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Active learning for the power factor prediction in diamond-like
thermoelectric materials
Ye Sheng1, Yasong Wu1,2, Jiong Yang 1✉, Wencong Lu3,1, Pierre Villars4 and Wenqing Zhang 5,6✉

The Materials Genome Initiative requires the crossing of material calculations, machine learning, and experiments to accelerate the
material development process. In recent years, data-based methods have been applied to the thermoelectric field, mostly on the
transport properties. In this work, we combined data-driven machine learning and first-principles automated calculations into an
active learning loop, in order to predict the p-type power factors (PFs) of diamond-like pnictides and chalcogenides. Our active
learning loop contains two procedures (1) based on a high-throughput theoretical database, machine learning methods are
employed to select potential candidates and (2) computational verification is applied to these candidates about their transport
properties. The verification data will be added into the database to improve the extrapolation abilities of the machine learning
models. Different strategies of selecting candidates have been tested, finally the Gradient Boosting Regression model of Query by
Committee strategy has the highest extrapolation accuracy (the Pearson R= 0.95 on untrained systems). Based on the prediction
from the machine learning models, binary pnictides, vacancy, and small atom-containing chalcogenides are predicted to have large
PFs. The bonding analysis reveals that the alterations of anionic bonding networks due to small atoms are beneficial to the PFs in
these compounds.
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INTRODUCTION
Thermoelectric (TE) materials have aroused widespread interest
owing to their potential applications in waste heat harvesting and
refrigeration1–3. The conversion efficiency of TE materials is
evaluated by the dimensionless TE figure-of-merit ZT, defined as
ZT ¼ S2σT

κLþκe
, where S, σ, κL, κe, and T, respectively, stand for the

Seebeck coefficient, electrical conductivity, lattice thermal con-
ductivity, electronic thermal conductivity, and the absolute
temperature. Because of the intercorrelation between the trans-
port parameters, the improvement of ZT values is challenging4–6.
As computational materials science is emerging, the high-

throughput (HTP) calculation methods have been introduced to
the TE material field. In 2014, Carrete et al. scanned ~79,000 half-
Heusler structures and finally recommended 3 semiconductors
with low lattice thermal conductivities7. Chen et al. screened
25,000 semiconductors out of 48,000 inorganic compounds and
performed the calculations of their electrical transport proper-
ties8,9. In 2018, Xi et al. applied HTP ab initio calculation to 161 p-
type chalcogenides and experimentally verified the recommended
TE compound Cd2Cu3In3Te8 with ZT >1.010. Li et al. studied both
p-type pnictides and chalcogenides in the atomic ratio 1:1:2, and
pnictides showed exceptionally high power factors (PFs)11.
Although HTP theoretical and experimental means bring a

revolutionary leap in predicting properties of energy materials,
their scales are limited by the high cost. Meanwhile, data-driven
machine learning (ML) methods have attracted a lot of attention
because it can efficiently search the huge space with extremely
low cost. Recently, ML has been widely used in the development
and design of TE materials. In 2017, Zhan et al. trained the ML
model based on the collected experimental thermal boundary

resistance data and achieved better prediction accuracy than the
commonly used acoustic mismatch model12. In 2018, Miller et al.
viewed diamond-like semiconductors from the perspective of
carrier concentration range with ML method and quantified their
dopabilities by linear regression13. In 2019, an ML model for
predicting the κL was proposed based on the experimentally
measured κLs of ~100 inorganic materials14. In the same year,
Tshitoyan et al. employed the text mining method on the material
literature and sought potential TE materials by their similarities
with the word “thermoelectric”15.
In most of the ML works, the train–test splitting scores or cross-

