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Stochastic many-body calculations of moiré states in twisted
bilayer graphene at high pressures
Mariya Romanova 1 and Vojtěch Vlček 1✉

We introduce three developments within the stochastic many-body perturbation theory: efficient evaluation of off-diagonal self-
energy terms, construction of Dyson orbitals, and stochastic constrained random phase approximation. The stochastic approaches
readily handle systems with thousands of atoms. We use them to explore the electronic states of twisted bilayer graphene (tBLG)
characterized by giant unit cells and correlated electronic states. We document the formation of electron localization under
compression; weakly correlated states are merely shifted in energy. We demonstrate how to efficiently downfold the correlated
subspace on a model Hamiltonian with a screened frequency-dependent two-body interaction. For the 6° tBLG system, the onsite
interactions are between 200 and 300meV under compression. The Dyson orbitals exhibit spatial distribution similar to the mean-
field single-particle states. Under pressure, the electron-electron interactions increase in the localized states; however, the
dynamical screening does not fully balance the dominant bare Coulomb interaction.
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INTRODUCTION
First-principles many-body theory provides invaluable insights for
predicting and deciphering the behavior of electronic states
without relying on empirical parameters. In particular, one
encounters the largest need for predictive first principles theory
in systems with emergent phenomena. For instance, the coupling
between nominally weakly correlated subsystems may lead to
new states exhibiting all hallmarks of strong correlations.
Describing such phenomena is often hindered by the large
system sizes that pose an insurmountable challenge for conven-
tional calculations. Here, by presenting computational develop-
ments we expand our previous work that enabled the application
of the ab initio many-body theory to giant systems1.
We exemplify the methodology by studying twisted bilayer

graphene (tBLG), which is a prototypical moiré superstructure in
which the coupling of individual monolayers is controlled
primarily by the twist angle, θ2. As θ approaches 1.1° “magic
angle”, tBLG transitions from a simple semimetal to a system
hosting correlated electronic states2. Under charge carrier doping
tBLG at (or near) the magic angle exhibits superconducting,
insulating, and magnetic properties2–12. These emergent states are
associated with a shallow moiré potential, which localizes
electrons in so-called AA stacking regions of the superstruc-
ture11,13–17 and is responsible for the formation of flat (i.e.,
dispersionless) bands near the Fermi level18,19.
Fundamentally, the electron localization is governed by the

strong interaction between the monolayers and the states’
hybridization near the respective Dirac points. On the one hand,
this is realized at small twists near magic angle, but equally well by
the bilayer’s in-plane strain or compression, as was shown by
recent experiments and theoretical works4,5,20. In the latter case,
the interlayer distance reduction drives electronic localization for
angles substantially larger than 1.1°4,5. Unlike the twist angle, the
degree of compression can be adjusted even after the deposition
of the layers and hence represents a unique control mechanism
for realizing correlated states. Yet, it has been so far studied to a
lesser degree.

At high pressures, graphene becomes thermodynamically
unstable; a suitably chosen combination of pressure transmission
media and encapsulation allows reaching pressures up to
37 GPa21,22 for tBLG. Even higher compression may be possible
for up to 50 GPa before graphene inevitably transforms to
diamond22. Nevertheless, even with the improved experimental
setup, the tBLG electronic states cannot be probed in the same
detail as at ambient conditions21,22. Further, it is unknown whether
the decreasing interlayer spacing affects the entire valence and
conduction states or leads to selective hybridization of Dirac point
states. Finally, weakly correlated states dynamically screen the
many-body interactions within the flat bands and critically affect
the emergent many-body phenomena17,23; however, the effect of
compression on screening is also unknown.
Previous studies of the tBLG electronic structure were limited to

tight-binding and continuum models14,15,23–45 that demonstrated
the magic angle-induced flat band formation at the Fermi level.
The model parameters were usually determined from mean-field
(DFT) calculations, which markedly deviate from quasiparticle
energies46. The ground state of tBLG at the magic angle was
further investigated by atomistic Hartree and Hartree-Fock
calculations based on the continuum model45,47–54. These
calculations revealed that unscreened Coulomb interactions are
responsible for stabilizing the insulating states in tBLG. Recently,
exact diagonalization of downfolded many-body Hamiltonians
(within a subspace of flat bands) was used to address the
superconducting regime of tBLG55. Investigations of the high-
pressure behavior remain scarce and limited to the MF or model
Hamiltonian treatment56–61, which focused on describing the
dispersion of states near the Fermi level. Further, the strength of
the electron-electron interaction at high pressure was investigated
neither. Thus, it remains unclear whether the flat bands’ formation
under compression is equivalent to that at (or near) the magic
angle. While these questions can be answered by the first
principles many-body approaches, they were not applied until
now due to their enormous computational cost.
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In this work, we overcome practical limitations of ab initio
many-body method: we propose a series of developments in the
stochastic many-body perturbation theory (MBPT) techniques62–67

which can readily elucidate how the electronic structure behaves
in giant moiré systems. We investigate tBLG with a large twist
angle of θ ≈ 6∘ (with the supercell of size 4 × 7 nm containing 2184
atoms, i.e., 8736 valence electrons), which is weakly correlated at
ambient conditions but develops flat bands at high compressions.
The pressure-induced coupling of the two monolayers is
substantially different and affects only states near the Fermi level.
Further, we develop a stochastic constrained random-phase
approximation (s-cRPA), which efficiently (i.e., with minimal
computational cost) maps the correlated subspace on a Hubbard
model with dynamical on-site interactions, U(ω). We find that the
electron-electron interactions in the flat bands are more screened
under compression. However, the screening does not fully cancel
out the bare Coulomb interaction. Thus, the effective interaction
increases with pressure. As a result, the strong correlation is not
only driven by vanishing band dispersion but also by increased
on-site terms. These results are the same for Dyson quasiparticle
orbitals and mean field canonical single-particle orbitals. We
present our results first, then their significance and implications;
the theory is discussed in the Methods at the end of this work.

RESULTS
The simulations employ rectangular supercells of the graphene
bilayer with twist angles θ= 0∘ (24 × 12 conventional unitcells with
9216 valence electrons in total) and θ ≈ 6∘ (1 × 3 moiré conven-
tional cells or ~16.5 × 16.5 in terms of conventional unitcells with
8736 valence electrons in total). See Supplementary Note 1 and
Supplementary Fig. 2 for more details about the construction of
the commensurate tBLG supercells. Within our real-space meth-
odology, the Brillouin zone of the supercell is sampled by the Γ-
point. The 1 × 3 moiré supercell makes our real-space grid
commensurate with high-symmetry ~K-point (coinciding with the
Dirac point location), where the electronic localization principally
occurs. We extract bandstructures with the projector-based
energy-momentum analysis1,68–72. We study undoped tBLG, and
thus, the Dirac point in our calculations is aligned with the Fermi
level. Further, spin and valley symmetry breaking are not
considered here. The ideal bilayer interlayer distance was first
optimized with the first-principles DFT calculations with van der
Waals corrections. For simplicity and to separate out the effects of
electron-electron interactions treated by our methodology, we

employed flat geometry, as lattice reconstructions are significant
for small twist angles73–75. The equation of state is extracted from
the total energy calculations for bilayers with variable interlayer
distances (the details of the ground state calculations and the
pressure estimation are provided in the “Methods” and Supple-
mentary Fig. 1). Our results are in excellent agreement with
previous theoretical calculations employing weak interlayer
interactions using the random phase approximation76.

