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Charged grain boundary transitions in ionic ceramics for
energy applications
K. S. N. Vikrant1 and R. Edwin García 1

Surfaces and interfaces in ionic ceramics play a pivotal role in defining the transport limitations in many of the existing and
emerging applications in energy-related systems such as fuel cells, rechargeable batteries, as well as advanced electronics such as
those found in semiconducting, ferroelectric, and piezotronic applications. Here, a variational framework has been developed to
understand the effects of the intrinsic and extrinsic ionic species and point defects on the structural and electrochemical stability of
grain boundaries in polycrystalline ceramics. The theory predicts the conditions for the interfacial electrochemical and structural
stability and phase transitions of charged interfaces and quantifies the properties induced by the broad region of electrochemical
influence in front of a grain boundary capable of spanning anywhere from a few angtroms to entire grains. We demonstrate the
validity of this theory for YxZr1−xO2−x/2, cubic yttria stabilized zirconia. For small crystallographic misorientations, sharp Debye-type
interfaces, D(1):CVYSVY , are favored and promote high ionic conductivity in materials in polycrystalline form. For large grain
boundary misorientations and large amounts of [Y2O3] substitutions, three Mott–Schottky interfaces, MS(2):CVY heSVYhe, MS(2):
CVYheSehVY , and MS(2):CVYShe are responsible for controlling grain boundary segregation and the observed poor macroscopic ionic
transport, in great agreement with the scientific literature.
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INTRODUCTION
Over the last fifty years, a great deal of work describing the
structural disorder,1–3 solute segregation, and associated mechan-
ical properties,4,5 at the grain boundaries of polycrystalline
materials has been made.6 Specifically, the thermodynamic
formation of nanoscale intergranular thin films (IGFs), has been
considered a class of interfacial adsorbates which exhibit
structural properties that are spatially discernible and measurable
at the boundary where two phases meet.1,7 Tang, Carter, and
Cannon pioneered its description by starting from a phase field
formulation and acknowledged that these two-dimensional
interfacial features could undergo transitions, bifurcations, and
stabilization/destabilization events as a result of externally applied
thermal, structural, and chemical stimuli.8–10 These interfaces,
defined as “complexions,” do not adhere to the rigorous Gibbsian
definition of phase,11 and its understanding has led to the
development of an entire new field that has evolved into the
rationalization and identification of discrete two-dimensional
interfacial phases such as mono- and multilayered structures.12,13

Based on these ideas, the community has built design and
thinking tools to rationalize technologically relevant mechanisms,
including solid-state activated sintering and abnormal grain
growth.10,14,15

The formation of interfacial phases in ionic ceramics has been
reported to impact: (1) the chemistry and degree of ordering in
the abutting crystals by changing the net charge accumulation at
the interfacial core; and (2) the ion mobility along and across the
interface by inducing undesirable interfacial structural or chemical
disorder.16 In many of these materials, the formation of a charged
region at a grain boundary has been recognized to be a result of

the discontinuity of the properties of the ionic lattice, its
associated Fermi level mismatch, and the difference in the
adsorption (or segregation) of charged defects about the
interfacial core. The resulting spatial distribution of ionic charge
defines a set of thermodynamic Coulombic charge states that are
inaccessible by its bulk counterpart, and further induces the
electrostatic formation of a spatially varying electrostatic field,
ϕð~xÞ, as determined by Coulomb’s law in its differential form,
∇ � ϵ∇ϕ ¼ �ρ. At elevated temperatures, the interfacial electro-
static (Schottky) potential, ϕ�, or the total net interfacial
segregated charge, σ�, contributes to define the thickness of the
charged interface, as the grain boundary core thickness, δ,
determined by the chemical and structural interactions of the
abutting phases plus the additional extent of the spatial charge, λ,
to define the total extent of the interface, Lgb= 2λ+ δ.17 The
resultant charged diffuse boundary defines a broad region of
electrochemical influence, and can span from a few angstroms to
an entire grain size, S, dramatically altering the macroscopic
properties of the ionic ceramic. Analytical solutions found in the
literature incorporate: (a) Guoy–Chapman-type descriptions to
account for the effects of interfacial charge away from an
infinitesimally thin grain boundary core;18–22 or (b) artificial
corrections to the effect of the grain boundary thickness to fit
the experimentally observed behavior of the charge layer through
Mott-Schottky-type solutions.23–27 While existing descriptions
correspond to piecewise solutions that are adapted by hand to
meet specific applications in energy-related systems,25 the
charged region has been demonstrated to control fundamental
properties, such as electrical conductivity and ionic diffusiv-
ity.16,28,29 These properties can differ by several orders of
magnitude with respect to the one displayed by a single-crystal
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sample at the same temperature.30 The optimization of these and
other related properties in ceramic materials for electrochemical
applications are key to the successful commercialization of
emerging technologies, such as all-solid-state rechargeable
batteries and low temperature solid oxide fuel cells, all of which
are key elements for the development of a modern society based
on renewable energy. Moreover, the identification and description
of two-dimensional charged interfacial phases will allow an
accurate rationalization of sintering of ceramic materials,31

positioning the scientific community to engineer mechanical or
dielectric interfacial properties by tailoring the interfacial structural
or chemical disorder.
One such material is zirconia based oxide ion conductor, which

is one of the most prominently used materials for SOFCs
electrolyte applications, oxygen sensors, and thermal barrier
coatings. The ionic transport properties of ZrO2−x is enhanced
by stabilizing the cubic phase with the addition of Y2O3. The cubic
phase is retained at 2000 K in the composition range of 5–25%.32

However, the total macroscopic electrical conductivity of poly-
crystalline Yttria Stabilized Ziconia, YxZr1−xO2−x/2, YSZ, is smaller
than the corresponding single-crystal electrical conductivity due
to the grain boundaries, which induce a blocking effect that is
mainly associated to the excess oxygen vacancies at the grain
boundary core and a space charge layer of depleted oxygen
vacancies adjacent to the grain boundary.28 Electrical conductivity
studies on YSZ carried by Dixon and co-workers,33 Strickler and
Carlson,34 and Casselton,35 show that the total electrical con-
ductivity of polycrystalline YSZ is increased with the increase of
yttria in the system due to an increase in the average
concentration of oxygen vacancies. The maximum conductivity

for YSZ is obtained in the 7 to 9mol% of yttria substitution range,
and in the 1000–1500 °C temperature range. For larger amounts of
yttria, oxygen vacancies encounter Zr-Y and Y-Y pairs that result in
a decrease of mobility of oxygen vacancies, impacting the total
ionic conductivity.36