validation results are usually adopted to evaluate the accuracy of
the ML models16. However, the high scores on the testing set do
not necessarily represent superior extrapolation ability. On the
other hand, the model extrapolation plays a decisive role in
seeking potential materials. Although some algorithms can
improve the model extrapolation ability in some degree17, the
poor extrapolation performance is fundamentally inevitable due
to the lack of information outside the data set. Thus iterative data
verification that provides external information to ML models is a
promising method to improve the model extrapolation. To build
reliable models with as less validation samples as possible, active
learning, a verification-by-learning framework, is suitable18.
In this work, active learning is used in the TE field to accurately

predict the p-type PFs. Our active learning loop contains both the
ML module and density functional theory (DFT) verification. As
long as the extrapolation accuracy of the model is not high
enough, the DFT verification will continue to provide reliable data
to the ML module. We adopt three strategies of selecting
validation candidates, including Top, Random, and Query by
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Committee (QBC)19. The model with the highest extrapolation
accuracy comes from the QBC strategy. Finally, the bonding
analysis on the screened high PF compounds is conducted to
reveal the physical reasons for the good TE performance.

RESULTS
Data source
The diamond-like materials investigated include four types of
compositions (Fig. 1b), ABX2, AX, A2BCX4, and A2BX4, where the X
site is a chalcogen or phosphorus group element. The atoms on A,
B, and C sites are ordered by the valence of the elements among
the IB, IIB, IIIA, and IVA groups (orange-marked in Fig. 1a). The
original 158 entries of chalcogenides and pnictides are quoted
from our previous HTP works and referred in the DFT database
later10,11. By exhausting all the possible combinations among the
aforementioned cations and anions, we construct a search space
of diamond-like compounds with 482 entries (158 DFT calculated
and 324 uncalculated)10. The target properties, maximum p-type
PFs, are calculated with the constant electron–phonon coupling
approximation (with the uniform deformation potential 4 eV and
Young’s modulus 100 GPa) at 700 K under optimized carrier
concentrations in theory, similar to our previous works10,11. PF
obtained by this method purely reflects the influence of electronic
structure on group velocities and electronic relaxation times.

Active learning workflow
A classic active learning strategy, Bayesian optimization, has been
used many times to find materials with breakthrough properties.
These works prove the effectiveness of active learning20,21.
However, models in Bayesian optimization are limited to the
probabilistic regression ones, excluding many other ML methods
that also have outstanding performance, such as Support Vector
Regression (SVR)22. In this work, the active learning strategies with

unlimited model types are adopted to integrate active learning
with more effective ML algorithms.
Figure 2 shows our active learning loop with the key

ingredients, i.e., the search space including DFT database, the
ML module (including the models and strategies for candidate
selections), and the DFT verification module. In order to be
available for both calculated and uncalculated materials with
diamond-like structures, the descriptors are all element-related,
such as valence electron number, atomic weight, electronegativ-
ity, Mendeleev number, etc., with ~60 descriptors per atom. The
reason for not taking structure-related descriptors into account is
that their generation for the uncalculated materials require the
DFT structural relaxation, which is costly if applied to the whole
search space.
Based on the DFT database, the models to predict the unexplored

materials are built by ML algorithms. Then the candidate selection
strategies are carried out according to the model results. There are
three strategies, including one several-model strategy and two
single-model strategies. The several-model strategy means that the
selection of candidates requires the prediction results from multiple
different models. In this work, QBC is a several-model strategy in
which 15 candidates with large ambiguity are selected. The
ambiguity is measured by the variance of five ML models,
respectively, using different algorithms, SVR22, Gradient Boosting
Regression (GBR)23, Random Forest Regression (RFR)24, Adaptive
Boosting Regression25, and Kernel Ridge Regression (KRR)26. The
other two single-model strategies are, respectively, Top and
Random. Top strategy chooses the 15 candidates with high
predicted PFs, and Random strategy just randomly recommends
the candidates.
In each round, the recommended 15 candidates are verified by

the DFT calculations. Based on the package TransOpt of the
electrical transport calculation method and the HTP workflow, the
entire verification process can be automatically proceeded10,27.
Since the validation set is independent of model-learned data, the

Fig. 1 The search space and schematic diagram of the crystal structure. a Element replacement range; orange indicates the cation range,
green is the anion range. b Schematic diagram of four types of diamond-like materials.
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score of the validation set can be regarded as the measure of the
model extrapolation accuracy. If the extrapolation is not
satisfactory, the already verified samples will be added to the
DFT database and the whole loop updated. The active learning
loop is terminated when the extrapolated Pearson R is >0.9 or the
number of iterations reaches the set maximum 10.

