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Interpretable machine-learning strategy for soft-magnetic
property and thermal stability in Fe-based metallic glasses
Zhichao Lu1, Xin Chen2, Xiongjun Liu 1✉, Deye Lin2,3, Yuan Wu1, Yibo Zhang1, Hui Wang 1, Suihe Jiang1, Hongxiang Li 1,
Xianzhen Wang4 and Zhaoping Lu 1✉

Fe-based metallic glasses (MGs) have been extensively investigated due to their unique properties, especially the outstanding
soft-magnetic properties. However, conventional design of soft-magnetic Fe-based MGs is heavily relied on “trial and error”
experiments, and thus difficult to balance the saturation flux density (Bs) and thermal stability due to the strong interplay between
the glass formation and magnetic interaction. Herein, we report an eXtreme Gradient Boosting (XGBoost) machine-learning (ML)
model for developing advanced Fe-based MGs with a decent combination of Bs and thermal stability. While it is an attempt to apply
ML for exploring soft-magnetic property and thermal stability, the developed XGBoost model based on the intrinsic elemental
properties (i.e., atomic size and electronegativity) can well predict Bs and Tx (the onset crystallization temperature) with an accuracy
of 93.0% and 94.3%, respectively. More importantly, we derived the key features that primarily dictate Bs and Tx of Fe-based MGs
from the ML model, which enables the revelation of the physical origins underlying the high Bs and thermal stability. As a proof of
concept, several Fe-based MGs with high Tx (>800 K) and high Bs (>1.4 T) were successfully developed in terms of the ML model.
This work demonstrates that the XGBoost ML approach is interpretable and feasible in the extraction of decisive parameters for
properties of Fe-based magnetic MGs, which might allow us to efficiently design high-performance glassy materials.
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INTRODUCTION
The continued growth in electrical power generation and
distribution boosts the urgent demand of next-generation soft-
magnetic materials for electric fields. Among these materials, Fe-
based metallic glasses (MGs) are widely used in utility transformers
due mainly to their low cost and core loss, and high saturation flux
density Bs

1–10. Over the past decades, several Fe-based magnetic
MGs and their composites, such as FINEMET11, NANOPERM12, and
HITPERM13, have been successfully developed and commercia-
lized, relying heavily on considerable ‘trial and error’ experi-
ments14–17. However, there exists a tradeoff between the soft-
magnetic property and thermal stability for Fe-based MGs, i.e., the
improvement in the soft-magnetic property is always accompa-
nied by the deterioration of thermal stability2,7. The main reason
responsible for such tradeoff is that glass-forming elements are
usually anti-magnetic. To address this critical issue, fully under-
standing the complicated interplay between glass formation and
magnetic coupling is prerequisite, which actually makes the alloy
design of soft-magnetic Fe-based BMGs extremely challenging.
Therefore, it is of significance to establish a feasible model/
principle to guide the design of Fe-based MGs based on intrinsic
properties of their elemental constituents.
Machine-learning (ML) strategy enables the system to auto-

matically learn and improve from knowledge and experiences in
the field of artificial intelligence18,19. Owing to the significant
development in both hardware and software, ML has been
becoming an attractive and powerful tool in the field of materials
science20–22. Considerable efforts have been devoted to develop-
ing advanced materials by ML, such as ceramic materials23, high-
entropy alloys24, and oxide compounds25. Recently, ML has been

extended to the study of MGs, especially for predicting glass
formation behaviors. Wang et al. have exploited the support
vector machine (SVM) technique to predict glass formers26, whilst
Ward et al. have developed a model for pinpointing glass-forming
compositions27. These studies demonstrate that the materials
discovery process could be significantly expedited and simplified
if ML techniques are properly employed.
Although ML techniques have been applied to various

