
ARTICLE OPEN

Higher-order topological solitonic insulators
Zhixiong Li1, Yunshan Cao1, Peng Yan1* and Xiangrong Wang2,3

Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering.
Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically study the
dipolar-coupled gyration motion of magnetic solitons on the two-dimensional breathing kagome lattice. We calculate the phase
diagram and predict both the Tamm–Shockley edge modes and the second-order corner states when the ratio between alternate
lattice constants is greater than a critical value. We show that the emerging corner states are topologically robust against both
structure defects and moderate disorders. Micromagnetic simulations are implemented to verify the theoretical predictions with an
excellent agreement. Our results pave the way for investigating higher-order topological insulators based on magnetic solitons.
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INTRODUCTION
Topological insulators are receiving considerable attention owing
to their peculiar properties, such as chiral edge states, and
potential applications in spintronics and quantum computing.1–4

A conventional n-dimensional topological insulator only has
ðn� 1Þ-dimensional (first-order) topological edge/surface modes
according to the bulk-boundary correspondence.1,2 However, a
higher-order, e.g., kth-order, topological insulator allows
ðn� kÞ-dimensional topological boundary states with 2 � k � n,
which goes beyond the standard bulk-boundary correspondence
and is characterized by the bulk topological index.5–12 Interest-
ingly, the experimental evidences of higher-order topological
insulators (HOTIs) were reported so far only in classical mechanical
and electromagnetic metamaterials.13–21 In terms of applications
of HOTIs in spintronics, it is intriguing to ask if they can exist in
magnetic system which is intrinsically, however nonlinear, in
contrast to its phononic and photonic counterparts.
Spin waves (or magnons) and magnetic solitons are two

important excitations in magnetic system. Various topological
states have been predicted in magnonic materials, such as
topological magnon insulators22–26 and magnonic Weyl semime-
tals.27–29 Typical magnetic solitons include vortices,30,31 bub-
bles,32,33 and skyrmions,34–37 which are long-term topics in
condensed matter physics for their interesting dynamics and
promising applications.38,39 It has been shown that the collective
gyration motion of magnetic solitons exhibits the behavior of
waves.40–44 Recently, the periodic arrangement of ferromagnetic
nanodisks, called magnonic crystal, has received much attention
in the context of band structure engineering.43,45–47 When
embracing the topological properties of vortex states, it paves
the way for robust spintronic information processing. Topological
chiral edge states are discovered in a two-dimensional honey-
comb lattice of magnetic solitons.48,49 However, all these
topological magnonic and solitonic states are first-order in nature,
according to the classification of topological insulators
mentioned above.
In this article, we predict a new class of higher-order topological

insulators from the dynamics of magnetic solitons on breathing
kagome lattices. Without loss of generality, we use magnetic
vortices to demonstrate the principle and as a proof of the

concept. The collective motion of vortices is described by the
generalized Thiele’s equation including an inertial term and a non-
Newtonian gyroscopic term. We compute the vortex gyration
spectra and find that the system is nontrivial and supports the
topological corner states when d2=d1 � 1:2 (d2=d1 � 1:2 or
d1=d2 � 1:2) for triangle-shape (parallelogram-shape) lattice. The
non-topological Tamm–Shockley edge state is also observed. Here
d1 and d2 are the distances between two kinds of nearest-
neighbor vortices, as shown in Figs. 1a and 4a for triangle and
parallelogram structures, respectively. We show that the topolo-
gical corner states emerge near the gyration frequency of a single
vortex, and are robust against structure defects and disorders.
Micromagnetic simulations confirm the theoretical results. From
an experimental point of view, magnetic soliton lattices can be
easily fabricated by electron-beam lithography,43 compared with
the complex fabrication processes of phononic and photonic
crystals. Our findings shall encourage experimentalists to observe
the predicted higher-order topological solitonic states.

RESULTS
Generalized Thiele’s equation
We consider a kagome lattice of magnetic nanodisks with vortex
states. Figure 1a plots the lattice structure with alternate distance
parameters d1 and d2. To accurately obtain the gyration spectrum
of the vortex array, we start with the generalized Thiele’s
equation:48