Active learning results
From Fig. 3a, the root mean square error (RMSE) curves of all
strategies with RFR algorithm show a generally decreasing trend
with the number of iterations. Notably, the results of the first
round in the active learning loop are equivalent to the
performance of supervised learning for the untrained data (RMSE
~20 μW cm−1 K−2, Pearson R −0.11). The poor performance of the
first round implies that the introduction of active learning is
essential for ML methods to improve the prediction power on
unknown data. The performance of Random and QBC strategies is
similar; the falling RMSE curve and the rising Pearson R curve show
that the accuracies are gradually improved with the number of
iterations. Although there is a small range of RMSE fluctuations
(~ 3 μW cm−1 K−2) in both Random and QBC strategies, it is
reasonable because of the sample difference in each iteration.
However, the Pearson R curve of the Top strategy does not
maintain an upward trend after the first round, indicating that the
extrapolation ability of the Top strategy does not improve with
iterations. Nevertheless, the RMSE curve has a slight downward
trend. It is possibly caused by lowered absolute values of PFs due

to the nature that the Top strategy selects candidates with PFs
from high to low.
Because the PFs cover a large range of absolute values

(10–100 μW cm−1 K−2), RMSE cannot fully describe the accuracy
of models. Therefore, we introduce a measure for the relative
error, i.e., the mean absolute percentage error (MAPE). The formula

is expressed as MAPE ¼ Pn

i¼0

PFDFT�PFpre
PFDFT

�
�
�

�
�
� ´ 100

n %, where n represents

the number of samples in each iteration. As shown in
Supplementary Fig. 3 with both RMSE and MAPE, there is no
downward trend in the MAPE curve after the first round of the Top
strategy. The overall trends of RMSE and MAPE curves are similar.
After the sixth generation, the values of MAPE for QBC and
Random strategies basically fluctuate between 10 and 15%, while
the MAPE values for Top strategy float between 20 and 30%.
As shown in Fig. 3b, all the ML models in the QBC strategy

eventually converged to high accuracies indicated by low RMSE
(~4 μW cm−1 K−2) and high Pearson R (>0.9, Supplementary Fig. 1).
These models have been improved tremendously after ten round
iterations, especially for the KRR model. From the results of the
first round, the RMSE of KRR model reaches the maximum 40 μW
cm−1 K−2. Figure 3c, d show the data deviations of predicted and
DFT PFs in the first and tenth round, respectively. From Fig. 3c, the
sample points of KRR are the farthest from the line with a slope of
1, implying that KRR model performs the worst. Some PF values of
the predictions of KRR model are even unreasonably negative. On
the other hand, after ten rounds of iterations, the points of all
algorithms, including KRR, are obviously close to the line with a

Fig. 2 The workflow of active learning loop. The loop contains three ingredients, Search Space including DFT database, machine learning
module and DFT verification. Machine learning model is built based on the DFT database to recommend candidates, and then the candidates
are verified with DFT calculations. If the extrapolation accuracy does not meet the convergence criterion, the verification data will be merged
into the DFT database, and the whole loop will proceed.
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slope of 1 (Fig. 3d). The dramatic improvement demonstrates that
the DFT verification provides sufficient external data to enhance
their extrapolation capabilities.
The efficiency of the selection strategy can be considered from

two aspects, the divergence and information. Compared with the
other two strategies, the candidates of the Top strategy are localized
in high PF area in each iteration (low divergence). The accuracy of
the model still increases in the first round because the data in the
high PF area is sparse (high information). After the first round,
the provided PFs contain less information due to the decreasing of
the data sparsity. The low divergence of the Top strategy sometimes
reduces the extrapolation ability. On the other hand, the divergence
of the QBC strategy is comparable to the Random strategy in the PF
prediction. Based on the fact that the Random and QBC perform
comparably (Fig. 3a), thus in the case of PF prediction, the data
divergence plays a vital role.