Pressure-induced localization
This section provides computational results obtained with the
stochastic GW approximation (see “Methods”) for both diagonal
and off-diagonal parts and discusses the role of the orbital basis.
We will first report results for the ideal Bernal-stacked graphene
bilayer and then for the tBLG.
As a first step, we investigate the role of non-local and

dynamical correlations in an ideal graphene bilayer. We compare
the mean-field DFT and QP energies computed using the diagonal
approximation to the self-energy (i.e., Δ= 0 in Eq. (2) of
“Methods”). The corresponding bandstructures and the QP
densities of states (DOS) are in Fig. 1a–c. As expected77–79, MBPT
significantly increases the bandwidth (compared to DFT), leading
to an excellent agreement with the available experimental
data80,81.
Specifically, the experiments show a local minimum of a non-

degenerate Dirac band at the M high-symmetry point, which is
visible as a peak in the QP DOS at −2.93 eV (red arrow in Fig. 1c).
In the bandstructure for the rectangular cell in Fig. 1c (obtained
from momentum space projection1,68–70) the Γ and M points
coincide (due to the Brillouin zone reflection as depicted in the
inset figure). The DFT calculation places the peak in DOS
incorrectly at −1.94 eV (i.e., 1.0 eV too close to the Fermi level,
as shown by the black dashed line and an arrow). This agrees with
previous DFT calculations that also underestimated the band
dispersion by 10–20% with respect to the experiments11,77–80,82,83.
In contrast, our GW results predict a corresponding feature to
appear at −3.11 eV (blue dashed line and an arrow), which is in
excellent agreement with the experiment (the peak is placed only
0.18 eV lower than the measured value).
Next, we explore tBLG systems under various pressures ranging

from 0 up to 100 GPa (corresponding to maximal compression of
28% of the interlayer distance—see Fig. 1d). The structure is
characterized by a hexagonal symmetry with a periodicity of
23.4 Å between the AA stacking regions. Since the twisting angle

0 GPa20 GPa50 GPa100 GPa

a b c d

e

Fig. 1 Electronic structure of ideal bilayer graphene and pressure-induced density localization in tBLG. Bandstructure of ideal bilayer
graphene computed with a DFT and b GW. Due to the rectangular cell, corresponding bands are refolded onto Γ-point. Lines in band
structure are guides for the eyes. c Comparison of DFT and GW DOS. Red arrow indicates where should be an experimental peak
corresponding to the flattening of the band in ARPES in refs. 80,81. The onset figure schematically shows a comparison of the rectangular and
hexagonal first Brillouin zones. d Pressure--interlayer distance (compression) curve for ideal bilayer graphene. Ref. 76. e Charge density of the
Dirac point KS states at corresponding pressures of 6° tBLG. The isovalue is the same for all density plots.
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is high, the coupling between the individual graphene layers is
small at ambient conditions, and the system does not differ
substantially from the ideal bilayer. First, the electronic states at
the Dirac point are fairly delocalized (Fig. 1e), and the distinction
between the increase of the orbital density in the AA region is
hardly noticeable. Second, (due to the lack of localization) band
dispersion is large, and there is no increase in the density of states
at the Fermi level (Fig. 2).
The situation changes with the compression (for the pressure of

20 GPa and higher). The electronic states become more localized
in the AA stacking areas. Already at 20 GPa we clearly observe the
spatial redistribution of the orbital density (see illustration in Fig.
1e). In our calculations, we further explore even higher pressures
which may be difficult to realize experimentally (though the
highest reported pressures achieved for tBLG was P= 37 GPa21,22)
With increasing P, localization becomes even more pronounced,
and at 100 GPa, roughly 75% of the Dirac point states’ orbital
density is localized within 8Å radius around the AA stacking point.
This localization of the Dirac point states translates into the flat-
band formation, corresponding to a peak around the Fermi level
DOS (Fig. 2). Note that the structure at the pressure of 100 GPa is
thermodynamically unstable. Still, the observations are useful as
an indicator of the electronic correlation in tBLG: based on
experiments5, the same type of localization is expected for lower θ
angles at much lower pressures for which graphene is a stable
polymorph.
Note that the localization illustrated here lacks contributions

beyond those included in the mean-field (DFT) Hamiltonian. In
practice, the confinement of orbitals under pressure is driven by
the external (ionic) potential and the degree of the localization is
impacted by the delocalization error of semilocal DFT functionals.
We address this question below and show that the mean field DFT

orbitals, however, are remarkably close to the Dyson orbitals
computed with MBPT.

Mean-field vs MBPT energy spectrum
At this stage, we compare the first-principles results obtained with
the mean-field (DFT) and MBPT (GW) approaches (Fig. 2). While the
single particle energies are converged with respect to the
supercell (see Supplementary Fig. 4), the DOS curves, however
do not have sufficient resolution to capture certain details, such as
the van Hove singularities near the Fermi level84. We can extract
their position, since it coincides with the energy of the M critical
points of the Brillouin zone, which are refolded on the Γ-point. DFT
places the singularity at 0.37 eV away from the Fermi level. In
contrast, GW positions them at 0.55 eV away from the Fermi level,
in excellent agreement with the value of 0.56 eV obtained
experimentally84 (see Supplementary Fig. 4). Overall, Fig. 2 shows
that MBPT significantly increases the bandwidth and widens the
DOS features at 0 GPa compared to the mean-field solution.
However, the most apparent changes are for the high pressures at
which the DFT DOS significantly contracts and predicts a strong
reduction in the width of all bands. While the flat-band formation
leads to a peak at the Fermi level, its signature is suppressed by
the proximity of the entire set of top valence and bottom
conduction bands, which become closer in energy. The DFT
results show that occupied and unoccupied states’ behavior is
mostly symmetric around the chemical potential (moving up and
down in energy, respectively).
The many-body calculations show a different picture. Up to

50 GPa, the entire QP DOS shifts up in energy, i.e., the valence
states are moving closer to the Fermi level while the conduction
states away from it. The bandwidth of the states away from the
Fermi level is mostly unaffected by the increased pressure.
Simultaneously, we observe the flat band formation around the
chemical potential (indicated by a red arrow in Fig. 2), which does
not overlap with the rest of the occupied and unoccupied states.
The QP DOS peak comprises eight quasi-degenerate states
(corresponding to the Dirac points at K and K′ in the moiré
hexagonal Brillouin zone). Increasing the pressure further (i.e., P >
50 GPa) leads to more pronounced structures in the QP DOS, but
the peaks’ position remains roughly the same. This difference in
the behavior can be understood from the compression curve
shown in Fig. 1d: the change of the pressure between 50 and
100 GPa requires only a small decrease in the interlayer distance,
i.e., small change of the coupling of the monolayers. For 100 GPa,
the flat band is clearly visible in between the conduction and
valence bands. The key observation is that the compression-driven
flat bands’ formation leaves the rest of the states largely
unaffected. Hence, despite the reduced interlayer spacing leads
to the electron localization in the vicinity of the Dirac point, the
increased coupling between the graphene monolayers is confined
to a narrow energy range of the states near the chemical potential.

Role of the off-diagonal self-energy elements
To explore the mutual coupling in the localized moiré states, we
investigate the role of off-diagonal self-energy terms Σj≠k ¼
ϕj

� ��ΣðωÞ ϕkj i in Eq. (2), using our development to the stochastic
GW described in the “Methods” section. In practice, we compute
the contributions of Δj for the states up to ±0.5 eV away from the
highest occupied state. We note that the Σij is computed for a
wide frequency range for all off-diagonal terms at once. The cost
of the GW calculation is practically identical to the previously
developed diagonal implementation (see “Methods” section).
Next, we resort to a common procedure in the self-consistent
GW85,86 and construct a symmetrized and self-adjoint quasiparticle

*

GW DFT

*

a b

Fig. 2 Comparison of qp and DFT DOS. a qpDOS of a tBLG θ ≈ 6∘ as
a function of pressure. The stochastic error on identifying the
quasiparticle energy for the stochastic GW calculation is ~20 meV. b
DFT DOS. Both DFT and qpDOS were constructed with Gaussian
functions centered at each state (with broadening of 0.35 eV), for
more details about qpDOS construction see Supplementary Note 2
and Supplementary Fig. 3 in the Supplementary Information file. (*)
In Supplementary Fig. 4 of the Supplementary Information file we
show that the DOS eigenenergies are well converged with the
supercell size, we note, however, that some k-points are incom-
mensurate with our real-space sampling grids, thus, some DOS
features such as van Hove singularities124 are missing.
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Hamiltonian H as:

Hjk ¼ HKS
jk � vxcjk þ 1

4
ΣjkðϵjÞ þ ΣkjðϵkÞ
� �þ c:c:

� �
: (1)

The QP energies of H, however, differ only negligibly from those
computed with the diagonal approximation to Eq. (2). We find that
the difference for most of the states is less than 1% and only for
three states it is roughly 3%. The inclusion of the Δj terms can thus
be safely neglected in the QP DOS. This is true also for the flat
bands around the Fermi level. Here, the off-diagonal terms are not
necessarily small, but they tend to “average-out,” and their net
contribution is negligible.
While the QP energies remain unaffected, this does not imply

that the QP states, {ψ}, are close to the mean-field DFT orbitals {ϕ}.
To investigate this, we diagonalize Hjk (Eq. (1)) for the states in the
0.5 eV vicinity of the Fermi level. Employing the DFT orbitals’ basis,
the new eigenstates are ψj= ∑kCkjϕk, with ∑k∣Ckj∣2= 1. The
expansion coefficients are illustrated graphically in Fig. 3. For
most states, the Ckj matrix is practically diagonal. On the other
hand, the nearly degenerate flat-band states, show substantial
mixed character around the Fermi level and ∑k∈{φ}∣Ckj∣2= 0.995,
where {φ} denotes a subspace of eight correlated states at the
Fermi level. Nevertheless, each of them has a dominant
contribution from a single DFT eigenvector. Indeed, the visual
comparison (inset of Fig. 3) shows that {ψ} and {ϕ} are generally
similar, e.g., both are localized in the AA stacking regions.
We conclude that the stochastic approach efficiently computes

both diagonal and off-diagonal terms (at the same cost). Further,
our analysis shows that the off-diagonal terms have little impact
on the QP density of states and that the pressure-induced
coupling is limited to the subset of quasi-degenerate Dirac point
states. The differences in the distribution of the single-particle
orbitals are visually small, but a more quantitative analysis is
provided in the next section.