For grain sizes larger than the total extent of the interface,
S > Lgb, grain boundary impedance studies on YSZ by Aoki and co-
workers37 demonstrate that segregation of yttrium and other
extrinsic impurities such as silicon have a larger electrical
resistance than those interfaces with none or low levels of
dopants. HRTEM studies on YSZ bicrystals,38,39 show that the grain
boundary interfacial energy and yttrium segregation is strictly
dependent on the interfacial misorientation. Yoshida and co-
workers show in Fig. 1a through c that the crystalline structure and
local disorder of the grain boundary drastically changes as a
function of crystallographic misorientation and suggests that
yttrium segregation is more likely to be observed in large angle
grain boundary misorientations.38,39 Atomistic simulations per-
formed by Lee et al. support the coaccumulation of oxygen
vacancies and yttrium at grain boundaries.40,41 The atomistic study
also shows the formation of a thick oxygen vacancies depletion
zone with a small yttrium depletion zone due to space charge
effects in the vicinity of the interface.40,41

Great progress has been made in understanding the thermal
and chemical effects on interfaces, including stoichiometric and
electric-field effects in ferroelectric systems.42–46 However, the
basic science of the effects that grain boundaries impose on their
structural stability and resultant electrochemical phase transfor-
mations require further progress in order to improve on the
design of the technological devices that they are part of. This
paper provides a variational basis and a fundamental under-
standing on the impact of electrostatic charge and dipolar
electrical energy on the thermodynamic stability of grain
boundaries in ionic polycrystalline solids. This description enables
the systematic research of charged interfaces and grain boundary
transitions for ionic ceramics, including the chemical effects of
dopant and point defects, such as ionic vacancies, interstitials,
electrons, and holes, while naturally incorporating Maxwell’s
Equations. The method is demonstrated and validated for cubic
Yttria Stabilized Zirconia, YSZ.

RESULTS
Theoretical framework
Define the Helmholtz free energy per unit volume, f, for a
polycrystal as a function of the degree of crystallinity, η, and N
chemical species, VZ1

1

� �
; ¼ ; VZN

N

� �
, including concentration of

electrons, [e′], and holes, [h·], as classically defined.8 In the present
study, the concentration of the electrons, n, is represented by [e′]
and the holes, p, by [h·]. Here, η is a coarse-grained measure of
structural disorder, so that η= 1 defines a perfectly crystalline
lattice and η= 0 defines a structurally disordered state. In
addition, the i-th chemical component displays a valence, Zi,
which in turn contributes electrostatic energy from increasing the
electrostatic charge, ρϕ, and from increasing its dipolar moment
density, 12

~D �~E, to the system through the extended free energy, f�,
in agreement with Hart,47 Garca et al.,48 and recent work:49

f� η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; ½h�� ; ρ;~D; T

� �
¼ f η; VZ1

1

� �
; ¼ ; VZN

N

� �
; e0½ �; ½h��; T� �þ ρϕþ 1

2
~D �~E

(1)

Equation (1) is a function of the coarse-grained charge density, ρ,
the electric displacement vector, ~D, and the position-dependent
electric field, ~E. In general, the resultant electric field is induced
either by the surrounding electrostatic charge, or through the
application of an external voltage difference. The spatial distribu-
tion of electrostatic charge raises the free energy of the system, f�,

Fig. 1 High resolution TEM micrographs (insets a–c) for [110]
symmetric tilt grain boundaries of 8YSZ, as reported by Yoshida and
co-workers.38 Results demonstrate that crystalline grain boundaries
are favored for small misorientations; however, above a critical
misorientation of Δθc ~ 20°, the grain boundary thickness abruptly
changes from atomically sharp to δ ~ 1.3 nm leading to a disordered
interfacial structure
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when ρ has the same sign as the voltage, ϕ, at that same location.
Thus, the second term on the right hand side of Eq. (1) favors the
intermixing of spatial charge of opposite polarity, or promotes the
local depletion of charge from those regions whose voltage has
the same polarity as the charged species that attempts to locally
occupy it.
The electrochemical free energy density, fec, of the system is

defined through the Legendre transformation

fec η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; ½h��;~E; T

� �
=

f� η; VZ1
1

� �
; ¼ ; VZN

N

� �
; ½e0�; ½h��;~D; T

� �
�~D �~E,11,50 which specifies

that when the material is electrostatically polarized, there is a
decrease in free energy density, in agreement with several
authors.48,49,51,52 In addition, for a constant magnetic field, the
position-dependent electric field,~E, is a solution of Faraday’s Law,
∇ ´~E ¼~0, thus, the voltage distribution, ϕ, and the electric field
are related through the relation,~E ¼ �∇ϕ. Finally, in the absence
of ferroelectricity, the electric displacement vector and the electric
field are related through the constitutive relation,
~D ¼ ϵ~E ¼ �ϵ∇ϕ.

Following the work of Kobayashi, Warren, and Carter,53 each
single-crystal grain in a two-dimensional polycrystalline ionic solid
is distinguished by an order parameter, θ, which measures the
local orientation of a crystal with respect to a fixed laboratory
reference frame. The two abutting crystals develop a grain
boundary which add an interfacial grain boundary energy penalty
as a function of the local misorientation, |∇θ|, and the local
crystalinity, η, both of which are coupled through the mono-
tonically increasing function g(η)= ηp, p ¼ 3

2>1. sg(η)|∇θ| corre-
sponds to a monotonic increase in the grain boundary energy,
which reduces to the classical Read–Shockley interface model in
the limit of a sharp interface.53 In general, the grain boundary
energy is a function of the three-dimensional orientation of the
abutting grains.54–56 The formulation presented herein can be
readily extended to include these effects, as reported by several
authors for metallic systems, e.g., Pusztai and co-workers,54

Kobayashi and Warren,55 or Gránásy and coauthors.56 The sum
of all the contributions to the total free energy functional is given
by:

F η; θ; VZ1
1

� �
; ¼ ; VZN

N

� �
; ½e0�; ½h��; ρ;ϕ; T� �

¼ R
Ω f η; VZ1

1

� �
; ¼ ; VZN

N

� �
; ½e0�; ½h��; T� �þ ρϕ� ϵ

2 ∇ϕð Þ2
h

þ α2

2 ∇ηð Þ2þsgðηÞ ∇θj j
i
dΩ

(2)

Here, the first row accounts for the thermochemical and structural
volumetric contributions to the system. The second row accounts
for the electrical contributions as described in Eq. (1), for both the
abutting grains and the interface. Finally, the third row
corresponds to the contributions to grain boundary misorientation
and their couplings to the local structural order/disorder of the
interface. s represents a structural coupling parameter as
proposed by Warren and co-workers57 and α is the gradient
energy coefficient and quantifies the contributions to crystalline
structural disorder gradients across a grain boundary. Equation (2)
defines the equilibrium of a polycrystalline ceramic with electro-
statically active grain boundaries by minimizing the free energy
functional with respect to the controlling variables,
VZ1
1

� �
; ¼ ; VZN

N

� �
; ½e0�; ½h��; η; θ; ρ;ϕ. For ease in the description,

volumetric, conserved or non-conserved, phase transformations
such as chemical phase separation are not included; however,
they can be easily incorporated, e.g., see.9,49,58–60 The local charge
density imposes an additional physical constraint to the spatial
distribution of the i-th species through the expression,
ρ ¼ PN

i¼1 eZi V
Zi
i

� �
.48,49,51,52

The effect of solute and chemical defect interactions is
incorporated by extending Tang’s work for metallic, electrically
neutral grain boundary complexions,9 and incorporating the effect
of point defects by using standard defect equilibria concepts:50
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¼ 1
ν

PN
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i
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i

� �
ln VZi

i

� �� ��

þ kbT 1�PN
i¼1

VZi
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VZi
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Ωij V
Zi
i

� �
VZj
j

h i!