Material analysis
The last-round GBR algorithm in the QBC strategy, which performs
the best (Pearson R 0.95), was used to predict the p-type PFs of the
whole search space. The compounds in top 20% PFs are shown in
Fig. 4a. The overall TE performance depends not only on PFs but
also on many other factors. Here we choose two other parameters
for further screening potential high-performance TE materials,
including “band gap,” relating to electrical properties, and
“average atomic weight,” relating to lattice thermal conductivity.
The band gap criterion is 0.7 ± 0.4 eV, considering the uncertain-
ties of the band gap in DFT calculations and the optimal band
gaps for TE applications (10kBTop, where Top is the operating

temperature)28. In addition, the compounds with average atomic
weight >80 might have low lattice thermal conductivities and
therefore be screened out. Figure 4a shows the results under the
two criteria with the highlighted box. The compounds with a
relatively large PF are marked with triangles and their chemical
formulas are labeled, and they are HgB2Te4, ZnSiSb2, AuBSe2,
Zn2GeTe4, and Zn2SnTe4. Combining with the calculations of
electronic and lattice thermal conductivities11, the DFT predicted
ZTmaxs at 700 K of HgB2Te4, ZnSiSb2, AuBSe2, Zn2GeTe4, and
Zn2SnTe4 are, respectively, 1.19, 0.97, 1.26, 1.30, and 1.41. ZTmax

represents the maximum value of DFT-calculated ZT when the
carrier concentration is fully optimized within the range of 5 ×
1019–1 × 1021 cm−3.
In order to explore the underlying mechanisms for high PFs, all

the compounds with top 20% PFs and the corresponding optimal
carrier concentrations are plotted in Fig. 4b (pnictides) and Fig. 4c
(chalcogenides). Three major phenomena relating to the PFs can
be concluded: (1) among all the studied diamond-like materials,
the PFs of pnictides are generally larger; (2) among chalcogenides,
the PFs of the compounds in IIB1:IIIA2:VIA4 atomic ratio are
relatively large; (3) the PFs of IIB1:IIIA2:VIA4 chalcogenides with
smaller atomic radius elements such as Si or B are relatively large.
Pnictides own extremely high PFs, mainly due to the low

valence band effective masses, and therefore high group
velocities and low scattering phase space in relaxation times11.
For quantitative comparison, we calculated the effective masses
and group velocities of the pnictide GaAs and chalcogenide ZnSe.
The effective mass of the valence band maximum (VBM) in GaAs
(2.12 me, me is the mass of a free electron) is smaller than that of

Fig. 3 Extrapolation accuracy results of different strategies. a Comparison of Pearson R and RMSE of RFR algorithms in, respectively, Top,
Random, and QBC strategies. b Changes in RMSE of five algorithms in QBC strategy with the number of iterations. c The comparison of the
first-generation validation set between the ML prediction and the DFT calculation with QBC strategy. The shaded part indicates the largest
root mean square error (RMSE) range of the five algorithms. d The comparison of the last-generation (tenth) validation set between the ML
prediction and the DFT calculation with QBC strategy.
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ZnSe (2.62 me), and the electron group velocity of GaAs (2.93 ×
105 m s−1) is higher than that of ZnSe (2.13 × 105 m s−1). Mean-
while, the relaxation time of GaAs (4.83×10−14 s) is increased
compared to that of ZnSe (1.50 × 10−14 s).
Observing chalcogenide in compounds with the top 20% p-type