Pressure dependence of the dynamically screened on-site
interaction
In the remainder of the paper, we will demonstrate the stochastic
methodology for extracting the dynamically screened on-site
interaction U(ω), Eq. (10). With this approach we will explore the
role of screening on the orbitals around the Fermi level at various
pressures.

We map the strongly correlated states (identified in the
previous section and denoted {φ}) onto the Hubbard Hamiltonian
(see section “Stochastic Hamiltonian downfolding”), with the
effective hopping, t, and on-site interaction, U, terms. The latter
contains the information of all other electrons via the non-local
and dynamical screening ~W in Eq. (10). The electron correlation is
commonly characterized by the interplay of the on-site interaction
and the kinetic energy38,87,88. In practice, the U≫ t indicates the
regime when the system is strongly correlated. For tBLG close to
the magic angle, the strongly correlated regime was driven by the
drastic reduction of the hopping (due to localization) to t≤30
meV60. As a result, the U/t ratio becomes very high2,17,87,89,
although the screening was predicted to play an important role in
reducing the value of the onsite Coulomb term U. Previous
calculations suggested that the physics is dominated by the
competition between low t and dynamical screening: the
dielectric constant was predicted to be 20 times larger at the
magic angle than in the ideal bilayer17.
We estimate only the upper bound for the t parameter from the

localized states’ bandwidth, extracted17,87,90 from the dispersion of
the corresponding QP energies. The hopping term is 1/6 of the
bandwidth associated with the flat bands. For the system with the
most pronounced localization, i.e., at 100 GPA, we find t ≈ 40 meV,
which is in good agreement with the results for the correlated
phase at much lower twisting angles. We note that, in contrast, the
band dispersion at 0 GPa is very large and t ~ 600meV. Clearly, the
pressure-induced localization is responsible for qualitative
changes in the hopping (and the associated t parameter decreases
by order of magnitude).
Although the band flattening appears as the primary driver of

electron-electron correlation, the on-site Coulomb interaction
changes are equally important. Following the approach of
refs. 88,91, we provide the mean U values in order to describe
the correlation strength of the chosen subspace by a single
number rather than comparing U/t ratios for each state. However,
we also discuss the variation of U among distinct orbitals. In the
text below, we first consider the total screened effective
interaction U(ω). Next, we decompose U(ω) into the static bare
contribution Ub and dynamically screened counterpart Up(ω).
Note, while the U is computed in the basis of correlated states, the
idea of the scRPA is to include the dynamical renormalization due
to screening from all electronic states in the orthogonal
complement of the correlated subspace. The set of localized KS
orbitals is a straightforward and convenient choice of basis for
scRPA calculations since no additional localization or orthonorma-
lization procedure is required91. The approach to compute U in the
KS basis has been previously used in refs. 88,92, but other options
(e.g., Wannier basis15) have been proposed. For simplicity, we
resort to the first option and compute U in the basis of KS orbitals
{ϕ}, next we compare the results to analogous calculations for QP
orbital basis {ψ}.
Computed for the Dirac point states, see Eq. (10), the effective

interaction U(ω), is screened by all the weakly interacting electrons
confined to both monolayers. To account for the dynamical
screening, we employ a set of random states which sample the
dynamics of all weakly correlated states. The resulting U(ω)
converges extremely fast (only 8 random vectors are necessary to
yield a negligible stochastic error of 1 meV for a wide range of
frequencies—see Fig. 4) with minimal computational require-
ments (<120 CPU-hours; see section “Stochastic Hamiltonian
downfolding”). The frequency dependence of U(ω) is illustrated
in Fig. 4. In practice, similar to refs. 91,92, we will discuss the static
limit (ω→ 0) since there is no elegant mathematical framework to
solve the effective Hamiltonian with the frequency-dependent U.
For the tBLG at 0 GPa the total screened interaction U(ω→ 0)=
202meV. This is identical to the result for the uncompressed ideal
bilayer at 0 GPa where U(ω→ 0)= 201 meV. Clearly, our initial

Fig. 3 Exact diagonalization of the quasiparticle Hamiltonian.
Coefficient matrix obtained from the exact diagonalization of the
51 × 51HQP at 100 GPa pressure. The absolute values of the complex
coefficients are plotted. A zero position is set between occupied
(negative) and unoccupied (positive) states. With a black circle we
indicate 8 Dirac point states that are quasi-degenerate in energy.
Inset: We plot a density of state −3 to compare a KS orbital to the QP
orbital. State −3 is highlighted with a dotted line in the figure.
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assertion holds, and the 6°-tBLG indeed behaves like an ordinary
bilayer at ambient conditions.
Under pressure, the screened on-site interaction in tBLG

increases (as much as by ≈ 40% for the highest compression). At
100 GPa, the screened U= 282 meV corresponds to a large ratio
U/t ≈ 7 that suggests strongly correlated behavior. This is in
striking contrast to the ideal bilayer, for which the U parameter
remains practically constant (see Fig. 4). One can intuitively
understand the difference in the on-site interaction behavior in
tBLG and ideal bilayer from the charge density distributions of the
DP states: in tBLG, the electrons in the DP states are trapped in the
shallow moiré potential and become confined between the
monolayers. The pressure-induced localization leads to increased
on-site interaction; the weakly correlated states, on the other
hand, remain spread over the entire system. In contrast, the DP
electrons in the ideal bilayer experience no localizing potential.
Even under compression they remain fully delocalized in the in-
plane direction, and their distribution is little affected along the
normal to the bilayer. Further, the twist is a necessary prerequisite
of coupling between layers since it allows to form energetically
degenerate states at K and K′ points of the Brillouin zone. While in
the ideal bilayer, K points of two Brillouin zones appear on top of
each other forcing the energetic gap between corresponding
states, and forbidding them from coupling. Hence, the on-site
term in the ideal bilayer is insensitive to pressure.
From the previous analysis (section “Role of the off-diagonal

self-energy elements”) we saw that the Dyson orbitals {ψ} are
similar to the canonical KS states. Indeed, if we employ the
approximate Dyson orbitals instead of the KS states, the U
parameter is only insignificantly smaller even at high pressures (cf.
Fig. 4): at 100 GPa, the on-site term for the {ψ} states is 260 meV,
and the U/t is ≈ 6.5. For this analysis, we use the mean values of
the U parameters. However, to emphasize that the individual
states of the correlated subspace yield different values of U, we
also provide the standard deviation with a shaded area (cf. Fig. 4,
left panel). The spread of the individual U values is particularly
pronounced for higher pressures (cf. Fig. 4, right panel) and can be

explained by lifting the degeneracy within the correlated
subspace. In practice, QP and KS orbitals thus produce very
similar U interaction. This can be easily understood, given that {ψ}
and {ϕ} are very similar.
Finally, the right panel of Fig. 4 shows the frequency

dependence of U(ω) for each DP state in tBLG at 0 and 100 GPa.
Two main effects of the decreasing interlayer distance can be
observed: a vertical shift of the entire U(ω) curve, and an eight-fold
increase of the magnitude of the oscillations.
To explore the U(ω) pressure behavior, we now turn to the

analysis of the bare and polarization terms, Ub and Up(ω). We find
that the (average) values of the bare term are large: when the DFT
states are used, Ub= 232 meV at 0 GPa and it increases to Ub=
480 meV at 100 GPa (cf. Fig. 4). The approximate Dyson orbitals
yield similar values of 230meV and 412meV at 0 and 100 GPa (not
shown). Clearly, the difference between the bare terms partially
accounts for the discrepancy between the average U values for
the {ϕ} and {ψ} states.
The dynamical component of the on-site interaction, Up(ω)

