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Clonal heterogeneity in ER+ breast cancer reveals the
proteasome and PKC as potential therapeutic targets
Lukas Beumers 1,2✉, Efstathios-Iason Vlachavas 1, Simone Borgoni1, Luisa Schwarzmüller 1,2, Luca Penso-Dolfin3,
Birgitta E. Michels 1, Emre Sofyali 1, Sara Burmester1, Daniela Heiss1, Heike Wilhelm1, Yosef Yarden 4, Dominic Helm 5,
Rainer Will 6, Angela Goncalves3 and Stefan Wiemann 1,2✉

Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and
mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we
established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine
therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed
inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular
characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and
respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in
vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to
uncover heterogeneity at an individual patient level and to adjust therapies accordingly.
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INTRODUCTION
Breast cancer remains the most commonly diagnosed malignancy
in women worldwide1 and comprises a heterogeneous group of
diseases characterized by distinct clinical, histopathological, and
molecular features2. Accordingly, breast tumors are initially
classified by immunohistochemistry (IHC) based on the expression
of estrogen receptor (ER), progesterone receptor (PR), human
epithelial growth factor receptor 2 (HER2) and the proliferative
marker Ki-673. Around 60–70% of tumors are characterized by ER
expression4. Patients with ER+ tumors are efficiently treated with
endocrine therapies to abrogate the tumor promoting effects of
estrogen5, leading to overall survival rates of over 90%6. First-line
endocrine therapy consists of selective ER modulators (SERMs)
such as Tamoxifen and of aromatase inhibitors (AIs) for pre- and
postmenopausal patients, respectively. Despite high therapeutic
efficacy, up to 40% of patients with late-stage diagnoses relapse
within 20 years of treatment start7 and recurrences can be caused
by diverse resistance mechanisms8. Along these lines, we recently
identified ATF3, a member of the ATF/CREB family of transcription
factors, as novel driver of endocrine therapy resistance in vitro and
in vivo9, and pinpointed candidate methylation sites which are
clinically associated with endocrine therapy resistance10.
Tumor cell heterogeneity contributes to therapy resistance by

increasing the likelihood of cells having a resistant phenotype or
the capacity to acquire such a resistant phenotype are present
prior to treatment11,12. Next-generation sequencing (NGS) has
fundamentally uncovered genetic heterogeneity also in breast
tumors13,14. However, tumor heterogeneity and response to
therapy can be driven by genetic, epigenetic and stochastic
events in the tumor cells, and by local or systemic factors such as
tissue context and clonal expansion in healthy tissue15,16.

Stochasticity in gene expression and other mechanisms triggering
protein abundance may lead to variable protein expression states
among individual cells and induce heterogeneity of cellular
phenotypes17. Tumor heterogeneity may destine therapeutic
resistance via two mechanisms: Pre-existent resistant clones may
be selected through the applied therapy (i.e., primary resis-
tance)18,19 or initially treatment-persisting cells may adapt to and
then acquire resistance to the applied therapy (secondary
resistance)20. While the former mechanism points at the presence
of alterations that confer a resistance phenotype in some tumor
cells before therapy, the latter is rather connected to stochastic
events that are selected and then fixed in tumor cells carrying
eventually dominating molecular states.
Here, we leveraged cellular barcoding, cell cloning and

integrative multi-omics analysis to disentangle clonal adaptions
to endocrine therapies. We barcoded two treatment-sensitive ER+
breast cancer cell lines and then rendered them resistant to
Tamoxifen (TAMR) or long-term estrogen deprivation (LTED), the
latter mimicking clinically applied aromatase inhibition. We find
evidence of both, the selection of pre-existing resistant clones and
for acquired resistance in persister cell populations. Individual
clonal populations were isolated and characterized at the
phenotypic, gene expression (RNA-Seq) and phospho-proteome
levels. There, we identified private and potentially shared
contributors to resistance, opening potential therapeutic vulner-
abilities. Sensitivity to the proteasome inhibitor Bortezomib was
private and correlated with activation of the unfolded protein
response (UPR). In contrast, protein kinase C (PKC) isoforms were
commonly activated in TAMR and LTED clones originating from
one cell line, while treatment with the pan PKC inhibitor
Sotrastaurin was significant just with one LTED clone. Clinical
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relevance of our findings was established in patient-oriented
analysis of the CPTAC-BRCA proteogenomic cohort21 upon
stratification by ER− vs ER+. PKC activation in particular, was
evident in two patients with ER− disease, which closely resembled
our in vitro models. Taken together, we developed cellular models
of endocrine resistance that revealed private and potentially
shared contributors to endocrine therapy resistance thus support-
ing the need for molecular stratification at the single patient
resolution for treatment of advanced luminal breast cancer.

RESULTS
Clonal in vitro models of endocrine therapy resistance
In this study, we wanted to disentangle the heterogeneity of
endocrine therapy resistance in individual clones using in vitro
models. Molecular changes should be uncovered at the gene
expression and phospho-proteomic levels, and new potential
vulnerabilities be identified. To this end, we transduced treatment-
naïve ER+ breast cancer cell lines MCF7 and T47D with the
ClonTracer library22 at an MOI of 0.05 to favor single barcode
integration. Following short-time expansion, cultures were split
into twenty replicates for every cell line: Five replicates of each
were frozen down to later assess the barcode complexity in the
initial cell population (Supplementary Fig. 1). Five replicates of
each cell line were treated for eight months with either 4-OHT or
estrogen deprivation (-E2) to induce Tamoxifen resistant (TAMR)
and long-term estrogen deprived (LTED) cell lines, respectively.
The latter mimics aromatase inhibition. Control cells were kept in
standard media (+E2). Tamoxifen reduced the proliferation of
cells, however, did not induce a quiescent state. In contrast, cells
kept in estrogen deprived conditions entered a quiescent state for
several months and re-gained proliferative capacity after six
months.
At eight months of cultivation, treated replicates had regained a

more proliferative phenotype compared to +E2 replicates that
had been challenged with endocrine therapies only for a short
time, indicating successful induction of endocrine resistance in the
former (Fig. 1a). Bulk sequencing of barcodes in every replicate
discerned the barcode- and the inferred clonal complexities. At
least 5 × 106 barcode reads were obtained for all cell lines
(Supplementary Table 1). The theoretical maximum of approxi-
mately 1*105 transduced barcodes was found in the initial cell
population of the barcoded MCF7 cell line (1.15*105 unique
barcodes), while the complexity was lower (4*104 unique
barcodes) in T47D (Fig. 1b). Prolonged cultivation of replicates
led to a strong reduction in the complexity of barcodes even in
the absence of endocrine therapy (i.e., the +E2 controls).
Treatment with 4-OHT and particularly with estrogen deprivation
(-E2) induced a significant further decrease in the numbers of
distinct barcodes, however, also an enrichment of a few barcodes,
while no barcodes were enriched in the initial barcode library
(Supplementary Fig. 2, Supplementary Files 1–3). This supports the
intended rather homogenous representation of barcodes in the
initial barcoded pool as well as neutral drift potentially having
occurred in some replicates.
Next, we inspected the identity of barcodes in the respective

replicates and found extensive heterogeneity regarding numbers
and recurrence of barcodes between individual replicates. In Fig.
1c, for MCF7 the five and for T47D the 25 most abundant barcodes
in each replicate are color coded. Other barcodes are shown in
gray. The apparent barcode- and clonal complexity appeared to
be higher in MCF7 than in T47D. In the MCF7 TAMR replicates only
16 barcodes along all TAMR replicates were enriched with a
frequency greater than five percent. None of those barcodes was
enriched in more than one replicate, pointing to resistance
acquisition of distinct clones that were selected during treatment.
In contrast, 4/5 replicates in the T47D TAMR model were

dominated by a clone carrying the purple barcode and this was
prominent also in the fifth replicate (Fig. 1c). The recurrent
enrichment of clones carrying the purple barcode could suggest
that the respective cells had been Tamoxifen-resistant already
prior to the onset of treatment as this barcode was over-
represented neither in the T47D+ E2 controls nor in the LTED
conditions (Supplementary Fig. 2).
We then isolated single clones from selected replicates