materials, design of soft-magnetic Fe-based MGs still strongly
depends on the “trial and error” method because of the lack of
deep insights into this type of materials. Moreover, currently
available ML models primarily focus on establishing the data
relationship, rather than directly deriving fundamental physical
mechanisms underlying the resultant relationship. In these cases,
ML models are more like a “black box” rather than an alloy design
theory with a simplistic scientific description. In this regard, some
researchers recently have attempted to improve the interpret-
ability of ML-based framework by clarifying the relationship
between the intrinsic parameters and properties via introducing
physical features into the ML process28–30. For example, Weng
et al. have constructed a simple descriptor with physical insight by
symbolic regression ML model and successfully synthesized a
series of oxide perovskites with good performance of oxygen
evolution reaction activities28. Obviously, these pioneering studies
make ML models more feasible towards practical applications
such as alloy design and performance optimization. Considering
the research status of Fe-based MGs and inspired by previous
work, here we aim to crack this hard nut by developing ML models
for the property of interest, namely, identifying the most
important parameters of soft-magnetic Fe-based MGs and
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composition-structure-property relationships in terms of intrinsic
characteristics of constituents. The eXtreme Gradient Boosting
(XGBoost) algorithm31,32, which is a scalable tree boosting system
and can be used for both classification and regression tasks, was
used to study how composition and structural data relate to
performance, and to quantitatively predict material properties
based simply on their chemical composition. With this strategy,
we can deduce the physics-based rules to clarify the data
relationships and the related physical mechanism for Fe-based
MGs, thus enabling efficient alloy design of advanced magnetic
amorphous materials with desirable properties.

RESULTS AND DISCUSSION
Model optimization
For data-driven materials research strategies, the dataset plays a
significant role in developing models and subsequent prediction
of properties. Figure 1 shows the schematic view of the ML
process and framework for soft-magnetic Fe-based MGs. As shown
in Fig. 1, it is mainly composed of five steps, including dataset
preparation, feature selection, data processing by ML, prediction
of properties of interest, and feedback.
We compiled the data including composition and properties,

Bs and crystallization temperature (Tx) for 252 Fe-based MGs
[Supplementary data], which were previously reported in litera-
ture2,33–45. Within the ML parlance, the former, i.e., the alloys, is
referred to as “input”, and the latter, i.e., the properties such as Bs
and Tx, is referred to as the “target” or “output”. Since the goal is to
predict specific magnetic property and thermal stability at a high
level of accuracy in a wide range of Fe-based composition space,
all features should contain critical structural information at the
atomic level that may determine the target properties. Here, the
d-dimensional feature space is composed of the feature vector
(also referred to as a descriptor) (Fi = Fi1, Fi2, Fi3, …, Fid) of each
alloy. For soft-magnetic Fe-based MGs, there are many parameters
that could affect soft-magnetic properties and thermal stability.
At the moment, however, it is still a scientific challenge to
quantitatively identify the importance of properties-related
parameters. On the basis of this fact, we selected a total of 30
features (See “Methods” for detailed definition), such as valance
electron concentration of system (VEC), valance electron

concentration without consideration of Fe (VEC1) (see “Method”
for more details), the electronegativity (χ), the averaged atomic
radius difference (δ), the melting point (Tm) and the type of 25
elements utilized in the compositions (e.g., B, C, Al, Si, P, Cr, Mn, Fe,
Co, Ni, Cu, and Zr).
For the XGBoost algorithm, the Scikit-Learn package in Python

was used to develop the model for prediction. For the present
dataset size (252 samples), k-fold cross validations (k = 5) were
conducted firstly. The available data were divided into five equal-
sized partitions, and five separate evaluation experiments were
then performed. In the first evaluation experiment, the data in the
1st fold were used as the test set while the rest in the remaining k
−1 folds were employed as the training set. A model was trained
using the training set, and the relevant performance measures on
the test set were recorded. Similarly, the second evaluation
experiment was then performed using the data in the 2nd fold as
the test set while those in the remaining k−1 folds as the training
set. This process continues until five evaluation experiments have
been completed and k sets of performance measures have been
recorded. Finally, the k sets of the performance measures were
aggregated to give one overall set of performance. The model
attempts to identify the importance of features closely related to
each attribute (the benchmark to guide the design of MGs) and to
reduce the predication error as much as possible (i.e., the highest
correlation coefficient R2). To do so, two model variables, i.e., Test
Size and Max Depth, were adjusted to achieve desirable prediction
results. Considering the application of soft-magnetic Fe-based
MGs, we further optimized the XGBoost model based on two
considerations; the first one is R2 > 0.92 and the other is to offer
high priority to Bs. Hence, we defined a parameter R2all ¼ 0:6R2Bs þ
0:4R2Tx as the indicator for evaluating the model performance.
Figure 2 shows the heat map of prediction results of R2 for Bs (Fig.
2a), Tx (Fig. 2b) and R2all (Fig. 2c), with different combinations of
input parameters of Test Size and Max Depth. Based on the
benchmark of R2all, the optimal parameter value for the model is
Test Size = 0.2 and Max Depth = 3. Additionally, we circularly
exclude the least important feature from all 30 features and build
a predictive model using only the remaining set of features. After
20 looping executions, the top ten important features were
remained for each target property. Figure 3 shows the changes of
R2Bs , R