contains the effect of the dynamical charge density fluctuations of
all the weakly correlated states (outside of the correlated
subspace); it is computed via s-cRPA (see the Methods sections).
Up(ω) increases under pressure and renormalizes the bare term:
the low frequency limit Up(ω→ 0) at 0 GPa is −30meV and at
100 GPa it is −200 meV. Apparently, this screening is not enough
to entirely cancel out the Ub contribution. Therefore, the total
screened interaction U(ω→ 0) is driven by the prevalent bare term
and grows with compression. We also see that the magnitude of
features in Up(ω) curve increases as the (occupied) states shift
closer to the Fermi level. Note that this result is independent of
the {ϕ} or {ψ} basis. When computing the screening for the
approximate Dyson orbitals, ψ, the weakly correlated subspace
remains identical, since ψ is composed of the combination of the
quasi-degenerate states.
From the computational prospective we conclude that the

stochastic approach is extremely efficient and yields U(ω) for even
extremely large systems while requiring only minimal computa-
tional resources. This method enabled efficient downfolding and
first principles calculations of the renormalized on-site interactions
in undoped tBLG supercells.

DISCUSSION
We presented and applied several numerical developments within
the stochastic many-body theory which efficiently treat even large
systems. We illustrated the method on large scale many-body
calculations for twisted bilayer graphene with nearly 9000 valence
electrons. We have expanded the stochastic computational toolkit
to address the role of off-diagonal self-energy and the basis
representation. Further, we have developed stochastic s-cRPA,
enabling the downfolding of even giant systems onto model
Hamiltonian problems. Our stochastic approaches are applicable
to general systems and will find wide application in a wide variety
of condensed matter problems.
Our GW results show an excellent agreement with the

experimental positions of the van Hove singularities. We also
show the formation of electronic localization under compression
of the tBLG, which is in agreement with available experimental
data and indicate that the compression provides a unique path
towards controlled coupling of monolayers and practical realiza-
tion of moiré states. For systems that are weakly correlated at
ambient conditions, the decreased interlayer spacing leads to the
formation of flat bands associated with strong correlations. These
localized states are found in the vicinity of the Fermi level. In
contrast, the majority of the states (delocalized over the individual
monolayers) are weakly correlated and remain practically unaf-
fected by the compression.

deneercs deneercs

bare
100 GPa

0 GPa

P (GPa)

a b

Fig. 4 Dynamically screened on-site interaction. a Screened and
bare U(ω= 0) as a function of pressure for twisted bilayer graphene
and screened for the ideal bilayer graphene. Curve labeled with
orange triangles is computed in the basis of DFT subspace orbitals,
and the curves labeled with violet circles are in the QP basis. The
lines connecting the mean values of bare and screened U(ω= 0) are
guide for the eyes. Stochastic error in determining the U is smaller
than the marker size. The shaded green and orange area provides
the standard deviation from a mean value due to the difference of U
(ω= 0) for individual states within a correlated subspace. b
Frequency dependence of the screened U(ω) computed in the KS
basis at 0 (red) and 100 (blue) GPa pressures. Different curves within
one color represent individual 8 states within a correlated subspace.
The colors of the curves match the triangles' colors from the left
panel at 0 and 100 GPa.
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We compare then effects of pressure to those by varying twist
angle on the interplay between screening and electron-electron
interaction. The previous theoretical investigations showed that
the screening has a crucial role in reducing the on-site
interactions, U, as the system approaches the magic twist angle.
Thus, the correlations (characterized by large U/t ratios) are
primarily driven by the vanishing dispersion (i.e., t→ 0) of the
states near the Fermi level16,17,23,93–97. In contrast, our stochastic
calculations reveal a different scenario: the dynamical screening of
the on-site term, U, increases relatively slowly with pressure and
the effect of the screening does not fully compensate the bare
term. Due to the interlayer coupling, the localized states are
strongly affected by compression, and the electronic correlation
stems from both small t and large U.
Our calculations indicate that dynamical electronic correlations

lead to only small changes in the single-particle orbitals.
Consequently, the corresponding U/t ratios in KS and QP basis
are practically the same.
By neglecting the graphene layer reconstruction (i.e., in the

absence of corrugation) we overestimate the screening effect:
structural relaxations in tBLG tend to separate the flat bands from
the rest of the spectrum (~20meV for small angles)44,60,75,98,99 and
increased gap would translate to a reduced static limit of the
screening. At the same time, the effect of structural relaxations on
screening in this system is likely to be small since their effect on
bandstructure was shown to be prominent only for twist angles
<2°73,74. In addition, tBLG is usually encapsulated with hBN in high
pressure experiments, effectively suppressing the out-of-plane
relaxation. While further investigation of the role of structural
reconstruction is needed, our methodology will likely play a critical
role in performing such calculations.
Since the electron-electron interactions in the flat bands appear

only mildly screened even at large compression, the electronic
structure at high pressures is likely associated with robust
insulating states95. However, the absence of internal screening
can be efficiently modified, e.g., by encapsulation and by extrinsic
adjustable screening23,95.
Our methodology is critical in providing the ab initio informa-

tion about internal screening effects. It informs future works
combining dielectric materials and high pressures. Further, it
opens a route to the theoretical understanding of precise control
of quasiparticle states.

METHODS
Stochastic many-body theory
To compute the QP energies and analyze the MB interactions, we employ a
combination of MBPT and mapping of the selected (strongly correlated)
subspace on the Hubbard model. Within MBPT, the central quantity is the
self-energy, Σ(ω), which is a dynamical and non-local potential acting on a
single QP state and incorporates all many-body effects. The QP energies
correspond to the poles of the Green’s function, G, representing a QP
propagator that is expressed in terms of the Dyson series:
G�1ðωÞ ¼ G�1

0 ðωÞ � ΣðωÞ, where G0 is the reference (non-interacting)
Green’s function (GF). Here, the reference GF is taken from DFT calculations
with PBE exchange-correlation functional100; Σ is found using a perturba-
tion expansion on top of G0 and is responsible for capturing the dynamical
correlation effects.
Here, we employ the basis of single particle states, {ϕj}, obtained from

the ground state DFT calculations and the self-energy thus becomes a
matrix composed of elements Σj;kðωÞ � ϕj

� ��ΣðωÞ ϕkj i. The QP energies, ε,
are:

ϵj ¼ ϵ0j � vxcj þ Re Σj;jðω ¼ ϵjÞ
� �þ Re Δjðω ¼ ϵjÞ

� �
(2)

Where ε0j is the Kohn-Sham (KS) eigenvalue, vxcj is the exchange-correlation
potential, and Δj(ω) comprises the coupling due to the off-diagonal
elements of Σj,k(ω). The frequency dependent self-energy, Σ(ω), is
evaluated at ε. We resort to the GW approximation to the self-energy,
which contains exchange and correlation parts; the latter is approximated
by the dynamical effects of the charge density fluctuations due to the

addition (removal) of an electron to (from) ϕj

�� �
46,101–103. In general, the off-

diagonal contributions to the self-energy Δj capture the deviation of the
{ϕ}-states from the QP (Dyson) orbitals ψjðxÞ

�� �
. The Dyson orbital is

defined by an overlap of a many-body wavefunction for the ground
state of N particles, ΨN

0 , and N ± 1 particles state, ΨN
j for the jth excited

state. For a hole in the jth state, the Dyson orbital is
ψjðxÞ �

ffiffiffiffi
N

p
ΨN�1
j ðx1; x2; ¼ ; xNÞΨN

0 ðx1; x2; ¼ ; xN; xÞ, where xk is the spin-
space coordinate of electron k and one integrates over all coordinates with
bar on top. For common weakly correlated systems, the diagonal
contributions, Σjj, strongly dominate while the off-diagonal terms are
orders of magnitude smaller and can be neglected (i.e., Δj= 0) 85,104.
Our first development efficiently expands the stochastic methodol-

ogy63,64 and computes both types of contributions using a single-step
correction. The expectation values of Σjk are sampled via decomposition of
the Green’s function into random vectors ζ spanning the occupied and
unoccupied subspace and propagated backward and forward in time,
hence representing particle and hole components of the time-ordered
Green’s function. The resulting expression is, e.g. for t < 0,
iGðr; r0; tÞ � fζðr0; tÞζðrÞg, where {⋯} denotes stochastic averaging and
ζðtÞj i � e�iĤt ζj i, and Ĥ is the system Hamiltonian. For non-interacting
Green’s function, G0,(i.e., in the one shot correction scheme), the time
evolution is governed by the underlying DFT Hamiltonian Ĥ0. The real-time
sampling of the induced densities is performed by another set of random
vectors η representing the charge density fluctuations, i.e., δn(r, t) ≈ ∣η(r,
t)∣2. For nanoscale systems with thousands of atoms, ~ 100 samples suffice
to represent the GF, with only ~ 10 needed to represent δn(r, t)62,63,65.
The stochastic methodology capitalizes on the fact that the key

quantities (G and W) are determined by collective properties, which are
inherently low-rank and captured by the dynamics of a few (random)
states within the Hilbert space of single-particle states. This approach leads
to a linear scaling algorithm that can treat thousands of atoms63,64. The
implementation expands this methodology and efficiently yields also Δj

terms (the details are provided in section “Off-diagonal self-energy”).
Further, using the QP hamiltonian matrix (represented in the {ϕ}-state basis
in the Eq. (1)), we compute the QP orbitals ψ, corresponding to the first
step of the self-consistent renormalization loop.