(Supplementary Fig. 3a and Fig. 1c). The barcodes in these clones
were sequenced and associated with the same color code that
was used for the whole replicate. At least three clones carrying the
identical barcodes could be isolated from two independent
replicates each of the T47D TAMR and LTED conditions. Clones
carrying the orange barcode were isolated from two LTED
replicates a well as from the +E2 control replicate. While clonal
populations having been isolated from the same replicate had
been cultivated independent of one another for a period of at
least six months, clones isolated from different replicates of any
condition had been cultivated independently for at least 14
months (compare Supplementary Fig. 1).
Barcode sequencing of individual clones revealed that most

T47D clones carried only one barcode, as was expected given the
MOI of 0.05 that had been used in the generation of the barcoded
libraries. However, the purple T47D TAMR clones carried two
barcodes that were found at the same ratio in all replicates. The
MCF7 blue TAMR_1 clones, for example, had even 17 barcodes
integrated into their genomes (Supplementary Fig. 3b), requiring
an NGS approach to identify all barcodes. A list of clones and their
integrated barcodes is provided in Supplementary Table 2. Some
barcodes detected in sequencing of MCF7 clones were not
detected in the initial barcoded cell pools, potentially because
some barcodes did not match the expected pattern of ([AT][GC])
x1522. As we determined the barcodes in individual clones only for
those MCF7 replicates and clones that are indicated in Fig. 1c, the
apparent clonal complexity in other replicates is likely exagger-
ated in the figure. Yet, we refrained from isolating single clones
from the MCF7 control (+E2) and instead, employed pools of
three MCF7+ E2 replicates (i.e., +E2_1, +E2_3, and +E2_5) as
controls in any experiments using MCF7 cells throughout
the study.
Finally, we wanted to uncover the chromosome positions virus-

encoded barcodes had integrated into, to potentially exclude viral
integration into genomic loci as drivers of resistance. To this end,
we amplified and sequenced integration sites in MCF7 replicates
TAMR_2 and LTED_5 as well as T47D replicates +E2_2, TAMR_2,
and LTED_2. Read counts of LAM-PCR23 libraries (File ‘Integration
site analysis.xlsx’ at Zenodo)) were matched with barcode read
counts in the same replicates suggesting viral integration sites for
particular barcodes and clones. Matches between integration sites
and barcodes were validated for the individualized clones using
PCR (Supplementary Fig. 3c–f). None of the viral integration sites
(Supplementary Table 3) were associated with significant expres-
sion changes of nearby genes (|log2FC| ≥ 0.05 and p-adj. ≤ 0.05),
except for integration of a barcode into Chr11:31,426,888
(GRCh38/hg38) in the orange barcode in T47D LTED and +E2
clones. This barcode had integrated into intron 4 of DNAJC24. The
gene was significantly higher expressed in T47D orange LTED
clones compared to orange+ E2_5 clones (data not shown). Since
the orange clonal populations were all characterized by the same
barcode and integration site, however, upregulation of DNAJC24
expression was likely a treatment-specific event (LTED vs +E2) and
not related to the viral integration. We, therefore, excluded viral
integration and potential deregulation of genes in close proximity
to the viral integration sites as potential drivers of endocrine
therapy resistance for the isolated clones.
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Gene expression are stable over time in endocrine
resistant clones
Next, we wanted to know if the observed heterogeneity of clones
in the different conditions and replicates was mirrored at the gene
expression level. To this end, RNA was sequenced from clones
sharing the same as well as having different barcodes. Unsuper-
vised hierarchical clustering of the top 200 most variable genes
across all samples in each dataset (Supplementary Files 4 and 5)

revealed stable clonal lineages, however, also extensive hetero-
geneity between clonal populations having different barcodes.
Individual clones sharing the same barcode could be robustly
discriminated from clones that had any other barcode, both for
MCF7 (Fig. 2a) and T47D (Fig. 2b). This suggests that gene
expression patterns were stable in clones sharing the same
barcode even though the span between clone isolation and
molecular profiling was at least six months of continuous culture.
While this might be expected for clones isolated from the same

Fig. 1 Initial analysis of barcoded endocrine resistance models. MCF7 and T47D cell lines were barcoded and then resistance was induced
over eight months to either 4 hydroxy-tamoxifen (4-OHT) or estrogen deprivation (-E2), in five replicates each, to render them tamoxifen
resistant (TAMR) or long term estrogen deprived (LTED). Barcoded control (+E2) replicates were cultivated in media with estrogen for the
same period. a After eight months of culture in respective media, proliferation was measured in all replicates of MCF7 (left) and T47D (right) by
microscopy-based nuclei counting at day 0 (d0) and day 7 (d7) with cells grown in indicated conditions (+E2, 4-OHT, -E2). Additionally, +E2
barcoded cells were pre-treated for 14 days without estrogen. The average (mean) ± SEM of five individual barcoded replicates (n= 1 with 6
technical replicates each) per condition is shown. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001 as determined by unpaired two-tailed t-
test. b Barcodes were sequenced in each of the initial, +E2, TAMR, and LTED replicates. Indicated are mean ± SEM for respective conditions.
*p < 0.05, ***p < 0.001, ****p < 0.0001 as determined by one-way ANOVA with Dunnett multiple comparisons test. c The five and 25 most
abundant barcodes in each replicate for the +E2, TAMR, and LTED conditions of MCF7 and T47D cell lines, respectively, are indicated in
different colors and are also indicated in the +E2 conditions if enriched. Other barcodes are shown in gray. Individual clones were isolated
from selected replicates and are indicated with color-coding to represent the respective barcodes.

L. Beumers et al.

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2023)    97 



replicate, this was also apparent for clones from different
replicates thus having been cultured independently for at least
14 months (compare Supplementary Fig. 1). This could implicate
that the respective constant stressor (i.e., 4-OHT and estrogen-
deprivation, respectively) induced fixation of particular, yet for
different clones individual, gene expression patterns.

Clones having derived from the same parental cell display
distinct phenotypes after selection
Having identified stable clonal trajectories in the RNA-Seq data,
we next assessed the proliferative capacity of individual clones.
Here, we observed similar but distinct proliferative capacities of
clones even when these carried the same barcodes and had
clustered in the RNA-seq experiment (Fig. 3a–c). Hence, the rather
homogenous gene expression patterns present in clones carrying
the same barcodes were not mirrored by a similar homogenous
distribution of proliferative phenotypes. Next, we focused
specifically on the orange clones, where we had isolated five
clones from the +E2_5, and four and another three clones from
the LTED_1 and LTED_2 replicates of the T47D cell line,
respectively. These clones had all derived from the same initial
cell as they carried the same barcode integrated into the identical
chromosomal location (Fig. 3f). We tested the clones in cellular
assays informing on proliferation, cell cycle progression and
apoptosis (Fig. 3d–f). This revealed consistent clonal patterns
within and also between replicates of the same condition (i.e.,
LTED_1 and LTED_2). The orange barcoded T47D+ E2_5 showed
robust proliferation, however, this was strongly reduced upon
short-term estrogen deprivation. The respective T47D LTED clones
showed a similar phenotype having limited proliferative capacity
when grown without estrogen. Conversely, strong proliferation
could be induced by short-term supplementation of estrogen (Fig.
3d). The short- and long-term estrogen deprived orange barcoded
T47D clones thus displayed a ‘cycling persister’ phenotype24

characterized by a reduced but prominent fraction of cycling cells
and a strong increase in dying/dead cells compared to non-
treated counterparts from the same clonal origin (Fig. 3e, f). Given
the rather similar growth patterns observed with orange+ E2 and

LTED clones, we next utilized our RNA-Seq data to identify
deregulated pathways.