2
Tx , and R2all with the increasing of feature numbers. It is seen

Fig. 1 Schematic illustration of the ML flow chart for soft-magnetic Fe-based MGs. FMG n, n and d present for the nth Fe-based MG,
sequence number of alloys, and sequence number of features, respectively.
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that the model with 14 features can provide the best prediction
result, i.e., the largest value of R2all.
To obtain reasonable prediction, key features play a significant

role in the ML-assisted design of soft-magnetic Fe-based MGs.
Figure 4a shows the prediction values of Bs. As can be seen, R2Bs of
the test sets for Bs can reach 0.934, even though the number
of the training dataset is no more than two hundred. In the case of
Tx, the R2Tx of the test set is even higher than that of R2BS , reaching
0.947 (shown in Fig. 4b). The origin of high accuracy of the model
is attributed to the adoption of several methods to avoid
overfitting for XGBoost algorithm. On the one hand, in the
XGBoost framework, a group of functions are learnt by minimizing
the regularized objective, and the additional regularization term is
used to smooth the learnt weights. On the other hand, the
XGBoost algorithm provides a shrinkage function, namely giving
each leaf node an attenuation weight to prevent the issue of

overfitting. In this case, the decreasing weight of a single tree can
effectively reduces its impact on the final score and make it more
flexible for next trees to improve performance of the ML model31.

Extraction of key features and revelation of physical mechanism
In addition to developing the predictive model with high
accuracy, the XGBoost algorithm can also offer interpretation of
the ML model by feature importance scores, which is one of the
most distinctive advantages of this method and makes it much
easier to visualize the relationship between the properties and the
intrinsic features of soft-magnetic Fe-based MGs. Figure 4c and d
demonstrate the feature importance score of different attributes
for Bs and Tx, respectively. As for Bs, the most important attribute is
the valance electron concentration without consideration of Fe,
referred to VEC1 (Fig. 4c). One can also see from Fig. 4c that
the importance score of the second-ranked feature, VEC, is just a
little bit lower than that of VEC1. Except for these top two features,
the importance scores of the others show sharp decline, indicating
that there is a strong correlation between Bs and the first two
features. In the case of Tx, a similar trend is found, but the top two
features for Tx change to the averaged atomic radius difference (δ)
and VEC. Since the feature importance does not provide a rule for
choosing alloying elements directly, to make the ML model more
interpretable and feasible in designing Fe-based MGs, we further
extract the relationship between the basic characteristics of
constituent elements and macroscopic properties in terms of
the ML-provided intrinsic parameters as well as the physical
metallurgy principles.
To check the validity of the selected features, we plotted a

diagram of properties versus features based on all the datasets.
Herein, the correlations between the top two features and
properties are shown in Fig. 5. In the case of Bs, although a
variety of studies have confirmed that Bs has a close relation with
average VEC, how outer-shell electrons could possibly influence
the Bs across various MGs is still far from being fully understood.

Fig. 2 Prediction from the ML model trained with different parameters. Correlation coefficient (R2) for Bs (a) R2BS , for Tx (b) R
2
Tx and (c) R2all. The

best performance was identified to be the one with the largest R2all, which is marked with blue star in (c).