Off-diagonal self-energy
The off-diagonal terms in the polarization self-energy have been
implemented in our development version of the stochastic GW code63.
In the stochastic GW formalism, the non-interacting Green’s function G0

and the screened Coulomb potentialW are sampled with two independent
sets of random functions {ζ} and {η} respectively. Additional set of random
vectors is used for the sparse stochastic compression in the time-ordering
procedure. As a result, the expectation value for the polarization self-
energy is a statistical estimator with a statistic error decreasing with
number of random vectors as 1=

ffiffiffiffi
N

p
. A specific off-diagonal term of the

self-energy has the following expression:

ϕj

� ��ΣP ϕkj i ’ 1
Nζ

X
ζ

Z
ϕjðrÞζðr; tÞuζ;kðr; tÞd3r (3)

where≃ denotes that the expression is exact in the limit of Nζ ! 1. The
function ζ at time t is defined with a help of the time evolution operator
U0ðtÞ � e�iH0t and the projector Pμ(t) that selects the states above or below
the chemical potential, μ, depending on the sign of t.:

ζðtÞj i � U0ðtÞPμðtÞ ζj i: (4)

The ζ vectors in the occupied and unoccupied subspace are propagated
backward or forward in time and contribute selectively to the hole and
particle non-interacting Green’s functions.
In Eq. (3) the overlap with ϕk is hidden within uζ,k(r, t)—an induced

charge density potential:

uζ;kðr; tÞ ¼
Z

WPðr; r0; tÞζðr0Þϕkðr0Þd3r0; (5)

uζ,k(r, t) represents the time-ordered potential of the response to the
charge addition or removal. uζ,k is calculated from the retarded response
potential, which is ~uζ;k ¼

R
~WPðr; r0; tÞζðr0Þϕkðr0Þd3r0 with a subsequent

time-ordering procedure62,63,105.
Further, the retarded response is related to the time-evolved charge

density δnðr; tÞ � 1
λ nðr; tÞ � nðr; 0Þ½ � induced by a scaled perturbing

potential δv ¼ λ½νðr; r0Þζðr0Þϕkðr0Þ�. Here λ is selected to be small, i.e.,
inducing a linear response; in our case we chose λ= 10−4 a.u. The retarded
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response becomes:

~uζ;kðr; tÞ ¼
Z Z Z

νðr; r00Þχðr00; r000; tÞδvðr000; r0Þdr0dr00dr000

�
Z

νðr; r0Þδnðr0; tÞdr0
(6)

Instead of computing δn(r, t) by a sum over single-particle states, we
employ the set of random vectors ηf g confined to the occupied subspace.
This reduces tremendously a cost of the computation ~uζ;k . Time-dependent
density n(r, t) is thus62–64,106–108

nðr; tÞ ¼ lim
Nη!1

1
Nη

XNη

l

jηlðr; tÞj2; (7)

where ηl is propagated in time using U0,t

ηðtÞj i ¼ U0;t½nðtÞ� ηj i: (8)

Note, the perturbing potential δv depends explicitly on the state ϕk and
the ζ vector, which samples the whole Hilbert space.
We employ RPA, i.e., performing evolution within the time-dependent

Hartree approximation109–111, to calculate ~uζ;k .

Stochastic Hamiltonian downfolding
The second development presented in this work enables efficient
Hamiltonian downfolding and extracting effective parameters for model
approaches using first principles. We identify correlated states using the
QP orbitals analysis (discussed in the main text) and map the correspond-
ing subspace on a dynamically screened Hubbard model112–114:

Ĥ ¼ �
X
i;j;σ

tij ĉ
y
iσ ĉjσ þ

X
iσ

Un̂yi"n̂i#; (9)

where ĉyiσ , ĉi;σ are creation and annihilation operators, n̂iσ ¼ ĉyiσ ĉiσ is a
particle number operator.
In practice, we extract the hopping and on-site Coulomb terms, t and U

from the first-principles calculations. The latter is91:

UðωÞ ¼ 1
N

XN
i¼1

Z Z
drdr0jφiðrÞj2 ~Wðr; r0;ωÞjφiðr0Þj2: (10)

Here, {φi} is a set of KS or QP states spanning the correlated subspace
(represented by {ϕ} and {ψ} sets, respectively). They are subject to Coulomb
interaction ~W that contains both bare (instantaneous) and screened (i.e.,
dynamical) terms. Symbolically, the interaction is ~W ¼ ν þ ν~χν; where ν is
the bare Coulomb kernel and ~χ is the polarizability due to electronic states
orthogonal to the {φi}-subspace that contains the DP states.
The cost of the conventional calculation is huge, as it needs to be

evaluated by considering all possible transitions between occupied and
unoccupied states (see below). Calculations for large systems (such as
those studied here) were thus out of reach. In contrast, we propose an
efficient approach in which Eq. (10) is evaluated stochastically within the
constrained random-phase approximation (cRPA): the real-time formalism
samples the dynamics of all occupied states using a new set of random
vectors confined to the occupied subspace and orthogonal to {φi}. The
separation of the Hilbert space employs our recently developed
decomposition technique115. This technique is computationally inexpen-
sive: U(ω) screened by 4364 valence bands require merely <120 CPU ⋅ hrs
on a 2.5 GHz processor (the testing configuration was AMD EPYC 7502 with
2.5 GHz frequency using 10 out of 32 physical cores. The total
computational time was 9.6 hrs). This methodology thus enables
Hamiltonian downfolding even for extremely large systems. The details
of the implementation are provided in the next sections on the bare
Coulomb interaction (IV D) and its dynamical screening evaluated by
s-cRPA (IV E).

The effective bare Coulomb interaction
We calculate the bare effective interaction parameter, the Hubbard Ub,
both in a basis of KS or QP wavefunctions (see discussion on the orbital
construction in section “Pressure-induced localization”) of a chosen
subspace of N= 8 states:

Ub ¼ 1
N

XN
i¼1

Z Z
drdr0jφiðrÞj2νðr; r0Þjφiðr0Þj2; (11)

where νðr; r0Þ is a bare Coulomb kernel. The full Hubbard is U(ω) is given by
Eq. (10) and contains, besides Ub, also the dynamical screened polarization
term. The latter part is computed stochastically as detailed below, in
section “Stochastic constrained RPA (s-cRPA)”.