Pathway activities in MCF7 and T47D TAMR and LTED clones
reflect intra- and inter-tumor heterogeneity
Here, wanted to investigate if the differences in clonal gene
expression patterns were reflected by similar differences in
pathway activities and if these could hint at common or private
molecular contributors to drug resistance. To this end, we
considered clones isolated from the same replicate and sharing
the same barcode as biological replicates. PROGENy25,26 was
employed with RNA-seq data to estimate the activity of 14 major
signaling pathways in drug-treated cells compared to untreated
controls. Estrogen signaling was significantly repressed in all
clones (Fig. 4), reflecting the therapeutic block imposed by 4-OHT
and estrogen deprivation. Mutation of ESR1 has been determined
as one mechanism of acquired endocrine therapy resistance27.
Consistent with the observed downregulation of ER−signaling in
our resistant models, we did not observe ESR1 hotspot mutations
in any endocrine therapy resistant clones (Supplementary Fig. 4).
Hence, we next focused on other pathways and mechanisms that
might be common or contribute to resistance just in particular
clones.
JAK-STAT signaling was strongly upregulated only in the LTED

clones of MCF7 (Fig. 4a), while this pathway was consistently
downregulated in all T47D clones (Fig. 4b). Hence, this regulation
was different for the two treatments in MCF7, and in opposite
directions for the two cell lines. Similarly, a significant activation of
NFκB signaling was shared among all MCF7 TAMR and LTED
conditions, while this pathway was not changed or even down-
regulated in T47D TAMR and LTED clones. Both, JAK-STAT and
NFκB signaling have been associated with the tumor (immune)
microenvironment28,29.
In summary, we have uncovered substantial commonalities in

pathway activities between cell lines and treatment conditions,
however, also specific differences that might be related to inter-
and intra-tumor heterogeneity. We next wanted to test potential
common as well as private therapeutic vulnerabilities in the

Fig. 2 Gene expression trajectories are stable in clonal lineages. RNA-sequencing was performed with 2 to 5 clones sharing the same
barcodes from the indicated replicates. Barcodes are color-coded. Heatmaps of the top 200 most variable genes were generated using the R
package ComplexHeatmap (version 2.10.0)71 for a MCF7 and b T47D cell lines. Hierarchical clustering was applied in both genes (rows) and
cell lines (columns) (Euclidean distance, complete linkage). The illustrated values are scaled log2-counts per million (CPM) TMM normalized
values.
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endocrine therapy-resistant clones, focusing on the MCF7 TAMR
and LTED cell models.

Sensitivity to the proteasome inhibitor Bortezomib correlates
with unfolded protein response as a private vulnerability
To find therapeutic vulnerabilities, we next estimated transcription
factor activities using DoRothEA30 and decoupleR31. Furthermore,

we analyzed kinase activities using matched phosphoproteomic
data with Omnipath32 and decoupleR31. The latter resulted in the
identification of at least 17,000 phosphosites (class 1, localization
probability >95%) in every sample (MCF7: 20,207–25,874; T47D:
17,118–24,449). Of these, between 46–74% were shared between
all clones sharing identical barcodes (Supplementary Fig. 5a).
Additionally, unsupervised hierarchical clustering of all consis-
tently identified phosphopeptides showed that clones with the
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same barcode clustered together (Supplementary Fig. 5b),
corroborating also our results from gene expression analysis (see
Fig. 2).
We had found NFκB signaling differentially regulated in

endocrine therapy resistant MCF7 vs. T47D clones (compare Fig.
4a, b). Analysis of phospho-proteomic data however did not reveal
patterns indicating potential activation of the IκB kinases IKKα,
IKKβ, IKKε or TBK1 (Fig. S6a) suggesting that potential pathway
activation should be downstream of IκB kinases. The key
downstream transcription factor p65/RELA33 was estimated from
the RNA-Seq data to be relatively activated in MCF7 LTED clones
and, to a lesser extent in the TAMR clone (Fig. S6b). Knock-down of
RELA (Fig. S6c) induced similar phenotypes in the endocrine
sensitive +E2_5 cells and in TAMR as well as LTED clones as
proliferation and cell viability as well as the percentage of cycling
cells were consistently decreased while dying/dead cells were
increased (Fig. S6d). These findings point at an essential role for
p65 even in endocrine sensitive cells, suggesting that complete
inhibition of NFκB signaling might be too harsh in view of a
potential window of therapeutic targeting.
In contrast, MCF7 blue TAMR_1 clones also showed a significant

enrichment in the expression of genes that are connected to the
unfolded protein response (UPR), pointing to its activation (Fig. 5a)
and to a potential dependency on the proteasome. Accordingly,
we utilized the proteasome inhibitor Bortezomib which is applied
to treat NFκB-driven multiple myeloma34 and is hypothesized to
abrogate also the UPR35. We initially assessed the sensitivity for
Bortezomib in MCF7 clones and one +E2 replicate (+E2_5), which
revealed the highest sensitivity (Fig. 5b) to Bortezomib treatment
for the MCF7 blue TAMR_1 cells that had also shown a predicted
activation of UPR. No association between activation of NFκB
signaling and sensitivity to Bortezomib was evident. We next
assessed the effects Bortezomib treatment on cell proliferation,
viability, and the ratios of cycling cells in the MCF7 TAMR and
LTED clones (Fig. 5c). We used Bortezomib at a 1.85 nM
concentration as we had observed the strongest difference in
sensitivities for the respective cell clones there. A strong and
significant effect was only detected in the blue TAMR cells while
the other cells were not at all or just slightly (red LTED_5) affected.
Taken together, sensitivity to Bortezomib correlated with activa-
tion of the UPR just in the MCF7 blue TAMR_1 clones thus
highlighting activation of the proteasome and inhibition by
Bortezomib as private and druggable endocrine therapy resis-
tance contributor to a more complex, multifactorial resistance
phenotype.

PKC activation as potentially shared contributor to endocrine
therapy resistance in different clones
Kinase activity analysis revealed significantly higher activation of
several isoforms of protein kinase C in MCF7 TAMR as well as in
LTED clones compared to the +E2 control replicates (Fig. 6a).
Treatment of the cell lines with the pan-PKC inhibitor Sotrastaurin

showed higher sensitivity of the yellow MCF7 LTED_2 clone (Fig.
6b) compared to the other clones and replicates. Treatment with
2.50 µM Sotrastaurin reduced the proliferative capacity of these
cells by almost 60% compared to +E2_5 cells (Fig. 6c).
Accordingly, viability and cell death were reduced and enhanced,
respectively, while the number of cycling cells was not affected.
This suggests that the inhibitory effect of Sotrastaurin was mostly
conferred by increased induction of cell death. Cellular viability
was significantly reduced also in MCF7 blue TAMR_1 and red
LTED_5 clones upon treatment with 2.50 µM Sotrastaurin and
showed a trend when compared to Sotrastaurin-treated +E2_5
control cells (Fig. 6c). Yet, activation of PKC by TPA was
significantly and similarly repressed by 66–80% in all endocrine
sensitive and resistant clones tested (Fig. 6d), pointing at a similar
inhibition of PKC signaling. The consistent effects in reduced
cellular viability in MCF7 yellow LTED_2 and to a lesser extent also
for red LTED_5 clones, thus point to PKC activation as a potentially
shared contributor to endocrine therapy resistance.