Fig. 3 Correlation coefficient (R2) of the maximum saturation flux
density (Bs) and crystallization temperature (Tx) as a function of
the number of features. The predictive model was constructed by
the remaining set of features after circularly excluding the least
important feature from all 30 features.
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As shown in Fig. 5b, the data have a scattered distribution without
any specific trend. Nevertheless, if we exclude the coupling effects
between the ferromagnetic elements (i.e., Fe, Co, Ni), namely, the
Fe-based MGs containing no Co and Ni, a linear relation between
VEC1 and Bs is clearly observed, as shown in Fig. 5a (indicated by
the green elliptical dotted line). The fitting line of the data points
corresponding to this specific family of Fe-based MGs by the least
square method is expressed as follows (the yellow dash-dotted
line in Fig. 5a):

Bs ¼ 2:32� 0:998 ´ VEC1: (1)

The intercept and slope of the fitting line is 2.32 and −0.998,
respectively. Note that the intercept is quite close to the magnetic
moment of pure Fe (2.2 μB) according to magnetic valence

theory46, indicating that the magnetic valence theory is still a
good method to explain qualitatively the compositional depen-
dence of Bs for the Fe-based MGs containing no Co and Ni due to
its efficiency and simplicity. According to the charge transfer
model47, for Fe-metalloid magnetic MGs, the valence electrons of
metalloid elements, such as electrons in s and p orbits, tend to
transfer to the minority-spin band of Fe, resulting in the reduction
of Bs. Equation (1) successfully reveals the transfer effects of this
process, where the value of 2.32 represents the magnetic moment
of pure Fe and −0.998 is a descriptor of the extent of charge
transfer between metalloid elements and Fe atoms.
Now, we consider whether the correlation derived by the

XGBoost ML method is physically sound in determining the target
properties. In principle, according to the Slater-Pauling curve46,

Fig. 4 ML performance for soft-magnetic Fe-based MG data by the XGBoost model. Prediction of the maximum saturation flux density (Bs)
(a) and onset crystallization temperature (Tx) (b). Feature importance derived from the XGBoost model for Bs (c) and Tx (d).

Fig. 5 Statistical analyses of experimental data for the saturation flux density. a Bs versus VEC1, and (b) Bs versus VEC. The green elliptical
dotted line in (a) encloses the Fe-based MGs without Co and Ni elements.
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the average magnetic moment of 3d-transitional-metal-based
alloys is compositionally dependent and can be ascribed to the
unpaired electron spins, which is affected by out-shell electrons.
To realize glass formation in this type of Fe-based alloys, it is
essential to add some glass-forming elements, especially those
with negative mixing heat with Fe. Due to their strong affinity with
Fe, addition of these alloying elements tends to form atomic pairs
between them and Fe. Thus, the strong electron interactions
between Fe and the glass-forming elements should be taken into
account as far as the effective magneton number is considered.
Williams et al. have studied the magnetization of pure Fe, and

given an empirical equation as follows46:

μpure�Fe ¼ 10:6� npure�Fe
� �

μB; (2)

where μpure-Fe is the atomic magnetic moments of pure Fe, ηpure-Fe
is the number of sp electrons of Fe (usually μpure-Fe equals 8), and
μB is Bohr magneton. According to Eq. (2), nevertheless, the
magnetization of Fe is determined to be 2.6 μB, which is larger
than that of measured value 2.2 μB. In this case, this empirical
equation is needed to be normalized as follows:

μpure�Fe ¼
2:2
2:6

10:6� npure�Fe
� �

μB: (3)

As elaborated above, the sp orbitals of the metalloids have
interactions with 3d electrons of Fe, which makes sp electrons of
glass-forming elements transfer to minority-spin bands of Fe,
leading to the increase of n in Eq. (3). Thus, the atomic magnetic
moments of Fe-based MGs can be modified below:

μamor�Fe ¼
2:2
2:6

10:6� npure�Fe þ
X

xini
� �h i

μB; (4)

where μamor-Fe is the atomic magnetic moments of Fe-based MGs,
xi and ni are the atomic fraction and the number of sp electrons of
the ith alloying element, respectively. Taking the npure-Fe value of 8
into Eq. (4), one can get the following expression:

μamor�Fe ¼ 2:2� 0:846
X

xini
� �

μB: (5)