PFs (Fig. 4b), we found that a large percentage of compounds are
in IIB1:IIIA2:VIA4 atomic ratio. This conclusion is consistent with our
previous work10. From the crystal structures, this series of
compounds can be seen as vacancy-containing chalcogenides
(VCCs). In order to further explain why the PFs of VCCs are
relatively high, two compounds with similar atomic masses but in
different chemical formulas, ZnGa2Te4 and CuGaTe2, were
investigated (Supplementary Fig. 2). We introduce the energy
integral of the negative density of energy (-DOE) at the VBM to
quantify the degree of the destabilizing contribution, which is

written as Eband ¼ REf

Ef�2
�DOE Eð ÞdE29. The Eband of ZnGa2Te4 and

CuGaTe2 are, respectively, −19.67 and −31.89 eV. A smaller Eband
means that the anti-bonding interaction at VBM is weaker,
resulting in a flat band structure and high density of states
(DOS) at the Fermi levels (Supplementary Table 1). Although the
relaxation time and group velocity are slightly decreased, the
electrical conductivity increased significantly due to the large
enhancement in DOS and carrier concentration.
In addition to vacancies, the lattice distortion caused by small

atoms might further increase the PFs. For example, both Zn2SnTe4
and Zn2SiTe4 are in the vacancy-containing structure, but the PF of
Zn2SiTe4 is ~6 μW cm−1 K−2 higher than Zn2SnTe4. From the view
of the structure, small silicon atoms cause the short Si-Te bonds,
thereby shortening the distance between neighboring Te atoms
(Fig. 5a). The anti-bonding interactions are raised between the

originally non-interacting Te-Te in Zn2SiTe4 (Fig. 5c). Comparing
with the band structure of Zn2SnTe4 (Fig. 5b), the anti-bonding
interaction of Te-Te leads to the increase of band energy at X
point, causing a better band convergence with the VBM at Γ point.

DISCUSSION
The scores of the train-test splitting in supervised learning models
are generally good; however, the accuracy of extrapolation could
be very poor. In most material problems, the reason for the
inaccurate extrapolation results from ML models lies in the lack of
samples. Therefore, a method of guiding material exploration is
needed, which aims at providing reasonable estimate of the
material property in the whole search space by supplying a small
scale of samples. Hence, active learning, a framework for updating
ML models through external verification, is implemented to
improve the extrapolation accuracy, exemplified by the TE PFs for
chalcogenides and pnictides with diamond-like structures. Several
candidate selection strategies in active learning are tested. Finally,
the extrapolation accuracy of the GBR model in QBC strategy is the
highest (Pearson R 0.95), ensuring the reliability of extrapolation.
Hence, this model is applied to predict the full search space to
seek high PF materials. Materials with the top 20% PFs are
analyzed by band structures and bonding conditions. It is found
that the diamond-like materials with three special structures are
more likely to have higher PFs: (1) binary pnictides, (2) IIB1:IIIA2:
VIA4 compounds with VCC structure, and (3) materials containing
elements with small atomic radii. This work demonstrates the
ability of active learning on accurately proposing potential
materials based on small sample set.

Fig. 4 The distribution of the top 20% ML-predicted PFs. a Band gaps and average atomic weights for compounds with the top 20% ML-
predicted PFs. b Pnictides with top 20% of PF and PF > 60 μW cm−1 K−2 is marked. 11P and 112P means the pnictides in the form of AX and
ABX2. c Chalcogenides with top 20% of PF and PF > 45 μW cm−1 K−2 is marked. 11S, 124S, 112S, and 1124S, respectively, means the pnictides
in the form of AX, AB2X4, ABX2, and A2BCX4.
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METHODS
DFT computational methods
DFT calculations are carried out using projector augmented wave method
as implemented in the Vienna ab initio Simulation Package30,31.
Perdew–Burke–Ernzerhof-type generalized gradient approximation
(GGA) is applied as exchange–correlation functional32. Self-consistent
calculation is performed with an energy convergence criterion of 10−4

and 520 eV plane-wave energy cutoff. The strongly constrained and
appropriately normed meta-GGA potential is adopted33. The
Monkhorst–Pack uniform k-point sampling was used with k= 180/L (L
represents the lattice parameter) for electrical transport properties34.
Chemical-bonding information was obtained using the band-resolved
projected crystal orbital Hamilton populations as implemented in the
Local Orbital Basis Suite Towards Electronic-Structure Reconstruction
package35–39.
In order to get the ZT value, the electrical properties, including the