Mechanisms contributing to clonal endocrine resistance have
potential clinical relevance
Finally, we assessed clinical relevance of our in vitro findings. To
this end, we retrieved and analyzed data from the CPTAC-BRCA
cohort21, which contains paired gene expression and phospho-
proteomic data from 120 treatment-naïve breast cancer patients
with known ER−status, i.e., ER− (n= 39) and ER+ (n= 81) disease.
Here, we were focused on patients with ER− disease; tamoxifen
treatment and estrogen deprivation had abrogated estrogen
signaling in our in vitro models, rendering them ‘quasi’ ER−, and
‘subtype switching’ has been reported for luminal A and luminal B
patients upon endocrine therapy36. Pathway analysis of the CPTAC
RNA-seq data showed significantly elevated NFκB signaling in
patients of the ER− subtype compared to patients with ER+
disease (Fig. 7a), in line with the observations we made in all MCF7
blue TAMR_1 and LTED clones. Similarly, TNFα, JAK-STAT, and
hypoxia signaling were associated with ER- disease, also matching
our in vitro findings in MCF7. Further, p65 activity was significantly
associated with ER− patients, while the UPR showed only a trend.
Different from our in vitro models, activation of different PKC
isoforms was not associated with either ER− or ER+ disease in the
patients (Fig. 7b). We thus performed data analysis on a per
patient basis to correlate our in vitro results with alterations in
individual patients within a potentially heterogeneous cohort.
Indeed, patient-specific pathway activity analysis highlighted

strong inter-patient heterogeneity in both the ER− (Fig. 7c) and
the ER+ cohorts (Supplementary Fig. 7a–d). JAK-STAT signaling
was significantly activated and downregulated in 15 and 12
patients with ER− disease, respectively. This heterogeneity is
consistent with our in vitro models, where we had observed
upregulation of JAK-STAT signaling only in the MCF7 LTED clones
while this pathway was not activated in the blue TAMR_1 clones
(compare Fig. 4a). Significant activation and repression of p65

Fig. 3 MCF7 and T47D TAMR and LTED clones display distinct phenotypes. a Proliferation of wildtype MCF7 cells (WT), three control +E2
replicates, and isolated clones representing blue TAMR_1, yellow and pink LTED_2, and red LTED_5 clones was measured by microscopy-based
nuclei counting at day 0 (d0) and day 7 (d7) of culture with indicated treatments (+E2, 4-OHT, -E2). Barcoded control (+E2) replicates were
cultivated without treatment for the same period of time. ‘indicates 14 day pre-treatment with 4-OHT or by estrogen deprivation (-E2) and
then continued treatment for the duration (7 days) of the proliferation assay. b Proliferation of wildtype T47D cells (WT) and orange as well as
green clones isolated from the T47D+ E2_5 replicate, grown in media with estrogen (+E2). c Proliferation of indicated clones in media with
4OH-tamoxifen (+4-OHT). d Proliferation of T47D orange clones isolated from +E2_5, LTED_1, and LTED_2 replicates, grown in media
containing estrogen (-E2) or deprived of estrogen (-E2). (e, f) Percentages of cycling (e) and dying/dead cells (f) after 4 days of indicated
treatment (+E2, −E2). ‘indicates 14 day pre-treatment with estrogen (+E2), 4-OHT, or estrogen deprivation (−E2) and then continued
treatment for the duration (4 or 7 days) of the assays. n ≥ 3 with ≥5 technical replicates each for all assays. Shown are means ± SEM. Clones
with the same barcode originating from the same treatment were grouped and the grouped clones compared. *p < 0.05, **p < 0.01,
***p < 0.001 and ****p < 0.0001 as determined by unpaired two-tailed t-test (b) or by one-way ANOVA with Dunnett multiple comparisons test
(a, c–f).
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Fig. 4 Pathway analysis of clonal populations reveals cell line- (MCF7 vs. T47D), treatment- (TAMR vs. LTED), and clone-specific activities.
RNA-Seq data from MCF7 (a) and T47D (b, c)+ E2 controls (data from pool of three replicates for MCF7, combined data from orange and green
clones (b) or orange clones (c) from respective replicates +E2_5 for T47D) was analyzed to estimate pathway activities for indicated clones
using PROGENy25,26. Normalized enrichment scores (NES) of differentially regulated pathways with significantly higher (red) and lower (blue)
predicted relative activities in the respective resistance conditions compared to the indicated +E2 controls are presented. A NES of +/− 2 was
taken as cut-off for significance. Clones having been isolated from the same replicates and characterized by the same barcodes were treated
as biological replicates.
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activity was evident in 16 and 2 patients with ER− disease,
respectively (Fig. 7c). Similarly, 16 and 2 patients with ER- disease
showed significant activation and repression of UPR, respectively.
Inter-patient heterogeneity was, however, observed also in ER+
disease. There, 6 patients showed significant up- and another 19
downregulation of p65 activity (Supplementary Fig. 7b), while 9
and 27 patients had activated and repressed UPR, respectively
(Supplementary Fig. 7c). Finally, we investigated PKC activity at the
single patient level and indeed observed strong inter-patient
heterogeneity (lower panel in Fig. 7c). Two ER− patients (#31 and
#33) showed consistent activation of PKCα, PKCβ, PKCγ, and PKCε.
The same kinases were upregulated also in several other patients
with ER− disease, yet not reaching significance. In contrast, PKCδ
was hardly activated in any patients compared with the reference
sample utilized by Krug et al.21 and was significantly activated in
only four out of the 120 CPTAC patients, all with ER+ disease
(Supplementary Fig. 7d). In contrast, we found activation of PKCδ
in all MCF7 TAMR and LTED clones, however, this did not correlate
with sensitivity to Sotrastaurin. PKCδ might thus not be the main
determinant of Sotrastaurin sensitivity in our cell line models
which is corroborated by the observation that the activities of the
other PKC isoforms in several ER− patients were consistent with
our in vitro models. It is tempting to speculate that these patients
might benefit from (pan-) kinase inhibitors of PKC. Intriguingly, all
PKC activities, also of PKCδ, were downregulated in some patients
(e.g., #21), further supporting the need to assess pathway activities
at the single patient level. Taken together, our in vitro models

were in agreement with clinical findings from the CPTAC-BRCA
cohort and particularly with ER−negative disease.