Stochastic constrained RPA (s-cRPA)
Here we discuss the implementation of the dynamical Hubbard term, U(ω)
= Ub+ Up(ω), where the latter is:

UpðωÞ ¼ 1
N

XN
i¼1

Z Z
drdr0jφiðrÞj2 ~WPðr; r0;ωÞjφiðr0Þj2: (12)

The polarization operator ~WP ¼ ν~χν is computed by the stochastic
constrained random-phase approximation (s-cRPA). The key idea is to
capture the effect of the entire system on the correlated electrons in states
{φ} described by the (downfolded) Hubbard Hamiltonian Eq. (9). In
practice, one accounts for the screening through a projection on the
subspace, which excludes all correlated states {φ}. In cRPA, ~WP thus
contains contributions of the induced density fluctuations in the weakly
correlated portion of the system.
Conventional techniques evaluate ~WP ¼ ν~χν in frequency domain by the

sum over all single-particle transitions outside the correlated subspace (i, j
∉ {φ}), requiring operation on both the entire occupied and unoccupied
space91:

~χðr; r0;ωÞ ¼ Pocc
i

Punocc
j

ϕiðrÞϕiðr0Þ�ϕjðrÞ�ϕjðr0Þ

´ 1
ω�εjþεiþiλ � 1

ωþεj�εi�iλ


 �
:

(13)

Hence, these calculations become expensive for large systems. In contrast,
we compute ~WP term stochastically in real-time domain:

φjφj

� �� ~WP φjφj

�� � ’ Z
jφjðrÞj2~uðr; tÞd3r: (14)

This expression is computed by time-ordering from the retarded charge
density potential:

~urðr; tÞ ¼
Z

νðr; r0Þδ~nðr0; tÞdr0: (15)

Where δ~n is the induced charge density in the weakly correlated subspace
perturbed by a potential due to ∣φj(r)∣2. This is formally equivalent to Eq. (5)
(representing the action of the self-energy in the GW approximation). In
practice, the density is constructed from random vectors f~ηg:
~ηj i ¼ 1� Pφ

� 
ηj i (16)

where the {η}-states are described in the section “Mean-field vs MBPT
energy spectrum” and Pφ is the projection operator on the {φ}-subspace:

Pφ ¼
X
k2 φf g

f k kj i kh j: (17)

Where fk is the occupation of state kj i. Note that the time evolution of f~ηg
vectors follows Eq. (8), which depends on the total density. For details of
the time-evolution of subspaces, see ref. 115.
The method is implemented alongside the stochastic GW formalism and

both can be evaluated at once. However, in practice, the statistical error in
Up(ω) is orders of magnitude smaller since: (i) it stems from one random
sampling of W; in contrast, the GW self-energy suffers from larger statistical
errors due to the additional random vectors sampling the Green’s function.
(ii) it contains only contributions of states orthogonal to those which it is
acting on; as a result, the dynamics is “well-behaved” and characterized by
only a few dominant (resonant) frequencies which can be efficiently
sampled by a small number of random vectors.

Equilibrium geometry and equation of state
The tBLG cells at a specific out-of-plane pressure have been approximated
using the interlayer distance of the ideal bilayer graphene in the Bernal
stacking at a corresponding pressure. All the calculations for the ideal
bilayer graphene have been performed using hexagonal unit cell in
QuantumESPRESSO code116 and Tkatchenko-Scheffler’s total energy Van
der Waals corrections117 and Effective Screening Medium Method118.
Troullier-Martins pseudopotentials119, and the PBE120 functional have been
employed. To calculate the pressure–distance curves in the ideal bilayer,
we have fitted the total energy E as a function of the volume V with the
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Murnaghan equation of state121.

EðVÞ ¼ EðV0Þ þ B0V
B00

ðV0=VÞB
0
0

B00 � 1
þ 1

" #
� V0B0
B00 � 1

; (18)

where V= S ⋅ z is the volume confined by two graphene layers, S ¼ a2lat is a
surface of the layer, and z is the interlayer distance. S was kept constant
using the equilibrium lattice parameter alat= 2.464Å, while z was varied.
The neglect of the pressure-induced in plane expansion is, in part, justified
by the large anisotropy of the bulk modulus in the in- and out-of-plane
directions5. B0 and B00 are the bulk modulus and its pressure derivative at
the equilibrium volume V0. The resulting fit and fitter parameters are
provided in the Supplementary Information file, Supplementary Fig. 1.
Using fitted parameters P(z) pressure–distance curves were calculated as a
derivative P= dE/dV:

P ¼ B0
B00

1� V0
S � z

� �B00
" #

(19)

Starting point DFT calculations
The starting-point calculations are performed with the density functional
theory (DFT) in a real-space implementation, employing regular grids,
Troullier-Martins pseudopotentials119, and the PBE120 functional for
exchange and correlation. We investigate tBLG infinite systems using
modified periodic boundary conditions with Coulomb interaction
cutoffs122. To converge the occupied H0 eigenvalues to <5 meV, we
use a kinetic energy cutoff of 26 Eh and 192 × 132 × 66 real-space grid
with the step of 0.4 × 0.4 × 0.5 a0, where the z-direction is aligned with
the normal of the bilayer plane.

G0W0 calculations
The GW calculations were performed using a development version of the
StochasticGW code62–64. The calculations employ an additional set of
20,000 random vectors for the sparse stochastic compression used for
time-ordering of ~uζ63. The sampling of the Green’s function G was
performed using Nζ= 500 random vectors. Nη= 8 was used to sample the
induced charge density63. The final stochastic error on quasiparticle
energies is ≤20 meV. The time propagation of the induced charge density
was performed for a maximum propagation time of 50 a.u., with the time-
step of 0.05 a.u.

DATA AVAILABILITY
All the data supporting the results of this study are available upon reasonable request
to the corresponding author

CODE AVAILABILITY
The public version of the stochastic GW code is available at www.stochasticGW.com.
We used a development version of the stochastic GW to perform calculations, which
will be released soon and is available upon reasonable request.

Received: 9 April 2021; Accepted: 23 December 2021;

REFERENCES
1. Brooks, J., Weng, G., Taylor, S. & Vlcek, V. Stochastic many-body perturbation

theory for moiré states in twisted bilayer phosphorene. J. Condens. Matter Phys.
32, 234001 (2020).

2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle gra-
phene superlattices. Nature 556, 80 (2018).

3. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene
superlattices. Nature 556, 43 (2018).

4. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Sci-
ence 363, 1059 (2019).

5. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré super-
lattices with pressure. Nature 557, 404 (2018).

6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in
twisted bilayer graphene. Science 365, 605 (2019).

7. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-
angle bilayer graphene. Nature 574, 653 (2019).

8. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent super-
conductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16,
926 (2020).

9. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic
angle. Nat. Phys. 15, 1174 (2019).

10. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle
twisted bilayer graphene. Nature 572, 101 (2019).

11. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted
bilayer graphene. Nature 572, 95 (2019).

12. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle
twisted bilayer graphene. Nature 573, 91 (2019).

13. Trambly de Laissardière, G., Mayou, D. & Magaud, L. Localization of dirac elec-
trons in rotated graphene bilayers. Nano Lett. 10, 804 (2010).

14. Koshino, M. et al. Maximally localized wannier orbitals and the extended hub-
bard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

15. Kang, J. & Vafek, O. Symmetry, maximally localized wannier states, and a low-energy
model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).

16. Calderón, M. & Bascones, E. Interactions in the 8-orbital model for twisted
bilayer graphene. Phys. Rev. B 102, 155149 (2020).

17. Goodwin, Z. A., Corsetti, F., Mostofi, A. A. & Lischner, J. Attractive electron-
electron interactions from internal screening in magic-angle twisted bilayer
graphene. Phys. Rev. B 100, 235424 (2019).

18. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene.
Proc. Natl Acad. Sci. USA 108, 12233 (2011).

19. Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer
graphene near the magic angle twist. Nat. Phys. 17, 184 (2021).

20. Parker, D. E., Soejima, T., Hauschild, J., Zaletel, M. P. & Bultinck, N. Strain-induced
quantum phase transitions in magic-angle graphene. Phys. Rev. Lett. 127,
027601 (2021).

21. Tao, Z. et al. Raman spectroscopy study of sp2 to sp3 transition in bilayer
graphene under high pressures. Appl. Phys. Lett. 116, 133101 (2020).

22. Clark, S., Jeon, K.-J., Chen, J.-Y. & Yoo, C.-S. Few-layer graphene under high
pressure: Raman and x-ray diffraction studies. Solid State Commun. 154, 15 (2013).

23. Pizarro, J., Rösner, M., Thomale, R., Valentí, R. & Wehling, T. Internal screening
and dielectric engineering in magic-angle twisted bilayer graphene. Phys. Rev. B
100, 161102 (2019).

24. Dos Santos, J. L., Peres, N. & Neto, A. C. Continuum model of the twisted
graphene bilayer. Phys. Rev. B 86, 155449 (2012).

25. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven
superconductor. Phys. Rev. Lett. 122, 257002 (2019).

26. Yuan, N. F. & Fu, L. Model for the metal-insulator transition in graphene
superlattices and beyond. Phys. Rev. B 98, 045103 (2018).

27. Yuan, N. F. & Fu, L. Erratum: Model for the metal-insulator transition in graphene
superlattices and beyond [phys. rev. b 98, 045103 (2018)]. Phys. Rev. B 98,
079901 (2018).

28. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior
and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).

29. Xu, C. & Balents, L. Topological superconductivity in twisted multilayer gra-
phene. Phys. Rev. Lett. 121, 087001 (2018).

30. Roy, B. & Juričić, V. Unconventional superconductivity in nearly flat bands in
twisted bilayer graphene. Phys. Rev. B 99, 121407 (2019).

31. Volovik, G. E. Graphite, graphene, and the flat band superconductivity. JETP Lett.
107, 516 (2018).

32. Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic
angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18,
6175 (2018).

33. Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X.-Q. & Wang, C. Phases of a
phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154
(2018).

34. Wu, F., MacDonald, A. & Martin, I. Theory of phonon-mediated superconductivity
in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

35. Isobe, H., Yuan, N. F. & Fu, L. Unconventional superconductivity and density
waves in twisted bilayer graphene. Phys. Rev. X 8, 041041 (2018).

36. Huang, T., Zhang, L. & Ma, T. Antiferromagnetically ordered Mott insulator and d
+ id superconductivity in twisted bilayer graphene: a quantum Monte Carlo
study. Sci. Bull. 64, 310 (2019).

37. Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat chern
bands in moire superlattices. Phys. Rev. B 99, 075127 (2019).

38. Kennes, D. M., Lischner, J. & Karrasch, C. Strong correlations and d+ id super-
conductivity in twisted bilayer graphene. Phys. Rev. B 98, 241407 (2018).

39. Zhang, L. Lowest-energy moiré band formed by dirac zero modes in twisted
bilayer graphene. Sci. Bull. 64, 8 (2019).

M. Romanova and V. Vlček

8

npj Computational Materials (2022)    11 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://www.stochasticGW.com


40. Guinea, F. & Walet, N. R. Electrostatic effects, band distortions, and super-
conductivity in twisted graphene bilayers. Proc. Natl Acad. Sci. USA 115, 13174
(2018).

41. Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band structure of twisted bilayer
graphene: emergent symmetries, commensurate approximants, and wannier
obstructions. Phys. Rev. B 98, 085435 (2018).

42. Lima, M. P., Padilha, J. E., Pontes, R. B., Fazzio, A. & da Silva, A. J. R. Stacking-
dependent transport properties in few-layers graphene. Solid State Commun.
250, 70 (2017).

43. Rademaker, L. & Mellado, P. Charge-transfer insulation in twisted bilayer gra-
phene. Phys. Rev. B 98, 235158 (2018).

44. Angeli, M. et al. Emergent d 6 symmetry in fully relaxed magic-angle twisted
bilayer graphene. Phys. Rev. B 98, 235137 (2018).

45. Goodwin, Z. A., Vitale, V., Liang, X., Mostofi, A. A. & Lischner, J. Hartree theory
calculations of quasiparticle properties in twisted bilayer graphene. Electron.
Struct. 2, 034001 (2020).

46. Martin, R. M., Reining, L. & Ceperley, D. M. Ceperley. Interacting Electrons
(Cambridge University Press, 2016).

47. Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in twisted
bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

48. Cea, T. & Guinea, F. Band structure and insulating states driven by coulomb
interaction in twisted bilayer graphene. Phys. Rev. B 102, 045107 (2020).

49. Zhang, Y., Jiang, K., Wang, Z. & Zhang, F. Correlated insulating phases of twisted
bilayer graphene at commensurate filling fractions: a Hartree-Fock study. Phys.
Rev. B 102, 035136 (2020).

50. Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene
at even integer filling. Phys. Rev. X 10, 031034 (2020).

51. Liu, S., Khalaf, E., Lee, J. Y. & Vishwanath, A. Nematic topological semimetal and
insulator in magic-angle bilayer graphene at charge neutrality. Phys. Rev. Res. 3,
013033 (2021).

52. Liu, J. & Dai, X. Theories for the correlated insulating states and quantum
anomalous Hall effect phenomena in twisted bilayer graphene. Phys. Rev. B 103,
035427 (2021).

53. González, J. & Stauber, T. Time-reversal symmetry breaking versus chiral sym-
metry breaking in twisted bilayer graphene. Phys. Rev. B 102, 081118 (2020).

54. Rademaker, L., Abanin, D. A. & Mellado, P. Charge smoothening and band
flattening due to hartree corrections in twisted bilayer graphene. Phys. Rev. B
100, 205114 (2019).

55. Potasz, P., Xie, M. & MacDonald, A. H. Exact diagonalization for magic-angle
twisted bilayer graphene. Phys. Rev. Lett. 127, 147203 (2021).

56. Munoz, F., Collado, H. O., Usaj, G., Sofo, J. O. & Balseiro, C. Bilayer graphene
under pressure: electron-hole symmetry breaking, valley Hall effect, and Landau
levels. Phys. Rev. B 93, 235443 (2016).

57. Chittari, B. L., Leconte, N., Javvaji, S. & Jung, J. Pressure induced compression of
flatbands in twisted bilayer graphene. Electron. Struct. 1, 015001 (2018).

58. Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the
magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).

59. Padhi, B. & Phillips, P. W. Pressure-induced metal-insulator transition in twisted
bilayer graphene. Phys. Rev. B 99, 205141 (2019).

60. Lin, X., Zhu, H. & Ni, J. Pressure-induced gap modulation and topological tran-
sitions in twisted bilayer and twisted double bilayer graphene. Phys. Rev. B 101,
155405 (2020).

61. Green, B. R. & Sofo, J. O. Landau level phases in bilayer graphene under pressure
at charge neutrality. Phys. Rev. B 101, 195432 (2020).

62. Vlček, V., Rabani, E., Neuhauser, D. & Baer, R. Stochastic GW calculations for
molecules. J. Chem. Theory Comput. 13, 4997 (2017).

63. Vlček, V., Li, W., Baer, R., Rabani, E. & Neuhauser, D. Swift GW beyond 10,000
electrons using sparse stochastic compression. Phys. Rev. B 98, 075107 (2018).

64. Neuhauser, D. et al. Breaking the theoretical scaling limit for predicting quasi-
particle energies: the stochastic GW approach. Phys. Rev. Lett. 113, 076402 (2014).

65. Vlcek, V. Stochastic vertex corrections: linear scaling methods for accurate
quasiparticle energies. J. Chem. Theory Comput. 15, 6254 (2019).

66. Vlček, V., Baer, R., Rabani, E. & Neuhauser, D. Simple eigenvalue-self-consistent
Δ− GW0. J. Chem. Phys. 149, 174107 (2018).

67. Vlček, V., Rabani, E. & Neuhauser, D. Quasiparticle spectra from molecules to
bulk. Phys. Rev. Mater. 2, 030801 (2018).

68. Popescu, V. & Zunger, A. Extracting E versus k effective band structure from
supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012).

69. Huang, H. et al. A general group theoretical method to unfold band structures
and its application. N. J. Phys. 16, 033034 (2014).

70. Medeiros, P. V., Stafström, S. & Björk, J. Effects of extrinsic and intrinsic pertur-
bations on the electronic structure of graphene: Retaining an effective primitive
cell band structure by band unfolding. Phys. Rev. B 89, 041407 (2014).

71. Boykin, T. B. & Klimeck, G. Practical application of zone-folding concepts in tight-
binding calculations. Phys. Rev. B 71, 115215 (2005).

72. Boykin, T. B., Kharche, N., Klimeck, G. & Korkusinski, M. Approximate band-
structures of semiconductor alloys from tight-binding supercell calculations. J.
Condens. Matter Phys. 19, 036203 (2007).

73. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface
in twisted bilayer graphene. Nat. Mater. 18, 448 (2019).

74. Liang, X. et al. Effect of bilayer stacking on the atomic and electronic structure of
twisted double bilayer graphene. Phys. Rev. B 102, 155146 (2020).

75. Cantele, G. et al. Structural relaxation and low-energy properties of twisted
bilayer graphene. Phys. Rev. Res. 2, 043127 (2020).

76. Leconte, N., Jung, J., Lebègue, S. & Gould, T. Moiré-pattern interlayer potentials
in van der Waals materials in the random-phase approximation. Phys. Rev. B 96,
195431 (2017).

77. Heske, C. et al. Band widening in graphite. Phys. Rev. B 59, 4680 (1999).
78. Strocov, V. et al. Photoemission from graphite: Intrinsic and self-energy effects.