þ a2
2 η

2ð1� ηÞ2 þ ΔH ΔT
Tm
pðηÞ

(3)

where the free energy of formation contribution from the i-th
component is fiðη; TÞ= f Xi ðTÞpðηÞ+ f Si ðTÞð1� pðηÞÞ. f Xi ðTÞ is the
free energy of formation in a perfectly crystalline lattice and f Si ðTÞ
is the free energy of formation in the absence of crystalline
ordering. p(η)= η3(6η2− 15η+ 10) is an interpolation function, in
agreement with classic phase field formulations,53 and enables to
distinguish spatial inhomogeneities of structural disorder, such as
those occurring at the grain boundary. This spatial free energy
variability favors the attraction of those ionic species and point
defects whose energy of formation is lower than those displayed
in structurally ordered regions. Local defect–defect interactions
are incorporated into this formulation through the term on the
third row of Eq. (3) and higher order interactions can be neglected
or incorporated, depending on the analyzed material system at
hand. For example, in YSZ, based on available first principles
data,36 and molecular dynamic calculations,61 higher order
interactions are reported to be negligible. However, higher order
interactions can be easily incorporated by starting from funda-
mental thermodynamic principles,50,62,63 Equation (2) reduces to
the work reported by Tang et al.,9 in the limit of a binary,
electrically neutral system.
The minimization of the thermodynamic variational principle

described by Eq. (2) defines the general conditions of
electrochemical-structural equilibrium through the variational
derivatives:

δF
δη ¼ ∂f

∂η � α2∇2ηþ s ∂g
∂η ∇θj j ¼ 0

δF
δθ ¼ �∇ � sgðηÞ ∇θ

∇θj j
h i

¼ 0

δF
δϕ ¼ ∇ � ϵ∇ϕþ ρ ¼ 0

δF
δ V

Zi
i½ � ¼ ξ i ¼ ∂f

∂ V
Zi
i½ � þ Zieϕ

(4)

The first and second rows of Eq. (4) embody the structural
equilibrium behavior of the grain boundary, as originally proposed
by Kobayashi et al.,53 and later by Tang et al.8 The third row of Eq.
(4) corresponds to Coulomb’s equation.48,51,52 Finally, the fourth
row of Eq. (4) is identified as the electrochemical potential of the i-
th ionic species, ξi, and reduces to its classic form in the absence of
interfacial structural disorder,48,51,52 and to the chemical potential
in the absence of structural and electrostatic charge, in agreement
with textbooks. The electrochemical potential defines a general-
ized intensive local thermodynamic driving force for mass (and
charge) segregation at interfaces as a result of gradients due to
structural discontinuity, chemical potential, or electrostatic poten-
tial gradients.
In agreement with recent work,49 the equilibrium of the

interface, S, in contact with a crystalline grain, X, is represented
by equating their electrochemical potentials, i.e.,

ξSi η ¼ η�; VZi
i

� � ¼ VZi
i

� �
S

� �
¼ ξXi η ¼ 1; VZi

i

� � ¼ VZi
i

� �� �
, and results

into N equalities that relate the local concentration distribution of
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the i-th species, VZi
i

� �
, to its interfacial electrical and structural

state:

V
Zi
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PN
i¼1

V
Zi
i½ �

V
Zi
i½ �S

1�
PN
i¼1

V
Zi
i½ �S

¼ exp
� 1�pðη�Þð Δf S!X

V
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� 	
þ
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Ωij V
Zj
j

� �
� V

Zj
j

� �
S

� �
þZie ϕ�ϕ�ð Þ

kbT

2
664

3
775

(5)

In contrast to existing analytical solutions,25–28 Eq. (5) naturally
shows that segregation of the i-th component to a grain boundary
is energetically favored by those charged species that have a
higher free energy of formation in the crystalline phase as
compared to the grain boundary, have a strong affinity to other
already grain boundary segregating chemical species, when Ωij <
0, or its electrostatic polarity is opposite in sign to the one
displayed by the charged (grain boundary) interface. Thus, the
total extent of the equilibrium charged grain boundary thickness
naturally accounts for structural, chemical, and electrical
contributions.
To understand the thermodynamic stability of a charged grain

boundary, consider a single planar tilt misorientation centered at
the origin of the laboratory reference system. The normal of the
interface points along the x-axis, so its degree of crystallinity is
ηðx ¼ 0Þ ¼ η�, at the grain boundary core, and η(x= ±∞)= 1 far
away from the grain boundary, e.g., at the center of the crystalline
grains. Following Tang and co-workers,8 the equilibrium orienta-
tion field is set to θeq(x)= θ−+ ΔθH(x), where H(x) is the unit step
function to quantify the crystallographic misorientation Δθ > 0
across the grain boundary core, so that dθ/dx= Δθδ(x) contributes
a localized contribution to Eq. (2) as a result of the grain boundary
misorientation. δ(x) is the dirac function, as classically defined.
Similarly, the equilibrium electrostatic charge per unit volume is
defined as ρeqðxÞ ¼ ρ η; VZ1

1

� �
; ¼ ; VZN

N

� �
; e0½ �; ½h��� �þ σ�δðxÞ, or

alternatively by applying Gauss’ theorem across the thickness of
the grain boundary.64 Physically, the interfacial charge per unit
area, σ�, and the resultant spatial defect distribution in the
abutting crystalline grains induces an electrostatic potential
difference between the grain boundary and the far field crystal
(grain) structure, i.e., the interfacial electrostatic potential, ϕ�.