As we can see from Fig. 5a, the linear fitting curve of Eq. (1) is
quite comparable with Eq. (5), vividly verifying the validity of
the established XGBoost ML model. From the perspective of
ferromagnetic theory, Bs represents the density of magnetic
dipoles in an alloy, which is correlated to magnetic moment (μ)
and can be expressed as Bs ¼ ðcμÞμB, where c is a constant47. For
soft-magnetic Fe-based MGs, the μamor-Fe can replace the cμ, and
when not taking units into account, the Bs and μamor-Fe are equal

to each other in value. Thus, by extraction of key parameters of Fe-
based magnetic MGs using the XGBoost ML model, we success-
fully revealed the underlying physical origin of the Bs from the
perspective of charge transfer and magnetic moment and
deduced a general rule (i.e., Eq. (1)) to predict Bs, which can
provide a scientific guidance for alloy design of Fe-based soft-
magnetic MGs as long as Co and Ni are not involved.
In the case of thermal stability, crystallization processes of MGs

are rather complicated, involving nucleation and growth of
crystalline phases. The crystallization rate of glass-to-crystal
transformation is commonly dominated by the nucleation rate
and therefore depend not only on diffusivity, but also strongly on
thermodynamic properties such as glass-crystal interfacial energy
and the entropy of fusion48.
As shown in Fig. 6, the crystallization temperature Tx is

positively proportional to the averaged atomic radius difference
(δ). From the perspective of topological criterion, which has been
often used to understand the atomic structure and glass
formation of MGs, atoms with significant size mismatch are in
favor to form dense random packed atomic configuration49. The
constituent elements with the appropriate atomic size difference
could stabilize the dense packing structure of MGs by forming
various types of topological short-range orders. Thus, for Fe-based
MGs, with the addition of either small (i.e., C, B, Si, and P) or large
atoms (e.g., Hf, Ta, Y), the resultant dense packing structure can
sufficiently stabilize the amorphous phase and restrain the
nucleation and growth of crystallites, thus leading to a high
crystallization temperature. On the other hand, from the kinetic
point of view, thermal stability of MGs is closely related to the
diffusion behavior of constituents. Numerous dense packing local
structures existing in the glass matrix make the atomic diffusion
more difficult during the crystallization process50, thereby
increasing the crystallization temperature.
In addition, our analysis also revealed that Tx is also negatively

proportional to VEC, as shown in Fig. 6. In metallic materials, the
valence electrons act like “glue”, bonding non-valence electrons
and nuclei units together51. For Fe-based MGs, a high VEC value
indicates a strong interaction between the principal element (i.e.,
Fe) and the alloying constituents, which may promote the
formation of more pronounced chemical short-range orders
(CSROs). Generally, CSROs are considered to be the precursor of
nanocrystals in crystallization processes due to the similar
constituent and topological structure52,53. As a result, the CSRO
can act as the preferential nucleation sites for primary crystalline
phases usually observed in Fe-based MGs, such as α-Fe, Fe23M6,

and α-Mn type phases2. According to the heterogeneous
nucleation theory54, the existence of nucleation sites can decrease
the activation energy for nucleation, which makes the crystal-
lization easy and thus decreases the crystallization temperature.
Thus, to achieve high thermal stability of Fe-based MGs, the
elements with low valence electrons, such as B, C, Y, Zr, Hf, and Ta,
should be selected in the first priority to lower the VEC and thus to
enhance the Tx value.
As illustrated above, the Tx is strongly correlated with both δ

and VEC. Therefore, the natural thought is to deduce a simple
correlation of Tx with both δ and VEC based on the ML model.
Figure 6 depicts all the data points of Tx, δ, and VEC of Fe-based
MGs. It is seen that all these data collapse into a plane which can
be described as follows:

Tx ¼ 1518:5þ 27:1 ´ δ� 123:7 ´ VEC: (6)

The intercept and slope of δ and VEC for the fitting plane is
1518.5, 27.1 and −123.7, respectively. The linear fitting plane of
Eq. (6) is consistent with the above discussion, verifying the
validity of the key features determined by the XGBoost ML model.
Thus, with the ML strategy, we deduced simple correlations
between the properties, i.e., Bs (Eq. (1)) and Tx (Eq. (6)) for Fe-based

Fig. 6 Statistical analysis of experimental data for Tx versus δ and
VEC. The crystallization temperature Tx is positively proportional to
δ and negatively proportional to VEC.
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magnetic MGs, enabling the possible efficient design of magnetic
amorphous materials with desirable performance.