Seebeck coefficient, electrical conductivity, and the electronic thermal
conductivity are calculated by Boltzmann transport theory. The lattice
thermal conductivity is obtained by the Slack model, which has proved to
be suitable for diamond-like compounds11,40,41.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 2 August 2020; Accepted: 29 September 2020;

REFERENCES
1. Goldsmid, H. Thermoelectric Refrigeration (Springer, 2013).
2. Sales, B. C. Smaller is cooler. Science 295, 1248–1249 (2002).
3. Tritt, T. & Rowe, D. Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca

Raton, FL, 2005).
4. Liu, W., Yan, X., Chen, G. & Ren, Z. Recent advances in thermoelectric nano-

composites. Nano Energy 1, 42–56 (2012).

5. Zhu, T. et al. Compromise and synergy in high‐efficiency thermoelectric materials.
Adv. Mater. 29, 1605884 (2017).

6. Yang, J. et al. On the tuning of electrical and thermal transport in thermoelectrics:
an integrated theory–experiment perspective. npj Comput. Mater. 2, 15015 (2016).

7. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly
low-thermal-conductivity half-heusler semiconductors via high-throughput
materials modeling. Phys. Rev. X 4, 011019 (2014).

8. Chen, W. et al. Understanding thermoelectric properties from high-throughput
calculations: trends, insights, and comparisons with experiment. J. Mater. Chem. C
4, 4414–4426 (2016).

9. Ricci, F. et al. An ab initio electronic transport database for inorganic materials.
Sci. Data 4, 170085 (2017).

10. Xi, L. et al. Discovery of high-performance thermoelectric chalcogenides through reli-
able high-throughput material screening. J. Am. Chem. Soc. 140, 10785–10793 (2018).

11. Li, R. et al. High-throughput screening for advanced thermoelectric materials:
diamond-like ABX2 compounds. ACS Appl. Mater. Interfaces 11, 24859–24866 (2019).

12. Zhan, T., Fang, L. & Xu, Y. Prediction of thermal boundary resistance by the
machine learning method. Sci. Rep. 7, 7109 (2017).

13. Miller, S. A. et al. Empirical modeling of dopability in diamond-like semi-
conductors. npj Comput. Mater. 4, 71 (2018).

14. Chen, L., Tran, H., Batra, R., Kim, C. & Ramprasad, R. Machine learning models for
the lattice thermal conductivity prediction of inorganic materials. Comp. Mater.
Sci. 170, 109155 (2019).

15. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge
from materials science literature. Nature 571, 95–98 (2019).

16. Mueller, T., Kusne, A. G. & Ramprasad, R. in Reviews in Computational Chemistry
(eds Parrill, A. L. & Lipkowitz, K. B.) 186–273 (Wiley-Blackwell, 2016).

17. Chin, T. J. & Suter, D. Out-of-sample extrapolation of learned manifolds. IEEE T
Pattern Anal. 30, 1547–1556 (2008).

18. Settles, B. Active Learning Literature Survey (University of Wisconsin-Madison
Department of Computer Sciences, 2009).

19. Burbidge, R., Rowland, J. J. & King, R. D. Active learning for regression based on
query by committee. In International Conference on Intelligent Data Engineering
and Automated Learning (eds Yin, H., Tino, P., Corchado, E., Byrne, W. & Yao, X.)
209–218 (Springer, 2007).

20. Ju, S. et al. Designing nanostructures for phonon transport via bayesian optimi-
zation. Phys. Rev. X 7, 021024 (2017).