25

Thus, the total free energy of the bicrystal is:

F η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ � ;ϕ; T� � ¼ sΔθg η�ð Þ þ σ�ϕ�

þ 2
R1
0

f η; VZ1
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; VZ2

2

� �
; ¼ ; VZN

N

� �
; ½e0�; ½h��; T� ��

þα2

2
dη
dx

� �2
þρϕ� ϵ

2
dϕ
dx

� �2
�
dx

(6)

Substituting the charge neutrality condition, σ� þ 2
R1
0 ρdx ¼ 0,

and defining the total excess grain boundary energy as, Fxs= F−
Fvolumetric, it follows:

Fxs η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ � ;ϕ; T� � ¼ sΔθg η�ð Þ

þ 2
R1
0

Δf η; VZ1
1

� �
; VZ2

2

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ � ; T� ��

þα2

2
dη
dx

� �2
þρ ϕ� ϕ�ð Þ � ϵ

2
dϕ
dx

� �2
�
dx

(7)

Fvolumetric is the total free energy of a single crystal in the limit of
η ¼ 1; VZi

i

� � ¼ VZi
i

� �
1; ρ1 ¼ 0. Thus, the excess chemical free

energy density of an ionic solution, Δf, is given by:

Δf η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ �; T� �

¼ f η; VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ �; T� �

� f η ¼ 1; VZ1
1

� �
1; ¼ ; VZN

N

� �
1; e0½ �1; h�½ �1; T

� �
� PN

i¼1

∂f η¼1; VZ1
1½ �1;¼ ; V

ZN
N½ �1; e0½ �1; h�½ �1;Tð Þ

∂ V
Zi
i½ � VZi

i

� �� VZi
i

� �
1

� �
(8)

The resultant electrochemical and structural fields correspond to
interfacial state that minimize the interfacial free energy, Fxs, which
explicitly quantifies the spatial deviations in free energy with
respect to the equilibrium state of a single-crystal ionic solid, in
agreement with Cahn,4 and Tang et al.,9 as described by Eq. (7),
and the corresponding variational derivatives:

δFxs
δη ¼ �α2 d2η

dx2 þ ∂Δf
∂η ¼ 0

δFxs
δϕ ¼ ϵ d2ϕ

dx2 þ ρ ¼ 0

δFxs
δ V

Zi
i½ � ¼

∂ Δfþρ ϕ�ϕ�ð Þð Þ
∂ V

Zi
i½ � ¼ 0

(9)

which includes the effect of misorientation, Δθ (first row of Eq. (4)),
on the electrochemical and structural state of the interface. In
agreement with Tang et al.,9 and Cahn,4 multiply the first row of

Eq. (9) by ∂η
∂x, the second row by ∂ϕ

∂x , and the third row by
∂ V

Zi
i½ �

∂x . The
resultant expressions are integrated and added in the limit of
gradients vanishing away from the grain boundary, η(x→∞)= 1,
Δf(η= 1)= 0, and ρ(η= 1)= 0:

α2

2
dη
dx

� 	2

� ϵ

2
dϕ
dx

� 	2

¼ Δf þ ρ ϕ� ϕ�ð Þ (10)

By using gðηÞ ¼ R η
0
dg
dη dη and substituting Eq. (10) into Eq. (7), the

excess free energy is written as a function of the integration
variable, η, as:

Fxs VZ1
1

� �
; ¼ ; VZN

N

� �
; e0½ �; h�½ � ;ϕ;Δθ; η�; T

� �
¼ 2

Rη�
0

sΔθ
2

∂g
∂η dηþ 2

R1
η�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Δf þ ρ ϕ� ϕ�ð Þð Þ α2 � ϵ dϕ

dη

� �2

 �s

dη

(11)

in the absence of compositionally-induced phase transitions.
In agreement with Cahn for chemical systems,4 and later with

Tang for structural-chemical systems,9 Eq. (11) demonstrates that
structural disorder at the grain boundary core, η�, is graphically
identified as the sum of the two integrands of the functional (see
Fig. 2a). Physically, the equilibrium interfacial crystalline order is a
result of the direct competition between minimizing the interfacial
free energy and the volumetric contributions to the excess
chemical and electrostatic free energy in the abutting ionic
ceramic grains. For a fixed excess chemical energy density, Δf, and
fixed interfacial electrical energy, ρϕ, small misorientations favor a
crystallographically ordered interface, as represented by a single
intersection of the volumetric and interfacial energy curves, as
shown in Fig. 2a. As the misorientation increases, the degree of
disorder monotonically increases (see Fig. 2b), until the grain
boundary reaches a critical misorientation, Δθ ≥ Δθc, at which
point two types of equilibrium grain boundaries become
energetically favorable (see Fig. 2b), one of which is crystal-
lographically disordered and whose thickness is appreciably wider.
The interfacial electrical energy density contribution to the total

free energy of the interface plays an important role on
determining the structural stability of the grain boundary. For
small misorientations, a positive increase of the interfacial
electrical energy will favor an increase in the degree of structural
order of the interface, while a negative contribution to the total
free energy of the system will locally favor a small shift in the
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degree of interfacial disorder (see Fig. 2c). For intermediate and
large misorientations, positive electrical contributions to the
volumetric free energy of the system will shift the onset of the
grain boundary transition, favoring more crystallographically
ordered grain boundaries (see Fig. 2d). In contrast, negative
contributions to the electrical energy of the grain boundary will
favor crystallographically disordered interfaces, see Fig. 2e, thus
enabling the early occurrence of an electrochemically-induced
interfacial transition.
The interfacial electrochemical-structural equilibrium state is

given by minimizing Eq. (11), and results in the Euler equations,

δFxs
δ V

Zi
i½ � ¼

∂ Δfþρ ϕ�ϕ�ð Þð Þ
∂ V

Zi
i½ � ¼ ξSi � ξXi ¼ 0

δFxs
δϕ ¼ 2ϵα2 Δf þ ρ ϕ� ϕ�ð Þð Þ d2ϕdη2 þ α2 � ϵ dϕ

dη

� �2

 �

ϵ ∂ðΔfþρðϕ�ϕ�ÞÞ
∂η

dϕ
dη þ α2ρ

� �
¼ 0

(12)

subjected to the following boundary conditions at the grain
boundary core:65

s Δθ2
∂g
∂η �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 Δf þ ρ ϕ� ϕ�ð Þð Þp ¼ 0

dϕ
dη ¼ 0

(13)

The first line of Eq. (12) represents the electrochemical potential as
described by Eq. (4). The second line is Coulomb’s Equation in its
differential form as a function of the non-conserved order
parameter, η, and describes the electrical state of the grain
boundary. An alternate route to find Eq. (12) is to directly
substitute Eq. (10) into Eq. (4), where VZi

i

� �
and ϕ are a function of

η.
An asymptotic analysis on Eq. (12) demonstrates that for a

disordered grain boundary core, η ~ 0, ∂ Δfþρ ϕ�ϕ�ð Þð Þ
∂η ¼ 0, and a non-

zero interfacial potential, ϕ(η= 0), the voltage

ϕ � ϕðη ¼ 0Þ � α2ρ�
2ϵ Δf�þρ�ϕcð Þ η

2, i.e., decays quadratically away from
the charged interface. Here, ϕc corresponds to the interfacial
potential at the critical misorientation, Δθc. In addition, in the
vicinity of the disordered grain boundary core, ∂ðΔfþρðϕ�ϕ�ÞÞ