Experimental verification for the XGBoost model
Based on the above analysis, the current ML model hints us a
general benchmark for the design of Fe-based MGs with good
soft-magnetic properties and high thermal stability. Based on the
simple guidelines in Eqs. (1) and (6), we can accelerate the
selection of glass-forming elements and determine their desirable
fractions to design Fe-based MGs with a combination of high Bs
and Tx For demonstration, we have fabricated several different
types of Fe-based MG ribbons, including Fe–B–Si–Zr and
Fe–B–Si–Ta–Zr, and measured their Bs and Tx values by vibrating
sample magnetometer (VSM) and differential scanning calorimetry
(DSC), respectively. Moreover, to validate our XGBoost ML model,
the predicted Bs of the designed alloys were also compared with
the experimental results.
As shown in Fig. 7a, XRD patterns for all the as-spun ribbons of

the designed MGs exhibit the typical amorphous feature which
characterized by a broad diffuse peak at around 2θ = 45°. Figure
7b shows DSC traces of the as-spun ribbons at a heating rate of
0.33 K s−1 while Fig. 7c presents the hysteresis loops of the as-
spun ribbons at room temperature. The Tx and Bs values
determined from the DSC curves and hysteresis loops, respec-
tively, are summarized in Table 1. Figure 7d show the Bs and Txfor
the designed Fe-based magnetic MGs (without the addition of Co
and Ni), in comparison to those reported previously. As can be
seen from Fig. 7d and Table 1, the Bs and Tx values of designed
Fe73.8B15.79Si6.9Ta0.75Zr2.76 MG reaches 1.34 T and 865 K, respec-
tively. Compared with the widely commercialized nanocrystalline
material - FINEMET (Fe73.5Si13.5B9Nb3Cu1), the soft-magnetic
property and thermal stability of this particular Fe-based MG are

much better. For another developed MG with a high Fe content,
i.e., Fe82.55B13.79Si0.9Zr2.76, its Bs is over 1.6 T while the Tx value
reaches 738 K, outperforming many counterparts with an Fe
concentration over 80 at.%. Therefore, it is clear that based on the
guidelines in Eqs. (1) and (6), we can quickly design soft-magnetic
Fe-based MGs for different application purposes with different
requirements of magnetic and thermal properties.
Since the prediction criteria were based on the ML-determined

important feature, checking the accuracy of Eqs. (1) and (6) can, in
return, verify the validity of the XGBoost ML model used. For this
purpose, the calculated saturation magnetization using Eq. (1) and
crystallization temperature using Eq. (6), denoted by Bs_cal and

Fig. 7 Experimental validation of the ML prediction. a XRD patterns, (b) DSC curves at a heating rate of 0.33 K s−1, (c) the hysteresis loops,
and (d) the Bs and Tx values of the designed soft-magnetic Fe-based MGs based on the ML model. Experimental data reported in the literature
are also listed in (d) for comparison.

Table 1. Summary of VEC1, VEC, δ, onset temperature of
crystallization (Tx), predicted onset temperature of crystallization
(Tx_cal), saturation magnetization (Bs), and predicted saturation
magnetization (Bs_cal) of the as-prepared Fe-based MGs.

Alloys VEC1 VEC δ/10−3 nm Tx (K) Tx_cal (K) Bs (T) Bs_cal (T)

