training data is proposed. Physically-
constrained unsupervised image-to-image translation (UNIT) network is incorporated to predict nickel
oxide reduction process in solid oxide fuel cell anode. The proposed framework is firstly validated by
simplified toy-problems. Secondly, the UNIT network is applied to real microstructures of solid oxide
fuel cells, which results in excellent visual and statistical agreements between real and artificially
reduced samples. The proposed network can predict evolutions in new microstructures, which have
not been used during training. Furthermore, a conditional UNIT network (C-UNIT) was demonstrated,
which can predict the microstructure evolutions based on process conditions as well as continuous
time series of microstructural changes.

Solid oxide fuel cells (SOFCs) are characterized by high efficiency as well as
fuel flexibility, but their drawback is the degradation due to high operating
temperature in the range of 600–900 oC. The harsh operating conditions
results in the microstructural evolution during operation. In particular,
nickel (Ni) agglomeration and migration1,2, Ni oxidation and reduction3,4,
ceramic support cracking5,6, carbon deposition7, phase segregation8,9 and
poisoning of impurities such as sulfur10,11 are observed in the fuel electrodes.
Several attempts have been undertaken to predict those changes at the
microstructural level. Wang et al.12 and Xiang et al.13 attempted to model
nickel depletion and coarsening with the phase field model. Jiao and
Shikazono14 proposed a method to simulate nickel oxide reduction process
in the composite structure incorporating the volume change followedby the
phase field simulation of particle sintering. Hara et at.15 simulated Ni sin-
tering with a Monte Carlo method. Even though successful results were
obtained, suchmethods require a priori assumptions and simplifications in

the modeling, which cause difficulties in predicting complex and combined
degradation phenomena.

The sizes of particles in SOFC electrodes are in the sub-micron
range11,16–20. Recently, even finer microstructures with nano-particles are
achieved by techniques such as infiltration and exsolution5,21–23, etc. Typical
observation techniques of SOFC electrode microstructures are scanning
electron microscopy (SEM), transmission electron microscopy (TEM) and
3-D characterization by focused ion beam—scanning electron tomography
(FIB-SEM)24,25. Measuring time-series changes of an identical sample using
these techniques is challenging due to the destruction of the samples. Several
samples from the same fabrication batch are usually observed, and their
microstructural statistics are compared in the post-mortem characteriza-
tion. Obtaining paired data of an identical sample before and after the
processes is challenging, since it requires non-destructive imagining tech-
niques. Nano-XCT is the only choice26,27 tomeet the resolution required for
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the electrode microstructure analyses. In addition, several attempts were
taken to observe the SOFC electrodes using operando techniques. Patterned
electrodes under SOFC and SOEC operations were observed by a laser
confocal scanning microscope by Komatsu et al. and Ouyang et al.28,29.
Jeangros et al. developed measurement setup for a single-chamber SOFC
operated inside an environmental TEM (E-TEM)30. However, those studies
require simplifications in geometries and operation procedures.

Machine learning methods are widely used in processing and
extracting information directly from large experimental datasets. The
convolutional-basedneural network (CNN)arewell adjusted toprocess 2-D
image and 3-D volume data31–34. However, they usually require high quality
paired data for training. UNsupervised Image-to-image Translation
(UNIT) network has become popular in many image processing applica-
tions such as style transfer, image colorization and object transfiguration35,
which can correlate two image domains without explicitly providing paired
training examples. However, applications of UNIT to analyze electrode
microstructures are scarce. A similar technique for unsupervised image
translation, cycle-consistent generative adversarial network (CycleGAN)
was successfully used for enhancing the quality of SEM images36, correction
of out-of-focus microscopic images37 and transformation of the optical
microscopy images38.