G3ẑ ´
d3Uj

dt3
�M

d2Uj

dt2
þ Gẑ ´

dUj

dt
þ Fj ¼ 0; (1)

where Uj ¼ Rj � R0
j is the displacement of the vortex core from

the equilibrium position R0
j ;G ¼ �4πQwMs/γ is the gyroscopic

constant with Q ¼ 1
4π

RR
dxdym � ð∂m

∂x ´ ∂m
∂y Þ being the topological

charge (Q ¼ þ1=2 for the vortex configuration shown in Fig. 1b),
m is the unit vector of magnetization, w is the thickness of
nanodisk, Ms is the saturation magnetization, γ is the gyromag-
netic ratio, M is the effective mass of the magnetic vortex,50–52 and
G3 is the third-order gyroscopic coefficient.53–55 The conservative
force can be expressed as Fj ¼ �∂W=∂Uj , where W is the
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potential energy as a function of the vortex displacement: W ¼P
jKU

2
j =2þ

P
j≠kUjk=2 with Ujk ¼ IkU

k
j U

k
k � I?U?

j U
?
k .

49,56,57 Here K
is the spring constant which is determined by the identity
ω0 ¼ K=jGj, ω0 is the gyrotropic frequency of a single vortex (see
Supplementary Note 1), Ik and I? are the longitudinal and
transverse coupling constants, respectively. Imposing Uj ¼ ðuj; vjÞ
and defining ψj ¼ uj þ ivj , we have

D̂ψj ¼ ω0ψj þ
X
k2hji

ðζ lψk þ ξ lei2θjkψ�
kÞ; (2)

where the differential operator D̂ ¼ iω3
d3

dt3 � ωM
d2

dt2 � i ddt,

ω3 ¼ G3=jGj, ωM ¼ M=jGj, ζ l ¼ ðIlk � Il?Þ=2jGj, and

ξ l ¼ ðIlk þ Il?Þ=2jG, with l ¼ 1 (or l ¼ 2) representing the distance
d1 (or d2) between nearest-neighbor vortices. It is worth
mentioning that parameters Ilk and Il? can be obtained by
calculating the eigenfrequencies of a two-vortex system with
different combinations of vortex polarities (see Supplementary
Note 2). θjk is the angle of the direction êjk from x-axis with êjk ¼
ðR0

k � R0
j Þ=jR0

k � R0
j j and hji is the set of all intracell and intercell

nearest neighbors of j.

Corner states and phase diagram
It is known that the coupling strength Ik and I? strongly depends
on the parameter d (d ¼ d0=r with d0 the distance between two
vortices and r being the radius of nanodisk).58–60 Consequently, to
calculate the spectrum and the phase diagram of vortex gyrations,
we need to know the analytical expression of IkðdÞ and I?ðdÞ. With
the help of micromagnetic simulations for a simple system

Fig. 1 Triangle-shape breathing kagome lattice of vortices. a
Illustration of the triangle-shape breathing kagome lattice including
45 nanodisks of the vortex state. d1 and d2 are the distance between
two nearest-neighbor vortices. Arabic numbers 1, 2 and 3 denote
the positions of spectrum analysis for bulk, edge and corner states,
respectively. b Zoomed-in details of a nanodisk with the radius
r ¼ 50 nm and the thickness w ¼ 10 nm. c Time dependence of the
sinc-function field HðtÞ applied to the whole system

Fig. 2 Corner states and phase diagram for triangle-shape lattice. a Dependence of the coupling strength Ik and I? on the vortex–vortex
distance d (normalized by the disk radius r). Pentagrams and circles denote simulation results and solid curves represent the analytical fitting.
b Eigenfrequencies of collective vortex gyration under different ratio d2=d1 with the red segment labeling the corner state phase. c The phase
diagram. d Eigenfrequencies of the breathing kagome lattice of vortices under different disorder strengths
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consisting of two nanodisks, we obtain the best fit of the
numerical data: Ik ¼ μ0M

2
s rð�1:72064 ´ 10�4 þ 4:13166 ´

10�2=d3 � 0:24639=d5 þ 1:21066=d7 � 1:81836=d9Þ and I? ¼
μ0M

2
s rð5:43158 ´ 10�4 � 4:34685 ´ 10�2=d3 þ 1:23778=d5 � 6:48907

=d7 þ 13:6422=d9Þ, as shown in Fig. 2a with symbols and curves
representing simulation results and analytical formulas, respec-
tively. In the calculations, we have adopted the material parameters
of Permalloy (Py: Ni80Fe20)

61,62 with
G ¼ �3:0725 ´ 10�13 J s rad�1 m

�2
. The spring constant K , mass

M, and non-Newtonian gyration G3 are obtained by analyzing the
dynamics of a single vortex confined in the nanodisk:54,63