∂η ≠0, and

thus, ϕ ~ ϕðη ¼ 0Þ+ ϕþexp
Δf�þρ�ϕcð Þη
∂ðΔfþρðϕ�ϕ�ÞÞ

∂η


 �
� ϕ� exp � Δf�þρ�ϕcð Þη

∂ðΔfþρðϕ�ϕ�ÞÞ
∂η


 �
+

ρα2η

ϵ∂ðΔfþρðϕ�ϕ�ÞÞ
∂η

, which demonstrates that steep structural order-disorder

gradients in the vicinity of the grain boundary can become a
source or a sink of electric fields. Also,

ϕþ ¼
ρ�α2Δf2�

ϵ

Δf�þρ�ϕcð Þ Δf�þρ�ϕcð Þ2þΔf 2�½ �, ϕ� ¼
ρ�α2Δf2�

ϵ

Δf�þρ�ϕcð Þ Δf�þρ�ϕcð Þ2�Δf 2�½ �. Further,
its spatial extent is equivalent to a Helmholtz-like layer and can
shift the apparent interfacial potential.
Define Δf ¼ Δf �ð1 � pðηÞÞ and ρ ¼ ρ�ð1 � pðηÞÞ to describe

the chemical energy density and the electrostatic charge density
of the grain boundary to quantify accessible states that range
between perfectly crystalline to completely disordered. Thus,
Eq. (12) is written in dimensionless form:

ð1� pðηÞÞ 1þ Π1ϕ̂
� � d2ϕ̂

dη2

þ 1� Π2
dϕ̂
dη

� �2
� 	

� p0ðηÞ
2 1þ Π1ϕ̂

� � dϕ̂
dη

�

þΠ1ð1� pðηÞÞ dϕ̂
dη

� �2
þð1� pðηÞÞ Π1

2Π2

	
¼ 0

(14)

two dimensionless numbers are identified:

Π1 ¼ ρ�ϕc
Δf�

Π2 ¼ ϵϕ2
c

α2

(15)

Π1 embodies the contributions of electrostatic energy and
chemical free energy as two driving forces that compete to
induce electrostatic potential gradients in the vicinity of the
interface. Π2 corresponds to the competition between polarization
electrical energy (voltage gradients), and the interfacial energy to
form a disordered region (order parameter gradients). Thus, in the
limit of Π1→ 0 and Π2→ 0, Eq. (14) reduces to the classic
Coulomb’s Equation.
Figure 3 summarizes the solutions to Eq. (14) for selected

physical dimensionless number values, Π1 and Π2, and describes
the possible interfacial electrochemical properties as a function of
the structural state of the interface. Specifically, Fig. 3a shows that
if the local interfacial chemical and electrical energy have the
same polarity, then the interfacial potential will be positive. In
addition, for material systems where the electrical energy is
comparable in order of magnitude to the free energy contribu-
tions to defect formation and mixing at an interface, the interfacial
potential can undergo changes in polarity as the order parameter

Fig. 2 Graphical description of interfacial degree of disorder as specified by Eq. (11). Inset a illustrates basic calculation, where the
misorientation interfacial energy contribution is the area under the curve from zero to η� in blue (area (1)), and the volumetric free energy is
the area from η� to one, in red (area (2)). The total shaded area minimizes the interfacial excess free energy functional (see Tang8 or Cahn4 for a
detailed description). Inset b shows that large misorientations can stabilize two interfacial states for fixed electrical energy density. Inset c
shows that for small misorientations, the electrical energy of the interface can alter the structural disorder of the grain boundary (dashed blue
corresponds to ρϕ > 0 and dashed purple to ρϕ < 0). For large misorientations, positive contributions to electrochemical energy can stabilize
ordered grain boundaries (inset d) and negative contributions to electrochemical energy will favor structurally disordered interfaces (inset e)
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changes from perfectly disordered to crystalline, thus suggesting
that for ||Π1|| > 0.3, the range of misorientations delivering
negligible interfacial potential values is wider, particularly for Π1

<−0.3. Also, because the charge transport properties of
polycrystalline ceramics are known to be controlled by the
amount of segregated surfactant and defects available at the
interface, Eq. 15 suggests that doping a polycrystalline ceramic
can readily be used to tailor the electrical transport properties for
both homo- and heterointerfaces. Thus, the ionic transport of
polycrystalline ceramics that possess a strongly insulating
behavior can be improved by introducing an ionic species or
point defect that favors the formation of a crystalline interface, or
alters the sign of the interfacial electrostatic potential to lightly
attract the controlling point defect and enables the transport of
the primary charge carrier but does not lock it in to the interface.
Figure 3b shows that for materials where the electrical driving

forces are comparable to the chemical driving forces for
segregation, e.g., Π1= ±0.5, the magnitude of the interfacial
potential is maximized for materials that have a higher dielectric
susceptibility and display a small interfacial energy penalty to form
a structurally disordered interface. Further, the range of misor-
ientations that display zero interfacial potential increases for
materials having higher dielectric susceptibility.
Away from this range of dimensionless numbers, the interfacial

potential decreases asymptotically, particularly if the interfacial
energy necessary to form a structurally disordered interface is
comparable or higher than the energy to induce an interfacial
voltage gradient. For small angle misorientations, interfaces will
develop a non-zero potential. This is not desirable, particularly for
those applications where small angle grain boundary misorienta-
tions are favored during processing.