Machine learning applications for fuel cells and porous materials have
been rapidly evolving in recent years39. For SOFC applications, neural
networks and fuzzy logic models were initially applied to optimize and
predict SOFC performance40. Artificial neural networks (ANN) with a
perceptron architecture with a limited number of input and outputs were
incorporated for material screening41, predictions of SOFC performance
depending on operating conditions42–44, flow field structure45, electrode
microstructural parameters46, and SOFC stack electrochemical impedance
spectra (EIS)47. Moreover, coupling ANN with algorithms such as swarm
optimization46,48 and genetic algorithm45,46,49,50 provided new strategy for
system optimization. Recently, more complex neural networks are applied
for processing time series data and for analyzing SOFC microstructures.
Recurrent neural networks (RNN) and long-short time memory networks
(LSTM) utilize sequential information as the input data, whichwere applied
for SOFC fault diagnosis51, prediction of remaining lifetime52 and prediction
of EIS and DRT degradations53. Applications of convolutional neural net-
works (CNN) and generative adversarial networks (GAN) for SOFC and
porous materials microstructures, e.g. image segmentation, super-resolu-
tion, parameter prediction and artificial structures generation, have been
receiving great attention. The semantic segmentation algorithms based on
various CNN architectures were proposed for identifying the phases in raw
SEMand FIB-SEM images54–56. Super resolution CNNbased algorithmwas
proposed to improve the resolution of optical microscope images to SEM-
alike quality57. Sequential FIB-SEM images were super-resolved in the
stacking direction58. Furthermore, CNNs have been used in material engi-
neering to extractmicrostructural properties such as effective diffusivity34,59,
ionic conductivity60, elastic deformations61, and electron back-scatter dif-
fraction patterns62, etc. The CNNs successfully predicted parameters of
anodes63 and cathodes64 fromtheirmicrostructures.Thegenerativemachine
learningwasutilized for fabricating artificial SOFCmicrostructures.Gayon-
Lombardo et al.33 and Hsu et al.65 demonstrated successful applications of
GANs to synthesize 3-D SOFC microstructures. Kishimoto et al.66 synthe-
sized microstructures with predefined properties by conditional GAN, and
Sciazko et al.31 reconstructed 3D microstructures from 2D cross-sectional
images by GAN. Machine learning was also successfully utilized for
detecting materials degradation and failure occurrence67. However, appli-
cations of machine learning tools to predict microstructural changes of
electrodes are still limited.

In this work, a framework to predict microstructural changes by the
physically constrained UNIT network is proposed. The validity of the pro-
posed approach is tested for theNiO reductionprocess in theNi-based SOFC
fuel electrodes. The volume of NiO decreases by 41% during the reduction
process68, and the reduced Ni 3D microstructures depend on the reduction
conditions such as temperature69,70 and gas composition69,71. Moreover, the

effects from the interactions between supporting ceramic material and NiO
particles cannot be excluded72,73. The reduction process greatly influences the
electrode morphological parameters such as triple phase boundary density
(TPB), Ni network connectivity and pore tortuosity, which determines
electrode’s electrochemical performance. In addition, it was reported that
initial electrode microstructure after the reduction process influences long
term degradation70. Understanding the reduction mechanism is highly rele-
vant for predicting electrode degradation during reduction/oxidation (redox)
cycles occurring under fuel-rich and fuel-lean cycling conditions73,74.

Here, microstructure degradation due to the NiO reduction process is
treated as the computer vision problem for the image-to-image translation.
As thepaired training images of an identical sample before andafter theNiO
reduction are very difficult to obtain, it is necessary to apply unsupervised
training approach. In the unsupervised training, only available information
is two independent sets of image data in which one consists of images in an
arbitrary domain and the other consists of images in another domain.
However, the paired examples demonstrating dependance between images
in both domains do not exist. In the present study, we propose a method
using UNIT with an additional physical constraint incorporated into the
UNIT generator loss function enforcing the partly known physical phe-
nomena.Thenetwork is trainedwithun-pairedSEMimages from thenickel
oxide (NiO)-yttria stabilized zirconia (YSZ) and NiO-gadolinium doped
ceria (GDC) electrodes. In addition, conditional UNIT (C-UNIT) is trained
to capture the influence of reduction temperature as well as predicting the
microstructure dependance on reduction time.

Results and discussion
Validation
The validity of the presentmethodwas confirmedwith the toy-problem tests
equivalent to the simplified reduction process as shown in Figs. 1–3. Three
types of toy-problems were carried out for the following purposes: (I)
determining interdomain translation operator for predicting structural
changes in the same class ofmicrostructures, (II) predicting evolution in new
microstructures and (III) extrapolating the prediction for the new process
dependingon theexternal conditions.Twodatadomainsweredefined,where
domainA consists of spherical particles with a diameter of 15-pixels (pointed
by green color) and 4-pixels core (red color). Domain B consists of analogical
8-pixels diameterparticleswith 4-pixels core.The red coreparticle is assumed
to be immobile during the translation process, and this constraint is intro-
duced in the generator loss function. Training data for the UNIT network
have been prepared by randomly placing the particles in space independently
for bothDomainsAandB.While the statistical characteristics of the particles
in both domains are known, an image translation operator between the
domains is not available, as there areno explicit examplesdemonstratinghow
images from Domain A are translated into Domain B.

In the first toy problem, a single particle was placed in each domain
(Fig. 1a). The UNIT network can discover the translation pattern directly
from the unpaired training data. The network outputs a particle with
identical spatial position but different diameter of the green particle (Fig.
1b). The comparison between UNIT predictions and ground truth data for
200 samples gives the pixel-wise accuracy of over 99.6%. In the next vali-
dation attempt, 10 particles are randomly placed in each domain allowing
overlaps. The UNIT reproduces this complicated translation with an
accuracy over 98% (Fig. 1c, d).