DISCUSSION
Endocrine therapy resistance remains an urgent clinical problem
as up to 41% of patients aged younger than 75 years who
originally presented with advanced disease (i.e., pT2N ≥ 2: tumor
diameter >2 cm and at least 4–9 positive lymph nodes) relapse
within 20 years after initial diagnosis and treatment start37. Recent
findings have highlighted the importance of tumor heterogeneity
in disease progression11,38. In our study we set out to answer two
questions: First, we aimed at deciphering the contribution of
primary and secondary resistance to commonly applied first line
endocrine therapeutics, namely Tamoxifen and aromatase inhibi-
tors. Second, we wanted to unravel clinically relevant contributors
to endocrine therapy resistance in individual clones. To this end,
we (i) utilized a bulk barcoding approach in two luminal breast
cancer cell line models, (ii) isolated individual clones from complex
cell pools, and (iii) validated private and potentially shared
contributors to endocrine therapy resistance. We are aware of
some limitations our study has as we employed tumor cell lines
and did not perform in-depth genetic characterization of the
clones.
Our bulk analysis showed that Tamoxifen resistance was

achieved by either selection of primary resistant clones or
acquisition of secondary resistance. Recurrent outgrowth of clones

Fig. 5 Sensitivity to Bortezomib treatment correlates with activation of the unfolded protein response (UPR) in MCF7 models. a Relative
activation of the UPR was tested applying GSEA57 with RNA-seq data to MCF7 TAMR and LTED clones compared to the +E2 control pools.
b Indicated clones were kept in the specified media (+E2, +4-OHT, −E2) and treated with increasing concentrations of Bortezomib. Cell
numbers were determined by microscopy-based nuclei counting at day 0 (d0) and day 7 (d7) of culture and normalized to the DMSO controls
(n= 3 with 3 technical replicates each). Gray dotted line indicates effect of 1.85 nM Bortezomib. *p < 0.05, **p < 0.01 as determined by two-way
ANOVA with Dunnett multiple comparisons test. c Same clones (same color coding as in b) were treated with DMSO (solid filling) or 1.85 nM
Bortezomib (shaded filling). Nuclear cell count and ATP levels were determined 6 days after treatment start while EdU and DAPI incorporation
were quantified 4 days after treatment start. Results were normalized to DMSO controls. n ≥ 4 with ≥4 technical replicates. Shown are
mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by unpaired two-tailed t-tests (DMSO vs. Bortezomib treatment)
or one-way ANOVA with Dunnett multiple comparisons test (Bortezomib treated conditions).
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carrying identical barcodes was prominent in the T47D TAMR and
LTED models suggesting primary resistance in these cell line
models. In contrast, the lack of commonly selected barcodes in
any MCF7 replicates pointed at the acquisition of secondary
resistance as the likely mechanism there. The latter observation is
not in line with ref. 18, who had shown predominant selection of
primary resistant clones to Tamoxifen and the estrogen degrader
Fulvestrant. In our LTED models, we observed a combination of

likely primary (e.g., T47D orange LTEDs) as well as secondary
resistance (e.g., MCF7 red LTED_5 and T47D brown LTED_2). In all
cell line models, different clones were selected in TAMR vs. LTED
conditions, indicating independent modes of resistance to the two
treatment regimes.
In the T47D model, the dominance of orange barcoded cells in

the untreated +E2_5 replicate suggested a fitness advantage, like
stronger proliferation, over other clones in the same replicate.

Fig. 6 PKC is a potentially shared contributor to endocrine therapy resistance. a Relative kinase activities of conventional (conv.), novel,
and atypical (alt.) PKC isoforms were determined using phosphoproteomic data. NES representing activation in MCF7 TAMR and LTED clones
compared to the +E2 control is presented. Significant activation (absolute scores ≥ 2) is indicated by asterisks. b Sensitivity testing to the pan-
PKC inhibitor Sotrastaurin. Indicated MCF7 clones, and +E_5 replicate, were kept in the specified media (+E2, +4-OHT, -E2) and treated with
Sotrastaurin. Cell numbers were determined by nuclei counting at day 0 and day 7 of culture with indicated treatments and normalized to the
DMSO controls (n= 4 with 3 technical replicates each). Gray dotted line indicates effect at 2.50 µM Sotrastaurin. Signifiance *p < 0.05,
**p < 0.01, ***p < 0.001 as determined by two-way ANOVA with Dunnett multiple comparisons test. c Clones were treated with DMSO (solid
filling) or 2.50 µM Sotrastaurin (shaded filling). Nuclear cell count and ATP levels were determined 6 days after treatment start, while EdU and
DAPI incorporation were assessed 4 days after treatment start. Results were normalized to DMSO controls. n= 4 with ≥4 technical replicates
each. Shown are mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as determined by unpaired two-tailed t-tests (DMSO vs.
Sotrastaurin treatment) or one-way ANOVA with Dunnett multiple comparisons test (Sotrastaurin treated conditions). d Clones were treated
with DMSO or Sotrastaurin for 24 h, stimulated with 200 nM TPA for 30min, and harvested. Representative Western Blot and quantification of
three biological replicates of MCF7 cells treated with DMSO (solid filling) or 2.50 µM Sotrastaurin (shaded filling) for 24 h before stimulation.
Shown are mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 as determined by unpaired two-tailed t-tests.

L. Beumers et al.

9

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2023)    97 



When analyzing single clones, however, green+ E2_5 clones
proliferated significantly stronger than their orange counterparts.
These findings point at clonal interactions, cooperativity and
competition39, which is likely to influence dynamics of different
clones and that is lost when cultures are grown at the single
clone level.
Initial analysis of differential pathway activities based on the

RNA-Seq data highlighted strong inter- and intra-tumor hetero-
geneity, as estrogen signaling was the only significantly sup-
pressed pathway in all isolated T47D and MCF7 TAMR clones. RNA-
Seq revealed activation of the UPR as a private event for MCF7
TAMR clones. In line, elevated expression of a UPR gene signature
was previously found to correlate with worse relapse-free survival
during Tamoxifen treatment40. Conversely, proteasome inhibitors
such as Bortezomib have been hypothesized to potentiate and
induce a detrimental UPR35. Accordingly, we observed strong
sensitivity to Bortezomib for blue TAMR_1 cells, which showed an
activation of the UPR.
While UPR activation was a private event in our models,

activation of PKC was observed in all MCF7 TAMR and LTED clones.
Treatment with 2.50 µM Sotrastaurin preferentially reduced the
cellular viability of yellow MCF7 LTED_2 clones and showed a

trend also for red LTED_5 clones. Accordingly, different PKC
isoforms have previously been implicated in endocrine therapy
resistance and/or estrogen independent growth, such as PKCα41

and PKCε42. Mechanistically, we found that treatment with
2.50 µM Sotrastaurin did not significantly impact cells passing S-
phase, which is in line with recent findings43, but rather induced
cell death.
The analysis of patient data from the CPTAC-BRCA cohort

supported the relevance of our in vitro findings, and the
heterogeneity of breast tumors at pathway, kinase and transcrip-
tion factor activity levels. JAK-STAT, p65, and UPR activation was
evident in a number of individual patients with ER− disease
corroborating our in vitro results. However, activation of PKCα,
PKCβ, PKCγ and PKCε was observed in just two patients with ER−
disease (#31 and #33) and resembled the activity patterns in MCF7
TAMR and LTED clones. Our data suggests that patients with
activation in UPR or PKC might benefit from treatment with the
proteasome inhibitor Bortezomib or the PKC inhibitor Sotrastaurin
in respective first line therapies. Multi-omics analysis, including
that of phosphoproteomic data, turned out as essential to fully
capture the heterogeneity in vitro and in patients, supporting the
use of proteomics in precision oncology44.