Application to cubic YSZ
For fixed misorientation, interfacial composition, and electrostatic
interfacial potential, the graphical construction associated to
Eq. (11) allows to specify the equilibrium interfacial crystal-
lographic disorder, while the solutions to Eq. (12) allow to specify
the interfacial potential, ϕ, as a function of the order parameter, η,
for fixed misorientation. Both descriptions independently provide
a family of solutions to the electrochemical and structural state of
the interface. Specifically, Fig. 4a shows the graphical solutions of
Eq. (11) in agreement with Tang and co-workers,9 for selected
misorientation values, for 8YSZ at 2000 K (see section Numerical
Implementation for details). Figure 4b shows that as the
misorientation increases, the range of η values that are accessible

by the interface decreases, thus shifting toward more disordered
states.
The solutions of Eq. (11) indeed minimize the energy of the

interface, but fail to satisfy Maxwell’s equations. The overall
equilibrium state of the interface is a result of minimizing Eq. (11)
while simultaneously satisfying Eq. (12). Figure 5 (red line) shows
the interfacial equilibrium potential as predicted by Eq. (14) alone
as a function of the interfacial degree of crystallinity, η, for 8YSZ.
Here, Π1= 0.5 and Π2= 0.02, as shown in Fig. 3a. The equilibrium
interfacial electrical and structural state is shown in Fig. 5 as the
location(s) where both solutions intersect for selected misorienta-
tion values, Δθ= 15, 20.3, and 30°. Results demonstrate that for
small misorientations, e.g., Δθ= 15°, the interfacial electrostatic
potential is single-valued and asymptotically increases as the grain
boundary misorientation increases, until a critical misorientation,
Δθ= Δθc= 20.3° is reached, where two solutions (intersections)
are identified, and thus both interfacial states can coexist. For
Δθ > Δθc, the solution becomes single valued again, and defines
an interfacial structural and electrostatic first order transition, i.e., a
charged grain boundary transition, from a low to high degree of
interfacial structural disorder, and from a low to high interfacial
electrostatic potential.
Above the critical misorientation, Δθc= 20.3°, for example,

Δθ= 30°, the grain boundary exhibits a structurally disordered
grain boundary state, and the Schottky potential reaches an
asymptotic maximal value. The structural thickness of the grain
boundary is estimated as δ � R L

�Lð1� ηÞdx, in agreement with
Warren and co-workers.57 Further, for small angle grain boundary
misorientations, the grain boundary thickness is δ ~ 0.8 nm and
undergoes an interfacial transition to δ ~ 1.9 nm above the critical
misorientation value. This result is in perfect agreement with TEM
experiments from Yoshida and co-workers (see Fig. 1a–c),38 and
demonstrates that the state of the interface is a result of
simultaneously minimizing the interfacial energy of the interface
and satisfying Maxwell’s Equations.
The predicted spatial distribution of point defects in the vicinity

of a grain boundary for 8YSZ, at a misorientation Δθ= 15° is
shown for Fig. 6a. Here, when the structural grain boundary is
atomically sharp and it is sandwiched by a single, diffuse charge
layer, it is defined herein as of Debye-type. For this grain
boundary, δ ~ 0.8 nm, it is positively charged (see Fig. 6d), and
its core (C) is rich in oxygen vacancies and yttrium defects, in
perfect agreement with experimental results.28 The positively
charged grain boundary induces the formation of an oxygen
vacancy-rich Debye-type (D) depletion zone 0.5 nm away from the

Fig. 3 Interfacial electrostatic potential, ϕ, as a function of the structural state, η, of the interface for selected dimensionless numbers. Inset a
shows the effects of the electrical and chemical energy on the interfacial potential and highlights conditions to tailor the electrical polarity of
an interface or the conditions to make it electrically neutral. Here, each label highlights the Π1 value associated to each curve. Inset b
demonstrates the effects of the polarizability of the interface and the interfacial energy penalty of a disordered region. Here, each label
highlights the Π2 value associated to each curve. See text for details
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interface and has an extent of ~1.5 nm. The accumulation of
electrons and depletion of holes is negligible because it deviates
from the single-crystal concentration less than 1%.
For intermediate misorientations, e.g., Δθ= 20° (see Fig. 6b), the

grain boundary structural thickness and the degree of disorder
monotonically increases, making the interface more favorable for
oxygen vacancies and electrons. This increase in the positive
electrostatic charge at the grain boundary extends the depletion
zone of oxygen vacancies in front of the grain boundary as shown
in Fig. 6e. In addition, a small depletion zone of yttrium defects
occurs as a result of the attraction of yttrium defects and oxygen
vacancies, in agreement with atomistic calculations40,41 and
experimental results by Aoki and co-workers.37 The resultant
thicker structurally disordered, grain boundary core space charge
that is sandwiched by a wide diffuse charge layer defines a
Mott–Schottky-type interface,26,27 (MS), and it is a natural
consequence of the electrochemical and structural interactions
between the grain boundary and the abutting grains.

For Δθ > Δθc= 20.3°, e.g., Δθ= 30°, the grain boundary thick-
ness abruptly increases to δ ~ 2.1 nm, further favoring more
oxygen vacancies in the grain boundary core, and extends the
oxygen vacancies depletion zone thickness in front of the grain
boundary to ~2.8 nm (see Fig. 6c–f). The yttrium segregation at
the grain boundary has greatly increased by depleting the
available solute from the immediate surroundings to a value well
beyond the far field composition. Furthermore, the [e′] accumula-
tion thickness extends beyond the V ��

O

� �
depletion zone and has a

thickness of ~4.5 nm, while an [h·] depletion zone develops with a
thickness of ~4 nm, making this region effectively n-doped.
Overall, the resultant charged interfacial state is MS-type and
because of the low ionic mobility of yttrium and oxygen vacancies
at the interface, it will result in an ionically insulating grain
boundary. Results demonstrate that yttrium segregates at grain
boundaries in small amounts, and the segregated amount is
highly dependent on the misorientation.38

The effect of yttria doping on the electrochemical grain
boundary state is shown in Fig. 7. For a fixed grain boundary
misorientation, Δθ= 20°, results demonstrate that as the macro-
scopic concentration of yttria increases, the disorder of the
interface increases favoring thicker grain boundaries (see Fig. 7a).
Further, the grain boundary core V ��

O

� �
increases by a factor of 1.5

as the average amount of yttrium increases (see Fig. 7b), even
though the oxygen vacancies depletion region in the vicinity of
the grain boundary significantly decreases from a one order of
magnitude difference to an experimentally negligible amount
because as the bulk amount of yttria increases, the grain boundary
does not need to deplete Y 0

Zr

� �
from the vicinity of the interface.