21. Hou, Z., Takagiwa, Y., Shinohara, Y., Xu, Y. & Tsuda, K. Machine-learning-assisted
development and theoretical consideration for the Al2Fe3Si3 thermoelectric
material. ACS Appl. Mater. Interfaces 11, 11545–11554 (2019).

Fig. 5 Schematic diagram of the bond length and band structure of Zn2SnTe4 and Zn2SiTe4. a Schematic diagram of lattice distortion.
b Band structure of compound Zn2SnTe4. c The band-resolved projected crystal orbital Hamilton populations (COHPs) for Te-Te offsite of
Zn2SiTe4.

Y. Sheng et al.

6

npj Computational Materials (2020)   171 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



22. Smola, A. J. & Scholkopf, B. A tutorial on support vector regression. Stat. Comput.
14, 199–222 (2004).

23. Friedman, J. H. Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232 (2001).

24. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
25. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).
26. Robert, C. Machine learning, a probabilistic perspective. CHANCE 27, 62–63 (2014).
27. Li, X. et al. TransOpt. A code to solve electrical transport properties of semi-

conductors in constant electron-phonon coupling approximation. Comp. Mater.
Sci. 186, 110074 (2021).

28. Ioffe, A. Semiconductor thermoelements and thermoelectric cooling. Phys. Today
12, 42 (1959).

29. Küpers, M. et al. Unexpected Ge–Ge contacts in the two‐dimensional Ge4Se3Te
Phase and analysis of their chemical cause with the density of energy (DOE)
function. Angew. Chem. Int. Ed. 56, 10204–10208 (2017).

30. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758 (1999).

31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865 (1996).

33. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately
normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

34. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys.
Rev. B 13, 5188 (1976).

35. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection
from plane-wave and PAW wavefunctions and application to chemical-bonding
analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

36. Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP):
energy-resolved visualization of chemical bonding in solids based on density-
functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

37. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton
population (COHP) analysis as projected from plane-wave basis sets. J. Phys.
Chem. A 115, 5461–5466 (2011).

38. Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to
extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37,
1030–1035 (2016).

39. Sun, X. et al. Achieving band convergence by tuning the bonding ionicity in n‐
type Mg3Sb2. J. Comput. Chem. 40, 1693–1700 (2019).

40. Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem.
Solids 34, 321–335 (1973).

41. Jia, T., Chen, G. & Zhang, Y. Lattice thermal conductivity evaluated using elastic
properties. Phys. Rev. B 95, 155206 (2017).

ACKNOWLEDGEMENTS
This work was supported by the National Key Research and Development Program of
China (Nos. 2018YFB0703600 and 2017YFB0701600), Natural Science Foundation of

China (Grant Nos. 11674211, 51632005, and 51761135127), and the 111 Project
D16002. W.Z. also acknowledges the support from the Guangdong Innovation Research
Team Project (No. 2017ZT07C062), Guangdong Provincial Key-Lab program (No.
2019B030301001), Shenzhen Municipal Key-Lab program (ZDSYS20190902092905285),
and Shenzhen Pengcheng-Scholarship Program. Part of the calculations were
supported by Center for Computational Science and Engineering at Southern
University of Science and Technology.

AUTHOR CONTRIBUTIONS
The initial idea was developed by Y.S. and J.Y., and its implementation was discussed
with W.Z. The descriptors are provided by P.V. and Y.W. All authors participated in the
data analysis and writing and reading of the paper. J.Y. managed the project.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41524-020-00439-8.

Correspondence and requests for materials should be addressed to J.Y. or W.Z.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Y. Sheng et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)   171 

https://doi.org/10.1038/s41524-020-00439-8
https://doi.org/10.1038/s41524-020-00439-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Active learning for the power factor prediction in diamond-like thermoelectric materials
	Introduction
	Results
	Data source
	Active learning workflow
	Active learning results
	Material analysis

	Discussion
	Methods
	DFT computational methods

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