Fig. 7 Activation of UPR and PKC is reflected in breast cancer patients from the CPTAC cohort. Patients in the CPTAC-BRCA cohort21 were
stratified into patients with ER− (n= 39) and ER+ (n= 81) disease. RNA-Seq data from these patients was utilized to infer a pathway
activityies25,26, b activity of p6530,31 and UPR57. The adj. p-value is given for UPR activation. Phosphoproteomic data from these patients was
utilized to determine the activity of conventional (α, β, γ) and novel (δ, ε) PKC isoforms. The asterisk indicates significant repression (of PKCδ) in
patients with ER− disease. c Same analysis as in a and b, however, on a per patient basis. Pathway (upper), p65 (second) and UPR activation
(third panel) as assed by comparing z-scored RNA-seq data between individual patients with ER− disease to the total reference cohort. PKC
activity estimates (lower panel) were based on the common reference sample as described by ref. 21. Significant relative activation and
repression are indicated by asterisks. For UPR activation, absolute NES ≥ 2 and concurrent adj. p < 0.05 were considered significant.
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METHODS
Generation of barcoded endocrine resistant cell lines
MCF7 (Cellosaurus CVCL_0031) and T47D (CVCL_0553) were
obtained from ATCC (LGC Standards GmbH, Wesel, Germany).
Cells were kept at 37 °C with 5% CO2 in a humidified atmosphere
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% FCS, 50 units/ml penicillin and 50 g/ml streptomycin sulfate
(Invitrogen AG, Carlsbad, CA, USA), and 10-8M 17-ß-estradiol (E2,
Sigma-Aldrich, Saint-Louis, MI, USA). The ClonTracer library22

(Addgene # 67267) was co-transfected with second generation
viral packaging plasmids VSV.G (Addgene #14888), and psPAX2
(Addgene #12260) into HEK293FT (Cellosaurus CVCL_6911)
obtained from Thermo Fisher Scientific (Waltham, MA, USA).
48 h after transfection, the supernatant was cleared by centrifuga-
tion (500 × g/5 min) and passed through a 0.45 µm filter. 1 × 105

MCF7 and T47D cells were transduced with the viral particles in
the presence of 10 µg/mL Polybrene (Merck, Darmstadt, Germany)
at a multiplicity of infection (MOI) of 0.05. Generation of viral
particles and the transduction of T47D and MCF7 were performed
by the Cellular Tools Core Facility, German Cancer Research Center
(DKFZ). 1 µg/mL Puromycin (Merck) was used to select for
successful integration events and transduced cells were initially
expanded. Five replicates each were either frozen down
immediately, kept under control conditions (+E2), were treated
with 100 nM 4-hydroxytamoxifen (4-OHT, Sigma-Aldrich) i.e., the
biologically more active metabolite of Tamoxifen45, or were
deprived of E2 and therefore kept in DMEM (w/o phenol red)
supplemented with 10% charcoal stripped FCS. Continuous
exposure for 8 months to either endocrine treatment rendered
the barcoded cells Tamoxifen-resistant (TAMR) or resistant to long-
term estrogen deprivation (LTED). During this time, cells were
passaged when they had reached 80% confluency or reseeded in
a new dish if they had not reached this within 4 weeks. Medium
was changed every week to ensure availability of nutrients and to
replenish the respective treatment, i.e., +E2 with +E2 media,
TAMR with +4-OHT media, and LTED with -E2 media, except when
otherwise stated. Control cells (+E2) required passaging on
average every 4 days throughout. All cell lines were regularly
authenticated by STR profiling (Multiplexion GmbH Heidelberg,
Germany) as well as tested for potential mycoplasma
contamination.

Barcode composition analysis
DNA was isolated using the DNeasy Blood & Tissue kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.
The barcode region was amplified as described (https://
www.addgene.org/pooled-library/clontracer/, accessed 22/12/12)
with the adapted thermocycling program: 95 °C–5min, 30x
(95 °C–30 s, 69 °C – 15 s, 72 °C – 9 s) and 72 °C – 7min. PCR
products were cleaned with the Wizard® SV Gel and PCR Clean-Up
System (Promega, Madison, WI, USA). Concentration and size were
determined with Bioanalyzer 10 (Agilent, Santa Clara, CA, USA).
Ten samples were multiplexed per lane and sequenced on the
HiSeq 2000 V4 Single-read 50 bp with the custom sequencing
primer: 5′-TCTACACACTGACTGCAGTCTGAGTCTGACAG-3′. Sequen-
cing was performed by the DKFZ NGS Core Facility. Barcode
analysis was performed as described (https://github.com/
luca8651/Barcode_analyses-python, accessed: 22/12/07). Barcodes
with at least 5 × 105 combined reads in all initial, +E2, TAMR and
LTED replicates for each cell line (MCF7 or T47D) were log2
normalized and depicted as violin plots using ggplot2 (version
3.4.1) in R (version 4.0.2).

Isolation of clonal endocrine resistant subpopulations
Eight barcoded treatment naïve or resistant MCF7 or T47D cell
pools were used to isolate clonal subpopulations utilizing a Cytena

single cell spotter (https://www.cytena.com/wp-content/uploads/
2022/07/F.SIGHT-Deconvoluting-clonal-complexity-of-barcoded-
cell-populations-Rainar-Will-2022.pdf) or manual dispension. Clon-
ality was verified by assessment of images taken during spotting
of single cells, and by Sanger sequencing of barcode regions once
clones had grown out. For the latter, DNA and RNA was isolated
using the AllPrep DNA/RNA Micro Kit (Qiagen) according to the
manufacturer’s instructions. Concentrations were determined with
a NanoDrop® ND-1000 UV-Vis Spectrophotometer (Thermo Fisher
Scientific). Barcode regions were amplified using Phusion Hot Start
II DNA-Polymerase (2 U/µL) (Thermo Fisher Scientific) according to
the manufacturer’s instructions using the following primers: Fw:
5′-GCTGTGCCTTGGAATGCTAGTTGG-3′ and Rev: 5′-
TCTGCTGTCCCTGTAATAAACCCG-3′. Thermocycling was per-
formed as: 98 °C – 2min, 32x (98 °C – 10 s, 71 °C – 20 s, 72 °C –
70 s) and 72 °C – 10min. PCR clean-up and Sanger sequencing
were performed by Eurofins Genomics Germany GmbH (Ebers-
berg, Germany). Sequences were analyzed using SnapGene
software (Dotmatics, Bishop’s Stortford, UK). Sanger chromato-
grams of some MCF7 TAMR and LTED clones were too complex for
unambiguous determination of barcodes, thus necessitating deep
sequenced using Illumina MiSeq technology. To this end,
published reverse primers (https://www.addgene.org/pooled-
library/clontracer/, accessed: 22/12/12) were extended by three
bases (CTG) at the 3′ end. PCR amplification was performed for 48
isolated clones with Phusion Hot Start II DNA-Polymerase (2 U/µL)
according to the manufacturer’s instructions and thermocycling
was performed as: 98 °C–2min, 32x (98 °C–10 s, 69 °C–20 s,
72 °C–12 s) and 72 °C–10min. PCR products were cleaned using
the Wizard SV Gel and PCR Clean-up System (Promega) according
to manufacturer’s instructions. Concentration and size were
evaluated with the Agilent 2200 TapeStation System (Agilent).
Samples were sequenced as single library on the MiSeq V2 300
Nano (Illumina, San Diego, CA, USA) with the custom sequencing
primer: 5′-TCTACACACTGACTGCAGTCTGAGTCTGACAG-3′. Sequen-
cing was performed by the DKFZ NGS Core Facility. Barcodes of
interest were identified in MiSeq derived fastq files using a custom
script. Using R (version 4.0.3)46 and R studio47, the ShortRead
package48 was used to read fastq files individually. For each of the
files, occurrence of the respective barcodes in the DNA sequence
was counted searching for the respective sequence. For MCF7
TAMR_1 clones, highly similar reads were manually clustered and
violin plots generated in GraphPad Prism (version 9.4.1; GraphPad,
Boston, MA, USA). One outlier was identified using the ROUT
method (Q= 0.1%) and removed from the data.