The ability of the UNIT to predict changes in new microstructures
which were not used in the training dataset was tested in the second toy
problem. Samples with various porosities controlled by the numbers of
particles were used for training. The training data were samples with 11–20
and 191–200 randomly placed particles, representing high and low porosity
structures, respectively. Testing was conducted for the samples with full
spectra of porosities, i.e. 1–200 particles randomly placed in the domain. The
original size of the prepared data was 256 × 256 pixels, while the training was
conductedwith the randomly extracted patches of 64 × 64 pixels as shown in
Fig. 2a. Prediction of the trained UNIT network are shown in Fig. 2b. The
UNIT provides excellent prediction not only for the low and high porosity
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Fig. 1 | Validation toy problems with single and multiple particles. a, c Training data; b, d input and output of UNIT and ground truth.

Fig. 2 | Validation toy problem for samples with various porosities. aTraining data (11–20 and 191–200 particles in the domain), b input and output of UNIT and ground
truth for samples with high, low and middle porosities, c global pixel-wise accuracy and d predicted phase fractions.
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structures, but it workswell for all sampleswith pixel-wise accuracy over 98%
(Fig. 2c). From Fig. 2d, it is seen that phase fractions are almost ideally
reproduced.

The third validation toy problem starts with an assumption that the
simplified reduction process depends on the external condition which
determines the diameter of the green particles in Domain B. The diameter of
the green particles in Domain A was always kept as 20 pixels, while the
diameter of particles in Domain Bwas varied between 4 – 19 pixels. This can
be understood as the dependence of microstructure on hydrogen exposure
time. The UNIT network was modified, in which additional information of
the conditionwas included as the input to both generator anddiscriminators.
Examples for five different conditions, i.e. green particle diameters of 5, 8, 11,
14 and 17 pixels, were used for network training as shown in Fig. 3a. The
prediction results for the trainedC-UNIT network are shown in Fig. 3b, c for
the new conditions not used in the training process. As shown in Fig. 3d,
C-UNIT can predict well the dependance not only for data from the training
dataset, but it also successfully predicts for the new conditions. In addition, as
shown in Fig. 3e, the generalization capability of the C-UNIT network was
tested for four different microstructures with various porosities. The test
samples with 20, 40, 80 and 150 particles in Domain A have porosities of 70,
54, 29 and 14%, respectively. Global pixel-wise accuracy over 95% is achieved
for samples with high tomiddle porosity structures. The C-UNIT prediction
for the sample with initial porosity of 14% has discrepancies compared with
the grand truth structure even though the overall pixel-wise accuracy is over
85%. This is due to the significant structural difference from the training data,
in which the network was trained with samples with porosity of approxi-
mately 50%. The particles highly overlap with each other in the dense sam-
ples, and this type of training examples have not been provided during the
training. Inorder to improve the results fordensemicrostructures, it is desired
to provide similar examples for network training. In addition, the prediction
accuracy of large green particles with diameter of 19 pixels is slightly lower

than other conditions. The training data contained particles only up to 17
pixels. Thus, the19pixel particles arebeyond the training range.As illustrated
by these facts, extrapolation using a neural network trained on a specific data
range can potentially lead to errors.

Microstructure change during NiO-YSZ reduction
Firstly, the UNIT network was applied to predict NiO reduction process at
800 oC. The real as-sintered NiO-YSZ and as-reduced Ni-YSZ micro-
structures are shown in Fig. 4a. The microstructures were taken from two
different samples in the same fabrication batch. Artificially reducedNi-YSZ
structure is the output of the trainedUNITnetwork. Prediction is conducted
for the same NiO-YSZ input data, as it was used for training UNIT. Even
though the training was conducted with smaller data patches, the UNIT
network can predict changes in the newmicrostructure of any size. TheYSZ
phase is not changed as it is assumed that YSZ backbone is immobile during
the reduction process. The theoretical composition in Fig. 4b is calculated
from the theoretical volume change of NiO into Ni assuming full reduction
of NiO using the as-sintered sample before reduction. Good agreement is
observed between the volume fractions of real and artificially reduced
samples. Increase in porosity represents the phase change from NiO to Ni.
The UNIT reduced Ni-YSZ has not only a good visual agreement with real
Ni-YSZ, but also shows good agreement in statistical characteristics as
shown in Fig. 4b–e. UNIT can reproduce well the volume fractions, surface
and TPB densities, which are crucial for electrochemical performance.