Phys. Rev. B 64, 075105 (2001).
79. Grüneis, A. et al. Electron-electron correlation in graphite: a combined angle-

resolved photoemission and first-principles study. Phys. Rev. Lett. 100, 037601 (2008).
80. Ohta, T. et al. Interlayer interaction and electronic screening in multilayer gra-

phene investigated with angle-resolved photoemission spectroscopy. Phys. Rev.
Lett. 98, 206802 (2007).

81. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the elec-
tronic structure of bilayer graphene. Science 313, 951 (2006).

82. Zhou, S. et al. Coexistence of sharp quasiparticle dispersions and disorder fea-
tures in graphite. Phys. Rev. B 71, 161403 (2005).

83. Ohta, T. et al. Evidence for interlayer coupling and moiré periodic potentials in
twisted bilayer graphene. Phys. Rev. Lett. 109, 186807 (2012).

84. Brihuega, I. et al. Unraveling the intrinsic and robust nature of van Hove sin-
gularities in twisted bilayer graphene by scanning tunneling microscopy and
theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012).

85. Faleev, S. V., Van Schilfgaarde, M. & Kotani, T. All-electron self-consistent GW
approximation: application to Si, MnO, and NiO. Phys. Rev. Lett. 93, 126406 (2004).

86. Bruneval, F., Vast, N. & Reining, L. Effect of self-consistency on quasiparticles in
solids. Phys. Rev. B 74, 045102 (2006).

87. Goodwin, Z. A., Corsetti, F., Mostofi, A. A. & Lischner, J. Twist-angle sensitivity of
electron correlations in moiré graphene bilayers. Phys. Rev. B 100, 121106
(2019).

88. Xian, L., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multiflat
bands and strong correlations in twisted bilayer boron nitride: Doping-induced
correlated insulator and superconductor. Nano Lett. 19, 4934 (2019).

89. Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting
fermions on a twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453
(2018).

90. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic
properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

91. Miyake, T., Aryasetiawan, F. & Imada, M. Ab initio procedure for constructing
effective models of correlated materials with entangled band structure. Phys.
Rev. B 80, 155134 (2009).

92. Ma, H., Sheng, N., Govoni, M. & Galli, G. Quantum embedding theory for strongly
correlated states in materials. J. Chem. Theory Comput. 17, 2116 (2021).

93. Lu, C.-P. et al. Local, global, and nonlinear screening in twisted double-layer
graphene. Proc. Natl Acad. Sci. USA 113, 6623 (2016).

94. Stauber, T. & Kohler, H. Quasi-flat plasmonic bands in twisted bilayer graphene.
Nano Lett. 16, 6844 (2016).

95. Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene
using coulomb screening. Science 371, 1261 (2021).

96. Zhu, T., Antezza, M. & Wang, J.-S. Dynamical polarizability of graphene with
spatial dispersion. Phys. Rev. B 103, 125421 (2021).

97. Vanhala, T. I. & Pollet, L. Constrained random phase approximation of the
effective coulomb interaction in lattice models of twisted bilayer graphene.
Phys. Rev. B 102, 035154 (2020).

98. Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in
twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

99. Leconte, N., Javvaji, S., An, J. & Jung, J. Relaxation effects in twisted bilayer
graphene: a multi-scale approach. arxiv.Preprint at https://arxiv.org/abs/
1910.12805 (2019).

100. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865 (1996).

101. Hedin, L. New method for calculating the one-particle green’s function with
application to the electron-gas problem. Phys. Rev. 139, A796 (1965).

102. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and
insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

103. Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237
(1998).

104. Kaplan, F., Weigend, F., Evers, F. & van Setten, M. J. Off-diagonal self-energy
terms and partially self-consistency in GW calculations for single molecules:

M. Romanova and V. Vlček

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    11 

https://arxiv.org/abs/1910.12805
https://arxiv.org/abs/1910.12805


efficient implementation and quantitative effects on ionization potentials. J.
Chem. Theory Comput. 11, 5152 (2015).

105. Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems (Dover
Publications, 2003).

106. Gao, Y., Neuhauser, D., Baer, R. & Rabani, E. Sublinear scaling for time-dependent
stochastic density functional theory. J. Chem. Phys. 142, 034106 (2015).

107. Rabani, E., Baer, R. & Neuhauser, D. Time-dependent stochastic Bethe-Salpeter
approach. Phys. Rev. B 91, 235302 (2015).

108. Neuhauser, D., Rabani, E., Cytter, Y. & Baer, R. Stochastic optimally tuned range-
separated hybrid density functional theory. J. Phys. Chem. A 120, 3071 (2016).

109. Baroni, S., de Gironcoli, S. & Dal Corso, A. Phonons and related crystal properties
from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

110. Baer, R. & Neuhauser, D. Real-time linear response for time-dependent density-
functional theory. J. Chem. Phys. 121, 9803 (2004).

111. Neuhauser, D. & Baer, R. Efficient linear-response method circumventing the
exchange-correlation kernel: theory for molecular conductance under finite
bias. J. Chem. Phys. 123, 204105 (2005).

112. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond., A
Math. Phys. Sci. 276, 238 (1963).

113. Springer, M. & Aryasetiawan, F. Frequency-dependent screened interaction in ni
within the random-phase approximation. Phys. Rev. B 57, 4364 (1998).

114. Kotani, T. Ab initio random-phase-approximation calculation of the frequency-
dependent effective interaction between 3d electrons: Ni, Fe, and MnO. J.
Condens. Matter Phys. 12, 2413 (2000).

115. Romanova, M. & Vlček, V. Decomposition and embedding in the stochastic GW
self-energy. J. Chem. Phys. 153, 134103 (2020).

116. Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum
espresso. J. Condens. Matter Phys. 29, 465901 (2017).

117. Tkatchenko, A. & Scheffler, M. Accurate molecular van der waals interactions
from ground-state electron density and free-atom reference data. Phys. Rev. Lett.
102, 073005 (2009).

118. Otani, M. & Sugino, O. First-principles calculations of charged surfaces and inter-
faces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006).

119. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calcula-
tions. Phys. Rev. B 43, 1993 (1991).

120. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

121. Murnaghan, F. The compressibility of media under extreme pressures. Proc. Natl
Acad. Sci. USA 30, 244 (1944).

122. Rozzi, C. A., Varsano, D., Marini, A., Gross, E. K. U. & Rubio, A. Exact coulomb
cutoff technique for supercell calculations. Phys. Rev. B 73, 205119 (2006).

123. Towns, J. et al. Xsede: Accelerating scientific discovery. Comput. Sci. Eng. 16, 62
(2014).

124. De Laissardiere, G. T., Mayou, D. & Magaud, L. Numerical studies of confined
states in rotated bilayers of graphene. Phys. Rev. B 86, 125413 (2012).

ACKNOWLEDGEMENTS
The development of the off-diagonal self-energy and s-cRPA (VV) was supported by
the NSF through NSF CAREER award Grant No. DMR-1945098. The development of

the downfolding and the implementation (M.R.) were supported by the Materials
Research Science and Engineering Centers (MRSEC) Program through Grant No. DMR-
1720256 (Seed Program). M.R.’s work was also supported by the NSF Quantum
Foundry through Q-AMASE-i program Award No. DMR-1906325. The calculations
were performed as part of the XSEDE123 computational Project No. TG-CHE180051.
Use was made of computational facilities purchased with funds from the National
Science Foundation (CNS-1725797) and administered by the Center for Scientific
Computing (CSC). The CSC is supported by the California NanoSystems Institute and
the Materials Research Science and Engineering Center (MRSEC; NSF DMR-1720256)
at UC Santa Barbara.

AUTHOR CONTRIBUTIONS
M.R. conducted the research work under the guidance of V.V. All authors contributed
and reviewed the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-022-00697-8.

Correspondence and requests for materials should be addressed to Vojtěch Vlček.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

M. Romanova and V. Vlček

10

npj Computational Materials (2022)    11 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-022-00697-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Stochastic many-body calculations of moir&#x000E9; states in twisted bilayer graphene at high pressures
	Introduction
	Results
	Pressure-induced localization
	Mean-field vs MBPT energy spectrum
	Role of the off-diagonal self-energy elements
	Pressure dependence of the dynamically screened on-site interaction

	Discussion
	Methods
	Stochastic many-body theory
	Off-diagonal self-energy
	Stochastic Hamiltonian downfolding
	The effective bare Coulomb interaction
	Stochastic constrained RPA (s-cRPA)
	Equilibrium geometry and equation of state
	Starting point DFT calculations
	G0W0 calculations

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