The spatial extent of Y 0
Zr

� �
decreases from a ~4 to ~1 nm wide

region near the grain boundary and corresponds to an MS-type
interface. In addition, the effective increase in positive electrostatic
charge at the grain boundary core suppresses the hole
concentration and enhances the electron concentration (see
Fig. 7c) nearly by one order of magnitude, thus making the grain
boundary core slightly n-doped. The [h·] depletion zone thickness

Fig. 4 Graphical construction of the interfacial free energy as
described by Eq. (11) to determine charged grain boundary states
η, ϕ for selected grain boundary misorientations, Δθ, as shown in
inset a for 8YSZ. The intersection of volumetric free energy density
surface (in shades of blue) with misorientation interfacial energy
density surface (in shades of red) defines a subset of electrostatic
potential and crystallographic disorder values that minimizes the
energy of the interface, but ignores the electrostatic energy
contributions. Inset b shows ϕ(η), for selected misorientations. The
shade of gray changes from dark to light with increase in
misorientation values for Δθ= 15° (darkest), Δθ= 20.3°, Δθ= 30°
(lightest)

Fig. 5 Graphical construction depicting charged grain boundary
transition as a function of interfacial degree of crystallinity. Equation
(14) solutions is shown as a red line. Equation (11) solutions are
shown for fixed Δθ= 15° (dark gray), Δθc= 20.3° and Δθ= 30° (light
gray), and graphically demonstrates that the structural crystallinity
and interfacial electrostatic potential of the interface that simulta-
neously minimizes Eq. (11) and satisfies Maxwell’s Equations
corresponds to the intersection of the red curve with a gray line.
Thus, for: a small misorientations (black) small interfacial potentials
and crystalline grain boundaries are favored; b at the charged grain
boundary transition misorientation, a two electrochemical-structural
interfacial states are stable (dark gray); and for high misorientations,
large interfacial potentials and low degree of crystallinity is
energetically favored
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increases from 1 to 6.5 nm, while [e′] accumulation zone thickness
increases from 1 to 7 nm in the grain boundary core. Overall,
calculations demonstrate that for large amounts of yttria, V ��

O

� �
and

Y 0
Zr

� �
in the grain boundary core increases, while V ��

O

� �
and Y 0

Zr
depletion region shrinks in the immediate surroundings of the
grain boundary.

DISCUSSION
We have developed a continuum thermodynamic framework that
simultaneously describes the structural and electrochemical
character of a grain boundary. Here, the structural state of the
interface is directly coupled to the electrochemical state, so that
charged grain boundaries that display an opposite polarity with
respect to the dominant charge species (or point defects) are
more likely to be disordered. Specifically, the electrical contribu-
tion to the excess free energy of an interface leads to the natural
development of charged interfacial state whose interfacial degree
of disorder increases with misorientation so that: (a) low
misorientations and small solute concentrations of point charge
defects favor Debye-type (D) interfaces; (b) intermediate and high
misorientations favor Mott–Schottky-type (MS) interfaces; (c) below
the charge grain boundary transition, Δθ < Δθc, mono-(D) and
bilayer (MS) interfacial structures are stabilized; (d) above the
interfacial transition, Δθ > Δθc, thicker bilayer MS interface
transitions are spontaneously stabilized; finally, (e) large amounts
of doping can completely suppress the abrupt appearance of the
charge interface transition, and instead favor the uniform increase
of the extended thickness of the interface, leading to interfacial
electrochemical states that greatly differ from the average values.

The effects of yttria doping and grain boundary misorientation
are summarized in a grain boundary phase diagram, see Fig. 8.
Here, charged grain boundaries are classified as T(N):
CV1V2 ¼ VMSV1V2 ¼ VP , where T defines the electrochemical character
of the grain boundary thickness as of Debye-type (D), or
Mott–Schottky-type (MS). The state of the grain boundary core,
C, is specified by the super-index CV1V2 ¼ VM and defines the excess
or depleted chemical components at the core, while SV1V2 ¼ VP

defines the composition of the layers in the vicinity of the
interface. N defines the total number of spatially distinguishable
layers based on composition in the vicinity of the interface, in
agreement with the scientific literature.22,26,27,66,67 Underlined
compositions, Vi , correspond to a depleted component. Specifi-
cally, for YSZ, define V= V ��

O

� �
, Y= Y 0

Zr

� �
, e= [e′], and h= [h·]

shorthand notation. The layer thickness of each charged species,
V ��
O

� �
, Y 0

Zr

� �
, [e′], and [h·] is defined herein as the spatial extent away

from the interface where the system deviates from the average
(far field) concentration by 1%.
Small angle misorientations favor structurally ordered grain

boundary states. The core mainly consists of Y 0
Zr

� �
and excess V ��

O

� �
resulting in positively charged grain boundaries. Intermediate
misorientations, below the charged grain boundary transition, for
yttria dopants less than 14.5%, D-states continuously transform to
bilayer (MS(2):CVYheSVYhe) interfacial states because of an increase
in disorder at the grain boundary core.
The yttria dependent critical misorientation, Δθc([Y2O3]) above

which the first order charged interfacial transition is observed,
decreases as the amount of yttria content increases, and
completely disappears at critical composition, [Y2O3]c ~ 14.5%
(solid line in Fig. 8). For [Y2O3] < [Y2O3]c, the grain boundary

Fig. 6 Predicted defect distribution and degree of crystallinity in the vicinity of the grain boundary for selected misorientations, Δθ= 15°
(inset a), Δθ= 20° (inset b), and Δθ= 30° (inset c). The grain boundary is located at x= 0. The corresponding charge density corresponds to
Δθ= 15° (inset d), Δθ= 20° (inset e), and Δθ= 30° (inset f). The grain boundary core is positively charged as a result of V ��

O

� �
being chemically

attracted to the interface, depleting the point defects in the vicinity of the surrounding grains. In turn, a positive electrostatic interfacial
potential develops at the grain boundary. The resultant electrochemical state induces the interfacial attraction of Y 0

Zr

� �
and [e′] due to its

opposite charge polarity and the repulsion of [h·] in agreement with experimental results17,23,28
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thickness, structural order, and the associated interfacial electro-
static potential undergoes a first order phase transition resulting in
thick, electrically insulating grain boundary cores with bilayer
charged interfaces, (MS(2):CVYheSehVY ). For [Y2O3] > [Y2O3]c, the
charged layers continuously undergo the transition from D(1):
CVYSVY →MS(2):CVYShe, and suggest a wide range of misorienta-
tions and large yttria doping that the material has to go through
to develop thick, electrically insulating grain boundaries.

Based on the results of Figs 6–8, Fig. 9 shows the effect of yttria
on the macroscopic electrical conductivity of polycrystalline YSZ,
for grain sizes larger than 1 μm. The predicted total electrical
conductivity is in excellent agreement with experimental results,
as reported by Dixon and co-workers,33 Strickler, and Carlson,34

and Casselton.35 Here, because the oxygen vacancies depletion
zone decreases with the addition of yttria, the total electrical
conductivity increases, reaching a maximum value in the 7 to
9mol% Y2O3 range in agreement with experiments,34 and Kinetic
Monte Carlo simulation results.36 In the high yttria doping limit,
the attractive interactions between V ��

O

� �
and Y 0

Zr

� �
decrease the

Fig. 7 Effect of yttria doping on the spatial distribution of point
defects for a grain boundary misorientation Δθ= 20°. Inset a shows
the V ��

O

� �
distribution, b shows Y 0

Zr

� �
distribution, and c shows [h·] and

[e′] distribution in the vicinity of the grain boundary. The shade of
gray changes from dark to light with yttria dopant concentration,
5 mol% (darkest), 8, 12, and 16mol% (lightest)

Fig. 8 Grain boundary phase diagram at 2000 K. For YSZ, the grain
boundary cores are positively charged due to an excess of V ��

O

� �
.