Additional validation is carried out with newNiO-YSZmicrostructure
images that were not part of the UNIT training dataset, as shown in Fig. 5.
The predictions with new data are comparable to the prediction with
training images in terms of both visual and statistical parameter accuracy.
The slight difference in theYSZ surface area of artificially reduced sample S2
is due to the quality of the original input data. The TPB density is slightly
underestimated by approximately 6%.

Fig. 3 | Validation toy problem depending on external condition. aTraining data with conditional output. Input and output of C-UNIT and ground truth for conditions of
b 7 and c 15 pixels. d Predicted phase fractions. e Microstructures with various porosities and predicted phase fractions.
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Prediction of new microstructures
In this subsection,UNITnetworkwas trainedusing samplesNi50GDC50(Ni
: GDC= 50: 50 vol%) and Ni60GDC40-IP (Ni: GDC= 60: 40 vol% with low
porosity), where IP denotes a sample made by isostatic pressing. These
samples have different Ni and pore volume fractions as shown in Fig. 6a.
Volume fraction and surface area density were selected as the representative
microstructural parameters for the evaluation. The trainedUNIT can predict
microstructural change during reduction very well for samples used in the
training dataset. Moreover, it can also generate microstructures with new
properties as shown for the Ni60GDC40 sample which is not used for
training. This implies that the network can be trainedwith limited number of
real experimental data, and can be utilized for predicting variable parameters.

Reduction at various temperatures
It is well known that the reduction temperature strongly influences the
microstructures of Ni-based composites. Reduction of bulk NiO crystals by
hydrogen has been studied at different temperatures in the range of 270 and
1320 °C75, where complex porous network appeared at reduction tem-
perature below 900 °C. In the present study, NiO-YSZ was reduced at 500,
600, 800and1000 °Cas shown inFig. 7a,which follows the abovementioned
behavior. Although the volume fractions of all samples after reduction are
very close to the theoretical, the microstructures strongly depend on the
reduction temperature. The samples reduced at lower temperature are
characterized by large number of small pores inside the Ni particles, while
higher reduction temperature results in larger pores.

The C-UNIT network was trained with Ni-YSZ samples reduced at
various temperatures as shown in Fig. 7b. As can be seen in Fig. 7c, d,
C-UNITcanpredictwell the dependence ofmicrostructure on temperature,
not only for the temperatures used for training, but also for temperatures
which were not used for training. The prediction accuracies are similar for
the data in both the training dataset and the testing set. However, there is a
difference in the shape of the nano-pores between real and artificially

reduced samples at 500 °C. This may be due to the structure of the UNIT
network, which relies solely on convolutional layers. In general, U-net
configuration is superior to the encoder-decoder architectures in preserving
small imagedetails.Modifying the structures ofUNITnetworkwith skipped
connections may also help to overcome this issue. In addition, the dis-
crepancy may be due to the variation of YSZ phase fraction between dif-
ferent samples in the training data, which might be caused by the size of
training image or by the accuracy of segmentation.

Predictions for temperatures in the range of 400–1100 °C are shown in
the Supplementary Video 1. It is clear that the reduction initially progresses
within the NiO grains by forming complicated inner pore network. The
changes in shape and size from the original NiO grains are minimal. At
higher temperature, the inner pores disappear and Ni particles coarsen,
resulting in increased size of pores. The different final structures are the
result of competition between chemical reaction andNi sintering, which are
both enhanced at higher reduction temperature.

Time-dependent reduction process
Shimura et al. 73 observed dynamic changes of Ni-YSZ microstructures
duringoxidation and reduction.The sampleswere reduced at 800 oC inpure
H2, and the microstructures are observed at different times. The pore
structure formation inside the reducedNiwas observed in the initial period.
The reduction is almost completed within 30 s of exposure to H2 gas. After
the reduction reaction, sintering of Ni phase progresses and the pores inside
Ni disappears.

Here, an attempt is taken to model the time dependent reduction
process by the C-GAN network. NiO-YSZ samples were reduced for 5, 15,
30 and 3600 s, as shown in Fig. 8a. The pores insideNiO grains in the initial
NiO-YSZ structure are due to the redox treatment prior to the reduction
test. The details of experimentation can be found in our previous work73. Ni
and NiO phases are not distinguished in this study, as it was not possible to
identify them from the collected SEM images

Fig. 4 | Prediction of microstructure change during NiO-YSZ reduction. a Real
NiO-YSZ, artificially reducedNi-YSZ and realNi-YSZmicrostructures (real data are
taken from the training dataset). Comparison between sintered, real reduced and

artificially reduced (UNIT) microstructures: b volume fraction, c surface area
density, d phase boundary density, and e TPB density.
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Two independent C-UNIT networks, i.e. C-UNITreduction and
C-UNITsintering, were trained to predict initial reduction and following Ni
sintering processes. Two data points, 30 and 3600 s, were used for
C-UNITsintering, and microstructures at 0, 5, 15 and 30 s were used to train
C-UNITreduction. The conditional UNIT architecture was chosen for

C-UNITsintering insteadof conventionalUNIT to simulate intermediate time
points, even though only two training data are available. The details of the
training data in each domain are given in Fig. 8b.