Integration site analysis
Virus integration sites were identified in MCF7+ E2_3 and LTED_5
as well as T47D+ E2_3, TAMR_2 and LTED_2 by Genewerk GmbH
(Heidelberg, Germany) as previously described23. The top pre-
dicted integration sites of individual complex barcoded cell pools
were validated by a PCR-based assay using the Phusion Hot Start II
DNA-Polymerase (2 U/µL) (Thermo Fisher Scientific) according to
manufacturer’s instructions. To this end, a primer binding only to
the viral 3′LTR with the sequence 5′-CCCAACGAAGATAAGATCTGC-
3′ was combined with primers binding adjacent to the identified
individual integration sites. Consequently, integration sites vali-
dated in the complex barcoded cell pools were investigated in
isolated clones. Thermocycling was performed as: 98 °C–2min, 32x
(98 °C–10 s, 65 °C–20 s, 72 °C–60 s) and 72 °C–10min. PCR products
were subjected to Sanger sequencing (Eurofins Genomics) and
sequences analyzed with SnapGene software.

Assessment of ESR1 hot-spot mutation status in
individual clones
Sequence covering the hot spot mutation site (codon 536–538) in
the ESR1 gene was amplified from single clones representing each
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of the isolated populations using Phusion Hot Start II DNA-
Polymerase (2 U/µL) according to manufacturer’s instructions and
the following primer pair: Fw: 5′-AATACCCACTCCTGCTTGGC-3′,
Rev: 5′-TATCTGAACCGTGTGGGAGC-3′. Thermocycling was per-
formed as: 98 °C–2min, 32x (98 °C–10 s, 66 °C–20 s, 72 °C–60 s) and
72 °C–10min. PCR products were subjected to Sanger sequencing
(Eurofins Genomics) and sequences were analyzed with SnapGene
software.

Analysis of cell proliferation and viability
Cells were plated in black clear-bottomed 96 well plates (Greiner
Bio-One International GmbH, Kremsmünster, Austria). Cell num-
bers were assessed either by counting RFP-positive cells or
counting of nuclei after Hoechst 33342 staining using a IXM XLS
microscope (Molecular Devices, San Jose, CA, USA). Cells were
detected and counted with Molecular Devices Software using
default settings for minimum RFP intensity, size of nuclei, and
staining intensity. Cell numbers were expressed relative to the
seeding or treatment controls. Cell viability was determined using
the CellTiter-Glo® Luminescent Cell Viability Assay (Promega)
according to the manufacturer’s recommendation. Luminescence
was measured using a GloMax Discover System (Promega).

Analysis of cycling and dying/dead cells
Cells in S-phase were determined using the Click-iT™ EdU Cell
Proliferation Kit for Imaging with Alexa Fluor™ 594 dye (Thermo
Fisher Scientific) following the manufacturer’s recommendation,
however, adapted to 96 well format. Cells were plated in black
clear-bottomed 96 well plates and pulsed for 21 h with 10 µM EdU
72 h post treatment start or transfection by replacing half of the
media with fresh growth media containing 20 µM EdU. Cells in
S-phase were determined as Alexa Fluor 594 positive and
normalized to total cell numbers as determined by Hoechst
33342 staining using a IXM XLS microscope. Dying/dead cells were
stained with 1 µg/mL DAPI 96 h post treatment start or transfec-
tion, and counted with a IXM XLS microscope. Total cell numbers
were determined by Hoechst 33342 staining and ratios were
calculated.

Inhibitor treatment and siRNA transfection
Cells were either treated with the proteasome inhibitor Bortezo-
mib49 or the pan-PKC inhibitor Sotrastaurin50. Inhibitors were
purchased from MedChemExpress (Monmouth Junction, NJ, USA)
and resuspended in dimethyl sulfoxide (DMSO, Sigma-Aldrich).
Resulting data were normalized to DMSO controls. A pool of four
siRNAs targeting RELA (LQ-003533-00-0002) and a non-targeting
control (D-001810-10-20) were obtained from Dharmacon (Lafay-
ette, CO, USA) and cells were transfected using RNAiMAX®
(Thermo Fisher Scientific) in media lacking penicillin and
streptomycin.

RNA-Sequencing
RNA was isolated from clonal cell line populations using the
AllPrep DNA/RNA Micro Kit (Qiagen) according to the manufac-
turer’s instructions. RNA-Sequencing (RNA-Seq) was performed by
the DKFZ NGS Core Facility using NovaSeq 6 K PE 50 SP for MCF7
and NovaSeq 6 K PE 50 S1 for T47D clones (Illumina). Initial data
QC of raw sequence data was done using FASTQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, ver-
sion 0.11.9). Alignment of reads to the human reference genome
(“GRCh38.p13.primary_assembly_gencode” (https://www.gencode
genes.org/human/release_39.html) was done using the Rsubread
R package (version 2.6.4)51. Gene expression counts were
quantified using the featureCounts pipeline52 with default
settings, implemented also in the Rsubread R package. Initial
processing, alignment and quantification were performed by the

Omics IT and Data Management Core Facility (ODCF) using the
DKFZ Compute Cluster running under CentOS Linux 7 (Core)
(https://odcf.dkfz.de/). Complete downstream RNA-Seq analysis
was performed with R (R version 4.1.0)/Bioconductor software53

separately for each cell line, using the same settings. Initially, a
non-specific intensity procedure was applied (function filter-
ByExpr::edgeR R package) to remove non-expressed genes (<10
reads in at least one of the barcoding clone biological conditions).
Normalization of the remaining gene counts was performed using
TMM (Trimmed Mean of M-values) from edgeR R package (version
3.36.0)54, followed by the voom function from the limma R
package (version 3.50.0), aiming to increase statistical power and
to account for non-biological variability55. Finally, differential
expression analysis between the different cell lines and clones was
performed using the limma R package56.

Pathway and TF activity analysis
PROGENy (Pathway RespOnsive GENes) R package (version 1.16.0)
was utilized to disentangle transcriptional heterogeneity related to
differentially activated pathways. PROGENy infers the activity of 14
major signaling pathways25,26. Differentially activated transcrip-
tional factors were retrieved using the decoupleR R package
(version 2.1.6) to implement robust statistical models31. Then, the
DoRothEA gene regulatory network resource R package (version
1.6.0) was applied to predict transcription factor (TF)—target gene
interactions (A to C confidence levels)30.

Functional enrichment analysis
Gene Set Enrichment Analysis (GSEA) was applied using the
clusterProfiler R package (version 4.2.2)57 and MsigDB All
Hallmarks(H) gene sets from the msigdbr R package (version
7.5.1) (https://github.com/DavisLaboratory/msigdb) using default
settings.