Small angle grain boundary misorientations favor the formation of
Debye-type (D) interfaces that display a single charged layer.
Intermediate angle grain boundary misorientations increases the
interfacial disorder, the thickness of grain boundary and the space
charge layers favoring Mott-Schottky-type (MS) interfaces. Ordered
and disordered grain boundaries coexist in the 5 to 14.5% Y2O3
composition range for Δθc= Δθc([Y2O3]), exhibiting a first order
structural transition (thick black line). Above 14.5% there is no first
order structural transition. Large angle grain boundaries develop a
thick [e′] accumulation zone and a [h·] depletion zone resulting in
wide (MS) bilayer interfaces

Fig. 9 Comparison of experimentally measured versus simulated
total electrical conductivity for YSZ, for ~1 μm grain size polycrystal-
line data. The effect of yttria content on experimental electrical
conductivity corresponds to data measured at 1073, 1273, and
1473 K, as reported by Dixon and co-workers, Strickler, and Carlson,
and Casselton.33–35 Large angle, MS-type grain boundaries exhibit
lower total conductivity than small angle, D-type and intermediate
angle MS-type grain boundaries due to a thick grain boundary core,
and wide depletion zone of V ��

O

� �
in the vicinity of the interface
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ionic mobility of oxygen vacancies and lead to a significant
decrease in the total conductivity.
Results demonstrate that charged interfaces in polycrystalline

cubic YSZ have an important effect on the macroscopic ionic
transport properties. Figure 9 shows that in the 5 to 10 mol% Y2O3

doping range, crystallographic disorder in an MS-type interface
does not have a strong effect on the electrical conductivity of the
grain boundaries in spite of the wide depletion zone of oxygen
vacancies in the vicinity of the structural grain boundary. Above
10mol% Y2O3, the total conductivity associated to MS-type
interface is two to three times smaller than that displayed by
polycrystals with D-type interface due to the formation of a thick
grain boundary core of V ��

O

� �
, which hinders the ionic transport of

V ��
O

� �
across the interface because of the insulating effect of Y 0

Zr

� �
.

Finally, the developed theory provides a basis to understand the
generality of ionic transport properties by correlating the local and
microstructural response to the structural and electrochemical
phase transitions of the interfaces of ionic polycrystalline ceramics.
The application of this formulation enables the development of a
mesostructure-level understanding of the microstructure-
properties relations of ionic solids, such as those used in SOFCs.
While it is beyond the scope of this paper, the current variational
formulation sets the stage to understand the fundamentals of
other technologically relevant ceramic materials, such as those
used in lithium-ion battery applications, dielectric oxides, ferro-
electrics,68 piezotronics,44 and semiconductor applications,43 by
introducing physically relevant constitutive relationships,
Di ¼ ϵijEj þ Pi þ dijkCjklmϵlm, as proposed in48 or as recently
proposed by Guyer and co-workers52 or Shen et al.45

METHODS
A two-grain, bicrystal YSZ, with a planar grain boundary was modeled by
placing the interface at the origin of the laboratory reference system. The

normal of the interface was arbitrarily set to point along the x-axis. The
simulations are conducted at 2000 K at which the cubic phase of Zirconia is
stabilized by adding Y2O3 in the composition range of 5–25%.32 Without
any loss of generality, the segregation energies used in the calculations
correspond to a Σ5 grain boundary.61 YSZ properties are summarized in
Table 1. Equation set 4 was solved across a 1 μm simulation domain, and
discretized into a 10,000 mesh. The partial differential equations were
solved by implementing them in FiPy.69 The relative tolerance for the
convergence was set to 1 × 10−8. Each calculation took on the order of one
hour of wall time to complete. The macroscopic ionic conductivity of the
YSZ polycrystal was calculated by generalizing the model proposed by
Guo.30 Here, the contributions to the total charge conductivity from each
differential element of a representative grain boundary-bicrystal system
was integrated to calculate the through-thickness conductivity of YSZ in its
polycrystalline form:

κ ¼ LRL
0

dxPN
i¼1

e2Z2
i

V
Zi
i½ �Di

kBT

(16)

The oxygen vacancies diffusivity in YSZ, was set to DV= 9.57 × 10−6

V ��
O

� �
e�

27039:57´ V��o½ �þ 6962:98

T m2=s in agreement with Pornprasertsuk and co-
workers.36
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Table 1. Summary of physical parameters used in charged interfacial transitions calculations for YSZ

Parameter Symbol Value Units Ref

Oxygen vacancies ionic valence ZO 2 — —

Yttrium defects ionic valence ZY −1 — —

Mole fraction of electrons [e′] 1.24 × 10−6PO2
−1/4

—
70,71

Mole fraction of electrons [h·] 3.37 × 10−4PO2
1/4

—
70,71

Partial pressure of oxygen PO2 1 atm —

Segregation energy of oxygen vacancies for Σ5 grain boundary f SV ��
O
� f XV ��

O
−0.5 eV 61,72

Segregation energy of yttrium defects for Σ5 grain boundary f SY 0
Zr
� f XY 0

Zr
0.0 eV 61

Segregation energy of electrons f Se0 � f Xe0 −0.1 eV 73

Segregation energy of holes f Sh� � f Xh� −0.1 eV 73

Interaction parameter ΩY 0
ZrV

��
O

−0.13 eV 36

Diffusion coefficient of electrons De0 3.2 × 10−10 m2/s 74

Diffusion coefficient of holes Dh� 5.4 × 10−11 m2/s 74

Atomic volume of zirconia ν 3.6 × 10−29 m3/atom —

Latent heat of fusion ΔH 3.5 × 109 J/m3
—

Melting temperature Tm 2988 K —

Order-disorder interfacial energy γ 0.6 J/m2 39

Order-disorder interfacial thickness δ 1 nm —

Grain boundary energy penalty coefficient α ¼ ffiffiffiffiffiffiffiffi
6γδ

p
6 × 10−5 (J/m)1/2 60

Barrier height scaling parameter a ¼
ffiffiffiffi
6γ
δ

q
6 × 104 (J/m3)1/2 60

Structural coupling parameter s ¼ 2aα
Δθmax

9.17 J/m2 57

Relative dielectric permittivity of YSZ ϵr 32 —
75

Electrostatic grain boundary potential at critical misorientation for 8YSZ ϕc 0.18 V —

Chemical energy density of disordered region of YSZ Δf � 0.19 × 109 J/m3
—

Electrostatic charge density of disordered region of YSZ ρ� 0.5 × 109 C/m3
—
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