The results of combined C-UNITsintering and C-UNITreduction net-
works are shown in Fig. 9 and in the Supplementary Video 2. As the

Fig. 5 | Validation with new NiO-YSZ microstructures. aArtificially reduced Ni-YSZ from real NiO-YSZ samples S1 and S2. Comparison between sintered, real reduced
and artificially reduced (UNIT) microstructures: b volume fraction, c surface area density, d phase boundary density, and e TPB density.

https://doi.org/10.1038/s41524-024-01228-3 Article

npj Computational Materials |           (2024) 10:49 6



Fig. 6 | Prediction of NiO reduction in NiO-GDC microstructures with varied
properties. a Real NiO-GDC, artificially reduced Ni-GDC and real Ni-GDC
microstructures with various compositions. Comparison between sintered, real

reduced and artificially reduced (UNIT) microstructures: b volume fraction and
c surface area density.
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generalization ability of UNIT network was already demonstrated in pre-
vious subsections, only the prediction with training data is shown. The
predicted volumes fractions and surface areas are in reasonable agreement
with the real structures. The error in the predicted values is shown in
Supplementary Fig. 1. The largest error is observed in the predictions of
pore and YSZ, which falls within the range of 10%. This resulted from the
errors in the initial phase segmentation of training data. NiO grains have
large inner pores, which are difficult to segment as resin could not be
infiltrated during FIB-SEMmeasurement.Moreover, the variation between
the samples for training is quite large, i.e. YSZ fraction varies significantly in
the training data which should be the same for all the samples. As YSZ

immobility constraint is imposed, this variation is compensated by the
shapes of other phases. Decrease of NiO and increase of pore represent the
reductionprocess. Themost significant volume change occursduring initial
5 s of the reduction process, i.e. the size of NiO particles decreases from the
circumference and the size of the original large pores increase. At the same
time, inner pores appear inside the NiO particles. From 5 to 30 s, reduction
progresses and the size andnumberof innerpores increase.The size of large
pores does not change, which implies that the reduction process proceeds
mostly at the coreofNiOparticles. This is consistentwith the complex inner
pore structures reported in the literature. Reduction of NiO is followed by
sintering of Ni, which is well reproduced by the C-UNIT. LargeNi particles

Fig. 7 | NiO-YSZ samples reduced at various temperatures. a Real and b artificial microstructures, c volume fractions and d surface area density.
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grow on the expense of small Ni structures. In addition, the C-UNIT net-
work can predict stable Ni-YSZ interfaces.

Future perspectives
Aframework forpredictingmicrostructure changes inSOFCelectrodesusing
a conditional unsupervised image-to-image translation network with

physical constraints is proposed. UNIT and C-UNIT networks were used to
predict the reduction process of Ni-based SOFC electrodes from unpaired
trainingdata.Thenetworkswere trainedwith imagepatches ofNiO-YSZand
Ni-YSZmicrostructures before and after reduction.Aphysical constraintwas
included in thegenerator loss function toconstrainYSZandGDCbackbones,
which are assumed to be immobile during the reduction process.

Fig. 8 | Reduced NiO-YSZ samples at various times. a Segmented SEM images and b training data for C-UNITsintering and C-UNITreduction networks.

Fig. 9 | Results of training network for time-dependent prediction. a NiO-YSZ reduced structures predicted by C-UNITsintering and C-UNITreduction, comparisons of
b volume fraction and c surface area density.
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The reduced microstructures predicted by the UNIT show excellent
visual and quantitative agreements with the real samples. Furthermore,
UNIT canpredictmicrostructural changes in samples thatwere not used for
training.

C-UNIT which is conditioned by temperature can predict the micro-
structure changes at various reduction temperatures. In addition, the
C-UNIT can predict time-dependentmicrostructure evolutionprocess. The
proposed method has a potential to predict various microstructure evolu-
tion processes not only NiO reduction, but also many processes which are
important for degradation studies.

This study investigated the applicability of physically constrained
UNIT and C-UNIT in 2D problems. However, in order to fully understand
the SOFC degradation processes related to their microstructural changes, it
is necessary to analyze 3D data. The future work will focus on the extension
of the present 2D UNIT to 3D space. This will provide more accurate
analysis and potential for precise 3D electrochemical calculations.However,
there are significant challenges associated with the extension to 3D, pri-
marily related to data collection and network training. Measuring 3D data
requires more complex experimental techniques such as FIB-SEM, which
takes 12 to 36 hours tomeasure a singlemicrostructure. This problemcanbe
potentially solved by applying machine learning to generate artificial 3D
models from 2D cross-sectional images31. In addition, it is anticipated that
the proposed data patching and augmentation techniques will be helpful in
reducing the amount and volume of the raw sample set required. Another
challenge which must be considered is the considerable time and memory
resources required for the training the 3D UNIT network.