1 0.56 7.16 4.72 738 761 1.61 1.76

2 0.59 7.11 4.99 757 774 1.59 1.73

3 0.72 7.02 5.11 822 789 1.50 1.60

4 0.79 6.95 5.55 834 809 1.42 1.53

5 0.83 6.87 5.41 851 815 1.49 1.49

6 0.88 6.88 5.49 857 816 1.36 1.44

7 0.90 6.80 5.86 865 836 1.34 1.42

Alloys 1–7 represent Fe82.55B13.79Si0.9Zr2.76, Fe81.55B14.79Si0.9Zr2.76, Fe78.8B13.79-
Si3.9Ta0.75Zr2.76, Fe77.05B14.79Si3.9Ta1.5Zr2.76, Fe75.55B14.79Si6.9Zr2.76, Fe75.05B13.79-
Si6.9Ta1.5Zr2.76, and Fe73.8B15.79Si6.9Ta0.75Zr2.76, respectively.
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Tx_cal, are also listed in Table 1. When comparing the calculated
results and the experimental results, one can find that the
prediction error is lower than 10% and 5% for Bs and Tx,
respectively, indicating the accuracy and validity of Eqs. (1) and (6).
Thus, these results verify that it is feasible and efficient for the
property-orientated materials design strategy by combining ML
and critical experiments to quickly develop Fe-based MGs with
good soft-magnetic properties and thermal stability.

METHODS
Data preparation
The dataset is consisted of 252 alloys with different compositions compiled
from literature, with no consideration of fabrication methods utilized. For
each alloy, it contains both intrinsic properties of alloys, such as
concentration of the alloy, averaged atomic radius difference (δ), melting
point (Tm), electronegativity (χ), and VEC, and macroscopic properties such
as the crystalline temperature Tx and saturation flux density Bs. To build a
ML model, it is important to select proper input and output parameters,
corresponding to features and targets, respectively. For input descriptors,
we selected compositions of alloys, δ, Tm, χ, and VEC as features, whilst Tx
and Bs as targets. The averaged atomic radius difference, melting point,
electronegativity and VEC of alloys are defined as follows:

δ ¼
X
i

ciðri � rFeÞj j ; (7)

Tm ¼
X
i

ciTmi ; (8)

χ ¼
X
i

ciχ i ; (9)

VEC1 ¼
X
i

ciNi

 !
� cFeNFe; (10)

VEC ¼
X
i

ciNi ; (11)

where ci, ri, Tmi, χi, and Ni are the concentration, atom radius, melting point,
electronegativity and the number of valance electron of the ith element,
respectively. cFe, NFe, and rFe are the concentration, number of valance
electron and atom radius of Fe.
To fit the data in different ranges for the ML model, it is necessary to

transform them to the same scale. For instance, the temperatures in features
and targets fall into the range from 800 to >2000 K, whilst that of the
averaged atomic radius difference (δ) is less than 10�2. Thus, it is essential to
scale these data by proper algorithm. There are many algorithms to achieve
such a goal. Here we just used the most simplified one:

T 0m ¼ Tm
1000:0

; (12)

δ0 ¼ δ ´ 100:0: (13)

Then, the features and targets shall be split into a training subset and a
testing subset for the subsequent ML.

Machine learning
XGBoost model. XGBoost is the abbreviation of eXtreme Gradient
Boosting, which is a scalable algorithm based on tree boosting coined
by Chen and Guestrin31. The XGBoost package provides both linear models
and tree-based machine-learning algorithm, and supports classification,
regression and ranking functions. Meanwhile, the extendibility of the
package makes it possible for users to define their own objective functions
if necessary. As described, for an input dataset D ¼ f xi ; yið Þg, where xi is
the training dataset of features associated with Fe-based MGs to predict
the class label, yi , a Classification and Regression Tree (CART) assigns a real
score to each leaf, and the final score is obtained by summing up the
prediction score for each CART and assessed by K additive functions, which
is shown in Eq. (14):

byi ¼XK
k¼1

fkðxiÞ; fk 2 F; (14)

where fk is an independent tree structure with leaf weights and F is the
space of all regression trees. To learn the final function applied in the ML
framework, the regularized objective to minimize is given by Eq. (15):

Obj Θð Þ ¼
Xn
i

l yi ; byið Þ þ
XK

k
Ω fkð Þ; (15)

l is a differentiable loss function, which measures the difference
between the predicted ŷ and the target yi . Ω is the regularization term
which penalizes the complexity f of the model to prevent overfitting. The
penalizing term is given by Ω fð Þ ¼ γT þ 1