K ¼ 1:8128 ´ 10�3 J m�2, M ¼ 9:1224´ 10�25 kg, and
G3 ¼ �4:5571´ 10�35 J s3rad−3m−2 (see Supplementary Note 1).
Then, by solving Eq. (2) numerically, we obtain the eigenfrequencies
of vortex gyrations in the breathing kagome lattice. Figure 2b shows
the eigenfrequencies of the triangle-shape system for different
values d2=d1 with a fixed d1 ¼ 2:2r. By studying the spatial
distribution of the corresponding eigenfunctions, we find that

corner states can exist only if d2=d1 � 1:2, as indicated by the red
line segment. Different choices of d1 gives almost the same
conclusion (see Supplementary Note 3). Furthermore, we calculate
the phase diagram by systematically changing d1 and d2. It is
shown that the boundary separating topologically non-trivial and
metallic phases lies in d2=d1 ¼ 1:2, while topologically trivial and
metallic phases are separated by d1=d2 ¼ 1:2, as shown in Fig. 2c.
When d2=d1 � 1:2, the system is topologically non-trivial and can
support second-order topological corner states. The system is trivial
without any topological edge modes if d1=d2 � 1:2. Here, the trivial
phase is the gapped (insulator) state, the metallic/conducting phase
represents the gapless state such that vortices oscillations can
propagate in the bulk lattice, and the non-trivial phase means the
second-order corner state surviving in a gapped bulk. It is worth
mentioning that the critical condition (d2=d1 � 1:2) for HOTIs may
vary with respect to materials parameters. For example, the critical
value will slightly increase (decrease) if the radius of the nanodisk
increases (decreases).
Topological corner states should be robust against disorders in

the bulk but sensitive to them at corners. To verify these
properties of corners states in our system, we calculate the
eigenfrequencies of the triangle-shape breathing kagome lattice
of vortices under bulk disorders of different strengths (disorders at
three corners are discussed in Supplementary Note 4), as shown in
Fig. 2d, where d1 ¼ 2:08r and d2 ¼ 3:60r (d2=d1 ¼ 1:73> 1:2).
Here, disorders are introduced by assuming the resonant
frequency ω0 with a random shift, i.e., ω0 ! ω0 þ δZω0, where δ
indicates the strength of the disorder and Z is a uniformly
distributed random number between �1 and 1. We average the
calculation after 100 realizations of uniformly distributed dis-
orders. Gaussian distribution of Z leads to similar results. We can
see from Fig. 2d that with the increasing of the disorder strength,
the spectrum of both edge and bulk states is significantly
modified, while the corner states are quite robust. Furthermore,
the artifact effect of the corner states are also discussed in
Supplementary Note 4. These findings echo the observations in
photonic and phononic systems.13–21

We choose the same geometric parameters as Fig. 2d to explicitly
visualize the corner states and other modes in the phase diagram. In
this case, from Fig. 2a, we have I1k ¼ 1:2894 ´ 10�4 J m−2,
I1? ¼ 3:5849´ 10�4 J m−2, I2k ¼ 2:1237´ 10�5 J m−2, and
I2? ¼ 4:4399´ 10�5 J m−2. The computed eigenfrequencies and
eigenmodes are plotted in Fig. 3a, b–e. It is found that there are
three degenerate modes with the frequency 927.6 MHz, repre-
sented by red balls. Then, we confirm that these modes are indeed
second-order topological states (corner states) by showing the
spatial distribution of vortex gyrations in Fig. 3d with oscillations
being highly localized at the three corners. Besides these findings,
we also identify the edge states, denoted by blue balls in Fig. 3a.
The spatial distribution of edge oscillations are confined on three
edges, as shown in Fig. 3c. However, these edge modes are
Tamm–Shockley type,64,65 not chiral. They propagate in both
directions, that is confirmed in micromagnetic simulations (see
Supplementary Note 5). Bulk modes are plotted in Fig. 3b, e, where
corners do not participate in the oscillations.
The higher-order topological properties can be interpreted in

terms of the bulk topological index, i.e., the polarization:66,67

Pj ¼ 1
S

Z Z
BZ
Ajd

2k; (3)

where S is the area of the first Brillouin zone, Aj ¼ �ihψj∂kj jψi is
Berry connection with j ¼ x; y, and ψ is the wave function for the
lowest band. We have numerically calculated the polarization and
find ðPx ; PyÞ ¼ ð0:499; 0:288Þ for d1 ¼ 2:08r and d2 ¼ 3:60r and
ðPx ; PyÞ ¼ ð0:032; 0:047Þ for d1 ¼ 3r and d2 ¼ 2:1r. The former
corresponds to the topological insulating phase while the latter is
for the trivial phase. Theoretically, the polarization ðPx; PyÞ is
identical to the Wannier center, which is restricted to two