This study aims to demonstrate the usability of UNIT and C-UNIT to
predict complex shape change phenomena in porous microstructures.
Further improvements of the network structures, e.g. hyperparameters and
learning strategy are necessary. Moreover, extension of the methodology
may include combination with the LSTM networks. Additionally, UNIT
and C-UNIT networks can be very useful for generating training data for
physics informed neural networks (PINN) which requires paired data76.
Utilizing PINN networks for the inverse problems can identify the physical
parameters describing degradation processes.

We demonstrated that UNIT and C-UNIT can successfully predict
NiO reduction process. It is expected that this technique can be further
utilized for other microstructural changes, e.g. Ni migration during SOEC
operation, Ni coarsening under high current density and humidity, carbon

deposition, segregation of impurities, ceramic support cracking, etc.
Moreover, present approach can be applied to other porous multiphase
materials such as polymer electrolyte fuel cells, batteries, photovoltaic cells,
catalytic reactors and membranes, etc.

Methods
Physically constrained UNIT network
A schematic illustration of the UNIT network is presented in Fig. 10. The
UNIT network is a type of generative adversarial neural network which
consists of single generator and two discriminators. Two images represent
source and target domains, i.e. NiO-YSZ (x1) and Ni-YSZ (x2) micro-
structures, are used as the UNIT generator input. The UNIT network
generates four output images, amongwhich two are source-to-target (x1

1→2)
and target-to-source (x2

2→1) translated images. In this context, the source-
to-target translation represents an artificial reduction fromNiO-YSZ toNi-
YSZ (Fig. 10d), and the target-to-source translation canbeunderstoodas the
artificial “un-reduction” of Ni-YSZ to NiO-YSZ. The “un-reduction” is not

Fig. 10 | Structure of UNIT network. aUNIT generator network, b sintering discriminator and c reducing discriminator. Image patches processed by UNIT for d artificial
reduction and e artificial un-reduction (the YSZ phase is assumed to be immobile).

Table 1 | Generator architecture

Number of downsampling blocks 2

Number of residual blocks in encoder and
decoder subnetworks

5

Number of shared residual blocks in encode
and decoder subnetworks

2

Number of filters in first convolution layer 64

Filter size in first and last convolution layers 7

Filter size in intermediate convolution layers 3

Padding Mirrored values of the input,
excluding the edge values

Weight initialization used in convolution
layers

He Initialization

Activation function Rectified Linear Unit

Activation function after final convolution Hyperbolic tangent

Input size 64 × 64 × 3 or 256 × 256 × 3

Output size 64 × 64 × 3 or 256 × 256 × 3
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the oxidation process, but rather can be understood as the inverse transla-
tion operator, which shows how the sample used to look like before
reduction. The other two UNIT generator outputs are self-reconstructed
images, i.e. source-to-source (x1

1→1) and target-to-target (x1
2→2) translated

images. The generator network consists of three subnetworks in both
encoding and generative parts to follow variational autoencoder (VAE)
architecture. An additional input condition C, representing the reduction
temperature or reduction time, is included as the input for C-UNIT net-
work. The specifications of the generator and discriminator network
architectures are given in Tables 1, 2, respectively.

The multifactor loss function is incorporated to jointly solve learning
problems ofVAE andGAN for image reconstruction, translation and cycle-
reconstruction streams, as well as to fulfill physical constraint. Generator
loss function Lgen is calculated as:

Lgen ¼ w1�Lself þ w2�Lcycle þ w3�LKL þ w4�LKLcycle
þw5�Ladv þ w6�Lphysic;

ð1Þ

where individual losses are defined as:

self � reconstruction loss : Lself ¼ jjXreal � Xself�reconstructedjj1; ð2Þ

cycle consistency loss : Lcycle ¼ jjXreal � Xcycle�reconstructedjj1; ð3Þ

hidden KL loss : LKL ¼ Xesajself�reconstructed

� �2
; ð4Þ

cycle hidden KL loss : LKLcycle ¼ Xesajcycle�reconstructed

� �2
; ð5Þ

and adversarial loss : Ladv ¼ 1� �Xtrans

� �2
: ð6Þ

Additional physics loss Lphysic is included in the generator loss to
enforce the physical constraint, which is the immobility of ceramic back-
bone during the reduction process:

Lphysic ¼ jjXrealjYSZ � XtransjYSZjj1; ð7Þ

where jj�jj1 represent the L1 distance between the input images and the
translated images.Xreal, Xself�reconstructed and Xcycle�reconstructed are real, self-
reconstructed and cycle reconstructed images, respectively.
Xesajself�reconstructed and Xesajcycle�reconstructed are activations of the encoder
shared block in the self-reconstruction and cycle reconstruction streams,
respectively. �Xtrans represents the predictions of the discriminator on
generated images.XrealjYSZ andXtransjYSZ represent the YSZphase in the real
and respective translated images.