2 λ
PT

j¼1 w
2
j , where T and w are

the number of leaves and the score on each leaf, respectively. γ and λ are
constants to control the degree of regularization. Meanwhile, the
overfitting can also be prevented by two additional techniques, i.e.,
descriptor subsampling and shrinkage.
For a training dataset with vectors of features and corresponding class

labels, the training procedure in XGBoost mainly includes scanning the
best splitting point, choosing the descriptor with the best splitting point
that optimizes the training objective, assigning prediction score to the
leaves and pruning all negative nodes (nodes with negative gains) in a
bottom-up order.
Since additive training is used, the prediction ŷ at step t is expressed as

byi ðtÞ ¼XK
k¼1

fkðxiÞ ¼ byi ðt�1Þ: (16)

And Eq. (15) can be written as

Obj Θð ÞðtÞ¼
Xn
i

lðyi ; byi t�1ð Þ þ ft xið ÞÞ þ Ω ftð Þ: (17)

By taking the Taylors expansion to the second order for the loss
function, Eq. (15) can be further written as

Obj Θð ÞðtÞ¼
Xn
i¼1

l yi ; byi t�1ð Þ þ gift xið Þ þ 1
2
hif

2
t xið Þ

� �� 	
þ ΩðftÞ; (18)

where gi ¼ ∂byi t�1ð Þ lðyi ; byi t�1ð ÞÞ and hi ¼ ∂2byi t�1ð Þ lðyi ; byi t�1ð ÞÞ are the first and
second-order statistics on the loss function, respectively. A simplified
objective function of Eq. (18) at the step t is as follows:

Obj Θð ÞðtÞ¼
Xn
i¼1

gift xið Þ þ 1
2
hif

2
t xið Þ

� 	
þ Ω ftð Þ: (19)

By expanding the regularization term, the objective function is
expressed as

Obj Θð Þ tð Þ ¼ Pn
i¼1

gift xið Þ þ 1
2 hif

2
t xið Þ
 �þ γT þ 1

2 λ
PT
j¼1

w2
j

¼ PT
j¼1

ðP
iϵIj

giÞwj þ 1
2 ð
P
iϵIj

hi þ λÞw2
j

" #
þ γT ;

(20)

where Ij ¼ fi qj xið Þ ¼ jg is the instance set of leaf j. The optimal leaf
weight, w�

j , and the optimal objective function are given by Eqs. (21) and
(22), respectively:

w�
j ¼ � Gj

Hj þ λ
; (21)

Obj� ¼ � 1
2

XT
j¼1

G2
j

Hj þ λ
þ γT ; (22)

where Gj ¼
P

iϵIj gi and Hj ¼
P

iϵIj hi .
Equation (23) is used to score a leaf node during splitting:

Gain ¼ 1
2

G2
L

HL þ λ
þ G2

R

HR þ λ
� ðGL þ GRÞ2
HL þ HR þ λ

" #
� γ: (23)

The first, second, and third term of Eq. (23) are the score on the left,
right, and the original leaf, respectively. Regarding to the final term, .., it is
the regularization on the additional leaf.
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EXPERIMENTS
All alloy ingots of nominal compositions were prepared by arc-
melting a mixture of constituent elements of Fe, B, Si, Ta and Zr
with purity higher than 99.9 wt.% in a Ti-guttered argon
atmosphere. Amorphous ribbons, typically 1–1.5 mm wide and
25–30 μm thick, were produced by the melt-spinning technique
with a Cu-alloy wheel under an Ar atmosphere at a surface speed
of 40m s−1. Thermal properties of all the as-spun ribbons were
evaluated by differential scanning calorimetry (DSC) at a heating
rate of 0.33 K s−1 with argon as purging gas. Microstructures of the
as-spun ribbons were identified by X-ray diffraction (XRD) with Cu
Kα radiation. The saturation flux density (Bs) values of all the as-
spun ribbons were characterized by a VSM under an applied field
of−800 to 800 kAm−1. In order to transform the value of Bs in unit
of Tesla, the density of the rod specimens was measured by
means of Archimedes’s method, and are listed in Table 1. Before
the VSM tests, all the amorphous ribbons were annealed at 100 K
below Tx to relieve internal stress.
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