Fig. 3 Eigenmodes in triangle-shape lattice. a Eigenfrequencies of
triangle-shape kagome vortex lattice with d1 ¼ 2:08r and d2 ¼ 3:60r.
The spatial distribution of vortex gyrations for the bulk (b and e),
edge (c), and corner (d) states
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positions for insulating phases. If Wannier center coincides with (0,
0), the system is in the trivial insulating phase and no topological
edge states exist. Higher-order topological corner states emerge
when the Wannier center lies at (1/2, 1/2

ffiffiffi
3

p
).10,15 The distribution

of bulk topological index is consistent with the computed phase
diagram Fig. 2c.
For completeness, we also study the corner states in another

type of breathing kagome lattice of vortices (parallelogram-
shape), with the sketch plotted in Fig. 4a. We consider the same
parameters as those in the triangle-shape lattice. Figure 4b shows
the eigenfrequencies of system which are obtained by numerically
solving Eq. (2). Interestingly, we see that there is only one corner
state at the frequency equal to 927.6 MHz, represented by the red
ball. Edge and bulk states are also observed, denoted by blue and
black balls, respectively. To have a better understanding of these
modes, we have plotted the spatial distribution of vortices
oscillation, as shown in Fig. 4c–f. From Fig. 4e, one can clearly
see that the oscillations for corner state are confined to one acute
angle and the vortex at the position of two obtuse angles hardly
oscillates. The spatial distribution of vortex gyration for edge and
bulk states are plotted in Fig. 4c, d, and f. The robustness of the
corner states and the phase diagram are discussed in Supple-
mentary Note 6.
It is interesting to note that the results of triangle-shape and

parallelogram-shape lattices are closely related. Two opposite
acute-angle corners in the parallelogram are actually not

equivalent: one via d1 bonding, while the other one via d2
bonding (see Fig. 4a). Only the d2 bonding (bottom-right) corner
in the parallelogram-shape lattice is identical to three corners in
the triangle-shape lattice. Therefore, for parallelogram-shape
lattice, we can observe only one corner state either in the
bottom-right corner [when d2=d1 � 1:2; see Fig. 4f in the main
text] or in the top-left corner [when d1=d2 � 1:2; see Supplemen-
tary Fig. 7].

Micromagnetic simulations
To verify the theoretical predictions of HOTIs above, we perform
full micromagnetic simulations by considering a breathing
kagome lattice consisting of a few identical magnetic nanodisks
in vortex states, as shown in Figs. 1a and 4a, with the same
geometric parameters as those in Figs. 3 and 4, respectively.
Micromagnetic software MUMAX368 is used to simulate the
dynamics of vortices in Py (see the “Methods” section).
To identify the energy band of higher-order topological edge

states in triangle-shape lattice, we compute the temporal Fourier
spectrum of the vortex oscillations at different positions (labeled
with arabic numbers 1, 2, and 3, see Fig. 1a). Figure 5a shows the
spectra, with black, blue, and red curves denoting the positions of
bulk (Number 1), edge (Number 2), and corner (Number 3) bands,
respectively. One can immediately see that, near the frequency of
940 MHz, the spectrum for the corner has a very strong peak,
which does not happen for the edge and bulk. We therefore infer

Fig. 4 Eigenmodes in parallelogram-shape lattice. a The sketch for parallelogram-shaped breathing kagome lattice of vortices. Arabic
numbers 1, 2, and 3 denote the position of spectrum analysis for bulk, edge, and corner states, respectively. b Numerically computed
eigenfrequencies for parallelogram-shaped system. The spatial distribution of vortices oscillation for the bulk (c and f), edge (d), and corner
(e) states
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that this is the corner-state band with oscillations localized only at
three corners. Similarly, one can identify the frequency range
which allows the bulk and edge states, as shown by shaded area
with different colors in Fig. 5a. To visualize the spatial distribution
of vortex oscillations for different modes, we choose four
representative frequencies: 940 MHz for the corner state,
842 MHz for the edge state, and both 769 and 959 MHz for bulk
states, and then stimulate their dynamics by a sinusoidal field
hðtÞ ¼ h0 sinð2πftÞx̂ with h0 ¼ 0:1mT applied to the whole system
for 100 ns. We plot the spatial distribution of oscillation amplitude
in Fig. 5b–e. One can clearly see the corner state in Fig. 5d, which
is in a good agreement with theoretical results shown in Fig. 3d
(theoretically calculated corner state locates at 927.6 MHz). Spatial
distribution of vortices motion for bulk and edge states are shown
in Fig. 5b, c, respectively. It is noted that vortices at three corners
in Fig. 5e also oscillate with a sizable amplitude, which is
somewhat quite unexpected for bulk states. We attribute this