RT-qPCR
cDNA was synthesized from the isolated RNA using the RevertAid
RT Reverse Transcription Kit according to the manufacturer’s
instructions. Quantitative Reverse Transcription-PCR (RT-qPCR) was
performed using the Power SYBR Green PCR Master Mix (2x)
(Thermo Fisher Scientific) and a QuantStudio™ 5 Real-Time PCR
System (Thermo Fisher Scientific). Data analysis was performed
using QuantStudio™ Design & Analysis Software v1.5.0. Relative
changes were calculated by the comparative Ct method (ΔΔCt
method)58 and relative expressions were visualized as 2−ΔΔCt.
ACTB forward: 5′-ATTGGCAATGAGCGGTTC-3′, ACTB reverse: 5′-
GGATGCCACAGGACTCCA-3′, GAPDH forward: 5′-GAGTC-
CACTGGCGTCTTCAC-3′, GAPDH reverse: 5′-GTTCACACCCATGAC-
GAACA-3′, RELA forward: 5′-GCTTGTAGGAAAGGACTGCC-3′, RELA
reverse: 5′-GCTGCTCTTCTATAGGAACTTGG-3′.

Mass spectrometry
Cells were rinsed with ice-cold PBS and lysed in RIPA buffer
(Thermo Fisher Scientific) supplemented with 1x cOmplete EDTA-
free protease inhibitor, 1x PhosSTOP phosphatase inhibitor (both
Roche, Basel, Switzerland), 10 mM NaF (Bernd Kraft, Duisburg,
Germany), 1 mM Na3VO4 (Sigma-Aldrich), 250 U/ml Benzonase
(Merck) and 10 U/mL Rnase-Free Dnase (Qiagen). Lysates were
incubated on ice for 30 min and cleared by centrifugation. Protein
concentrations were determined using the Pierce™ BCA Protein
Assay Kit (Thermo Fisher Scientific) according to the manufac-
turer’s instructions.
Proteins (320 µg protein/sample) were precipitated59. After-

ward, the protein pellet was digested first using Lysyl endopepti-
dase for 4 h (Lys-C, Fujifilm, Hong Kong, China) and then using
trypsin for 16 h, both at 37 °C. Peptides were desalted using Sep-
Pak C18 cartridges (Waters, Milford, MA, USA) and an Immobilized
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Metal Affinity Chromatography (IMAC) column (Thermo Fisher
Scientific) charged with FeCl3 was used for the enrichment of
phosphorylated peptides60. The fraction containing the phospho-
peptides was collected, and vacuum centrifuged to dryness.
Enriched phosphopeptides were dissolved in 0.1% TFA and
desalted using Stop and Go Extraction tips (Supelco, Bellefonte,
PA, USA)61. Each sample was analyzed via LC-MS/MS for a total of
120min of analysis time. Peptides were separated according to
their hydrophobicity by liquid chromatography (UltiMate 3000,
Thermo Fisher Scientific) with a 102 min linear gradient of 2–28%
acetonitrile (Waters, 186008795, BEH C18 130 Å 1.7 µm
75 × 250mm). The LC system was directly coupled to a MS system
(Orbitrap Exploris 480, Thermo Fisher Scientific) via electrospray
ionization. MS analysis was performed using data-independent
acquisition (DIA). MS1 scans were acquired at a resolution of 120 K
covering the range from 350–1400m/z. Maximum injection time
was 45 ms and the automated gain control (AGC) target was set to
3e6. MS2 acquisition was performed using 48 precursor isolation
windows of variable width and 1m/z overlap that covered the
range from 400–1200m/z. Fragment spectra were acquired at a
resolution of 30 K and a normalized collision energy of 26% was
applied. Maximum injection time was 54 ms and the AGC target
was set to 1e6.
Peptide and protein identification and quantification from DIA

raw data was performed with directDIA in the Spectronaut
software (version 15, Biognosys, Switzerland) using the built in
identification and localization algorithm62. The search was
performed against the human proteome fasta file (Uniprot,
downloaded on July 14th, 2020, with 74,811 entries). Default
settings were applied with phosphorylation (S,T,Y) as an additional
variable modification (localization cut-off= 0). Identified phos-
phorylated peptides were site-collapsed using the Perseus63

(version 1.6.2.3) plug-in PeptideCollapse62 and a localization cut-
off at 0.95 was applied.

Phosphoproteomics data analysis
Raw data output from Perseus was initially processed using the
PhosR R package (version 1.4.0)64. Raw phosphosite intensities
were normalized using variance stabilizing transformation from
the vsn R package (version 3.62.0)65. In addition, phosphosites
were removed if they were not quantified in at least 2 out of 3
replicate samples in at least one condition. Differential phospho-
site abundance analysis was performed with the limma R package
implementing the limma-trend pipeline56.
Differentially activated kinases were identified initially utilizing

the OmniPath R package (version 3.2.5) to retrieve enzyme-PTM
relationships, in form of molecular networks with directed
interactions and effect signs32. Then, the decoupleR R package
(version 2.1.6) was used to implement specific statistical models
(normalized weighted mean) to infer kinase activities31. The
estimated activity score for each kinase was approximated by
weighting the molecular readouts of its targets by their *mode of
regulation* (Activation or Inhibition) & their relative *likelihood*.
Only kinases having at least 5 target proteins (phosphosite_target)
present in the analyzed phosphoproteomics data were regarded.

Western blotting
Proteins were separated by SDS-PAGE66 using PageRuler™
Prestained Protein Ladder (Thermo Fisher Scientific) as size maker.
Afterwards, proteins were blotted using Trans-Blot Turbo™ Mini
PVDF Transfer Packs and the Trans-Blot Turbo™ Transfer System
(Bio-Rad Laboratories, Hercules, CA, US) according to the
manufacturer’s instructions. Membranes were blocked in Blocking
Buffer for Fluorescent Western Blotting (Rockland, Philadelphia,
PA, USA): TBS supplemented with 10 mM NaF and 1mM Na3VO4.
Subsequently, the membranes were incubated with antibodies
targeting ß-Actin (0869100-CF, MP Biologicals, Irvine, CA, USA,

1:1500 dilution), p65 (CST8242, Cell Signaling Technology,
Danvers, MA, USA, 1:1000 dilution), and p(Ser) PKC Substrate
(CST2261, 1:1000 dilution) in blocking buffer at 4 °C overnight. The
next day, membranes were washed three times for 5 min each
with TBS containing 0.1% Tween 20 (TBS-T, Merck), incubated with
anti-mouse (SA5-35521, Thermo Fisher Scientific) or anti-rabbit
antibodies (A-21077, Thermo Fisher Scientific) and washed again.
Finally, (phosphorylated) proteins were visualized with Odyssey
Infrared Imaging Software and quantification was performed
using Image Studio Lite (LI-COR, Lincoln, NE, USA). Uncropped
images of respective Western blots are shown in Supplementary
Information.

Clinical dataset
Raw data from patient-derived gene expression and phospho-
proteomics data of the CPTAC-BRCA21 clinical dataset were obtained
from the cBioPortal open-source database67,68. Initial data analysis
was done as described for the in vitro data above. The CPTAC-BRCA
cohort was subdivided for primary analysis into patients with ER−
(n= 39) and ER+ disease (n= 81). Pathway and transcriptional factor
activities were estimated also per patient basis, using as an input the
scaled and normalized gene expression values from cBioPortal. To
this end, Z-score transformation was applied prior to per patient
analysis, to uncover higher or lower activities within individual
patients compared to the total reference cohort. Single sample gene
set enrichment analysis (https://github.com/broadinstitute/
ssGSEA2.0)69 was applied on the scaled gene expression values
using Z-score transformation as above. The script “ssgsea-gui.R” was
applied with default settings (sample.norm.type: none, weight: 0.75,
statistic: area.under.RES, nperm: 1000, output.score.type: NES and
correl.type: z.score) and as gene-set library the included hallmark
signatures file (version 7.5.0) in gmt format was selected (https://
github.com/broadinstitute/ssGSEA2.0/tree/master/db/msigdb).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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