The discriminators’ loss function Ldis are defined as:

Ldis ¼ 1� �Xreal

� �2 þ 0� �Xtrans

� �2
; ð8Þ

where �Xreal and �Xtrans are the predictions of the discriminator on real and
generated images, respectively. The discriminator loss function is calculated
separately for as-sintered (NiO-YSZ) and as-reduced images (Ni-YSZ).

During the training step, patches of real microstructures are randomly
extracted from full-sized SEM image to increase the training dataset. In
addition, geometrical augmentation is applied by random rotation and
flipping of the images as shown in Supplementary Fig. 2. The training is
conducted with the phase-segmented images and the network uses “one-
hot” encoding method proposed by Gayon-Lombardo et al.33. The image
patches have 64 × 64 and 256 × 256 pixels for toy validation and real
microstructures, respectively. The numbers of incorporated training images
and their size are shown for each of the analyzed cases in Tables 3, 4 for toy-
problems and real NiO-based electrodes, respectively. For the toy problems,
training and validation data were prepared by randomly placing the parti-
cles in the domain. The particles were independently placed at different
positions for oxidized and reduced domains for the training data. On the
other hand, for the validation data, the positions of the particles were
identical in order to check the accuracy of the UNIT network. For the
reductionprediction of the real structure, segmented SEM imageswere used
as training and validation data. Raw SEM images of NiO-YSZ and Ni-YSZ
anodes are shown in Supplementary Figs. 3–5 in the supplementary
materials. Only the homogonous regions of functional layers were used for
training, and the size of training images was 700–1300 µm2. The validation
using real microstructures is challenging, as it is not possible from SEM to
obtain an identical sample pair before and after reduction. Therefore, sta-
tistical parameters are compared between real and artificially reduced
samples. Two types of input data were used for NiO-YSZ electrodes, i.e.
images used for training and different microstructure taken from the same
sample. In the case of NiO-GDC electrodes, two samples were used for
training and another sample is used for validation. For time-dependent
NiO-YSZ reduction, only one initial microstructural image was available.

Table 2 | Discriminators architecture

Type PatchGAN discriminator

Input size 64 × 64 × 3 or 256 × 256 × 3

Number of down sampling blocks 4

Filter size 3

Weight initialization used in con-
volution layers

Normal distribution with zero mean and
standard deviation 0.01

Normalization layer None

Padding Pad with 0

Activation function Leaky Rectified Linear Unit with 0.2
scale factor

Activation function after final
convolution

None

Table 3 | Number and size of training images for toy problems

Training model Number of training
images

Size of training images,
pixel × pixel

Number of validation
images

Size of validation images,
pixel × pixel

Toy problem 1 (single
particle)

Sintered 100 64 × 64 200 64 × 64

Reduced 100 64 × 64 200 64 × 64

Toy problem 1 (multiple
particles)

Sintered 100 64 × 64 200 64 × 64

Reduced 100 64 × 64 200 64 × 64

Toy problem 2 Sintered 20 256 × 256 200 256 × 256

Reduced 20 256 × 256 200 256 × 256

Toy problem 3 Sintered 5 256 × 256 64 256 × 256

Reduced 5 256 × 256 64 256 × 256
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Adaptivemoment estimation optimizer (Adam)was used for training using
GPUs (NVIDIA A100), whose details are given in Table 5. Single training
epoch took 1.2 s, where the networks were trained for 1000 – 5000 epochs.

Utilizing the trained network for processing a newmicrostructure took 0.5 s
for a single image. After training, the generator can process larger size of
microstructures than the patch size incorporated in the training process.
The trained UNIT generator can artificially produce reduced Ni structures
from any new sintered sample image. The source-to-target translation path
for the artificial reduction is represented by the red arrows in Fig. 9a.