inconsistency to the strong coupling (or hybridization) between
the bulk and corner modes, since their frequencies are very close
to each other, as shown in Figs. 3a and 5a.
Like the triangle-shaped case, we have identified the corner,

edge, and bulk states by micromagnetic simulation in
parallelogram-shaped lattice with the same sinusoidal exciting
fields applied to the whole system. We compute the temporal
Fourier spectrum of the vortex oscillations at different
positions (denoted with arabic numbers 1, 2, and 3, see Fig.
4a). The spectra are shown in Fig. 6a with the black, blue, and
red curves indicating the positions of bulk (Number 1), edge
(Number 2), and corner (Number 3) bands, respectively.
Shaded area with different colors denote different modes.
The spatial distribution of oscillation amplitude is plotted in
Fig. 6b–e. Figure 6d shows only one corner state at only one
(bottom-right) acute angle, which is in a good agreement with
theoretical results shown in Fig. 4e. Spatial distribution of
vortices motion for bulk and edge states are shown in Fig. 6b, c,
respectively. Interestingly, the hybridization between the bulk

Fig. 5 Micromagnetic simulation of excitations in triangle-shape
structure. a The temporal Fourier spectrum of the vortex oscillations
at different positions. The spatial distribution of oscillation
amplitude under the exciting field of various frequencies, 769 MHz
b, 842 MHz c, 940 MHz d, and 959MHz e. Since the oscillation
amplitudes of the vortex centers are too small, we have magnified
them by 2 or 10 times labeled in each figure

Fig. 6 Micromagnetic simulation of excitations in parallelogram-
shape structure. a The temporal Fourier spectrum of the vortex
oscillations at different positions. The spatial distribution of
oscillation amplitude under the exciting field with different
frequencies, 767 MHz b, 844 MHz c, 940 MHz d, and 964MHz e.
The simulation time is 100 ns. Since the oscillation amplitudes of the
vortices centers are too small, we have magnified them by 2 or 10
times labeled in each figure
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mode and corner mode occurs, as well in parallelogram-shaped
breathing kagome lattice (see Fig. 6e).

DISCUSSION
We have investigated the higher-order topological insulator in
triangle-shaped and parallelogram-shaped breathing kagome
lattice of magnetic vortices. Phase diagram including various
solitonic states was obtained theoretically. It was found that the
second-order topological corner state emerge only under a
critical geometric parameter. We interpreted these results by the
bulk topological index. Micromagnetic simulations were per-
formed to confirm all theoretical predictions. We envision the
existence of higher-order topological solitonic insulators in
other type of lattices (breathing honeycomb,69 for instance),
which is an interesting issue for future study. Identifying higher-
order topological magnon insulator is also an open question. We
believe that the findings presented in this work shall encourage
experimentalists to find higher-order topological states in
magnetic systems, within current technology reach.

METHODS
Numerical simulations
The numerical simulations are carried out by Mumax package. The material
parameters are as follows: the saturation magnetizationMs ¼ 0:86 ´ 106 Am−1,
the exchange stiffness A ¼ 1:3 ´ 10�11 J m−1, and the Gilbert damping
constant α ¼ 10�4 (in order to observe the vortex oscillations clearly, we
have chosen a rather small damping parameter). In the simulations, we set
the cell size to be 2 ´ 2 ´ 10 nm3. To excite the full spectrum (up to a cut-off
frequency) of the vortex oscillations, we apply a sinc-function magnetic
field HðtÞ ¼ H0 sin½2πf ðt � t0Þ�=½2πf ðt � t0Þ� along the x-direction with
H0 ¼ 10mT, f ¼ 20 GHz, and t0 ¼ 1 ns, as plotted in Fig. 1c. The exciting
field is applied over the whole system. The spatiotemporal evolutions of
the vortices center Rj ¼ ðRj;x ; Rj;yÞ in all nanodisks are recorded every
200 ps, with the total simulation time being 1000 ns. Here Rj;x and Rj;y are

defined by Rj;x ¼
RR

xjmz j2dxdyRR
jmz j2dxdy

and Rj;y ¼
RR

yjmz j2dxdyRR
jmz j2dxdy

, with the integral region

being confined in the jth nanodisk
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