Reduction experiment
Microstructure evolutions in the reduction process were investigated using
two SOFC anode cermets as shown in Fig. 11. The electrolyte supported
SOFCswithNi-YSZ (Kusaka, Japan)77 andNi-GDC(AGCSeimi, Japan and
ShinEtsu, Japan)78 fuel electrodeswere fabricated by screen-printing slurries
on commercial YSZ pellets (Tosoh, Japan). The Ni-GDC electrode com-
positionwas controlledbymixing thepowders at ratios ofNi :GDC = 50 : 50
vol.% (Ni50GDC50) and Ni : GDC= 60 : 40 vol.% (Ni60GDC40). Another
sampleNi60GDC40-IP with a composition of Ni : GDC= 60 : 40 vol.%was
prepared by isostatically pressing dried electrode green body at 200MPa for
30min to reduce porosity78. Pure NiO current collection layer was screen-
printed on the top of the fuel electrodes. Anodes and current collector layers
were sintered in air at 1350 oC for 3 h. The counter electrode was fabricated
withGDCbarrier layer and LSCF (Fuel CellMaterials, USA) cathode on the
other side of the electrolyte. The anode active area was 0.785 cm2 and the
thickness of the NiO-YSZ (Ni-GDC) electrode and NiO current collector
layer were approximately 18-20 and 5 µm, respectively.

The electrodes were reduced with two steps in the SOFC testing rig
(Bel-SOFC, MicrotracBel, Japan). Firstly, 50 sccm of H2 : N2 = 5 : 95% gas
mixture was supplied for 30min, and then pure hydrogen was provided.
The time of pure hydrogen exposure was adjusted to 6, 4, 0.5, 0.5 h
depending on the reduction temperatures conducted at 500, 600, 800, and
1000 oC, respectively. The open circuit voltage was monitored to ensure
completeNiO reduction. Additionally, full reduction ofNiOwas confirmed
by conducting EDX measurement.

Anadditional experimentwas conducted to investigate the influenceof
reduction time for a given temperature. The cell was operated for 20 h prior
to the oxidation-reduction experiment at 800 oC. Then, the anode was
oxidized by supplying pure oxygen, flushed with nitrogen, and finally
exposed to pure hydrogen. The hydrogen reduction timewas set as 5 s, 15 s,

Table 4 | Number and size of training images for reduction of
Ni-based anodes

Training model Number of
images

Size of images

pixel × pixel µm × µm

Ni-YSZ reduction Sintered 3 524 × 956 19.6 × 35.8

512 × 744 * 19.2 × 27.9 *

512 × 726 * 19.2 × 27.2 *

Reduced 1 524 × 956 19.6 × 35.8

Ni-GDC reduction Sintered 3 Ni50GDC50:
488 × 1431

18.3 × 53.6

Ni60GDC40-IP:
650 × 1433

24.3 × 53.7

Ni60GDC40:
497 × 1431 *

18.6 × 53.6 *

Reduced 3 Ni50GDC50:
556 × 952

20.8 × 35.7

Ni60GDC40-IP:
544 × 936

20.4 × 35.1

Ni60GDC40:
588 × 928 *

22.0 × 34.8 *

Ni-YSZ reduced at
various
temperatures

Sintered 3 524 × 956 19.6 × 35.8

512 × 744 * 19.2 × 27.9 *

512 × 726 * 19.2 × 27.2 *

Reduced 4 500 oC:
544 × 1280

20.4 × 47.9

600 oC:
592 × 1280

22.2 × 47.9

800 oC:
524 × 956

19.6 × 35.8

1000 oC:
539 × 1280

20.2 × 47.9

Ni-YSZ time
dependent
reduction

Sintered 1 672 × 952 25.2 × 35.7

Reduced 4 5 s: 800 × 952 30.0 × 35.7

15 s: 816 × 952 30.6 × 35.7

30 s: 944 × 944 35.4 × 35.4

1 h: 920 × 960 34.5 × 36.0

*Test data.

Fig. 11 | Experimental workflow.

Table 5 | Details of the training procedure

Optimizer Adaptive moment estimation optimi-
zer (Adam)

Learning rate 0.001

Gradient decay factor 0.5

Squared gradient decay factor 0.999
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30 s, 20mins and 1 h. The samples were quenched to room temperature
with supplying nitrogen. More details can be found in our previous work73.

As-sintered and as-reduced samples were embedded in epoxy resin
(Epofix, Struers), polished (Cross section polisher, JEOL, SM-09020CP),
and observed with the scanning electron microscope (SEM, JSM-7001F,
JEOL). The cross-sectional images were segmented by patch convolutional
neural network in the encode-decoder configuration54,79. The micro-
structure parameters were calculated from the 2D cross-sections by Tau-
FactorMatlab library80. The 3Dvalue ofTPBdensitywas estimated from2D
images by the stereological formula as described in ref. 81.

Data availability
The datasets analyzed during the current study are available from the cor-
responding author on reasonable request.

Code availability
The underlying code for this study and training datasets may be made
available to qualified researchers on reasonable request from the corre-
sponding author.
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