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HER2-positive (HER2+) breast cancer accounts for 20-25% of all breast cancers. Predictive biomarkers of neoadjuvant therapy
response are needed to better identify patients with early stage disease who may benefit from tailored treatments in the adjuvant
setting. As part of the TCHL phase-Il clinical trial (ICORG10-05/NCT01485926) whole exome DNA sequencing was carried out on
normal-tumour pairs collected from 22 patients. Here we report predictive modelling of neoadjuvant therapy response using
clinicopathological and genomic features of pre-treatment tumour biopsies identified age, estrogen receptor (ER) status and level
of immune cell infiltration may together be important for predicting response. Clonal evolution analysis of longitudinally collected
tumour samples show subclonal diversity and dynamics are evident with potential therapy resistant subclones detected. The
sources of greater pre-treatment immunogenicity associated with a pathological complete response is largely unexplored in HER2+
tumours. However, here we point to the possibility of APOBEC associated mutagenesis, specifically in the ER-neg/HER2+ subtype as

a potential mediator of this immunogenic phenotype.
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INTRODUCTION
Human epidermal growth factor receptor 2 (HER2) positive breast
cancer driven by HER2 gene amplification or protein over-
expression accounts for 20-25% of invasive breast cancers’.
Neoadjuvant anti-HER2 targeted therapy in combination with
chemotherapy is the standard of care for patients with HER2+
early stage breast cancer regardless of estrogen receptor (ER)
status?3. Despite a substantial improvement in terms of overall
and disease-free survival for HER2+ patients since the addition of
anti HER2 targeted therapy to chemotherapy in the neoadjuvant
setting®, up to ~30% of patients will develop treatment resistance
where disease progression and metastases is of concern®.
Pathologic assessment of the breast and axillary nodes is used
to assess the presence and extent of residual invasive disease (RD)
following neoadjuvant treatment. Pathologic complete response
(pCR) is defined as absence of invasive tumour in breast and
lymph node (ypT0/is; ypNO)®. Response to neoadjuvant therapy is
a surrogate marker of patient prognosis®’, where pCR is
associated with improved disease-free and overall survival’2.
Many clinical trials in recent years have investigated if the
addition of other HER-directed therapies such as the TKI lapatinib
to neoadjuvant trastuzumab plus chemotherapy®~'2 could lead to
improved pCR rates'>. One such clinical trial (ICORG10-05/
NCT01485926) was a phase Il neoadjuvant study assessing TCH
(Docetaxel, Carboplatin and Trastuzumab) and TCHL (Docetaxel,
Carboplatin, Trastuzumab and Lapatinib) in early stage HER2+

breast cancer. One of the secondary objectives of the trial was to
identify biomarkers of anti-HER2 therapy response or resistance'*.
In early stage HER2+ breast cancer many studies have reported on
features associated with attainment of pathologic complete
response to neoadjuvant therapy'*~'8, Previous work characteris-
ing the genome of neoadjuvant treatment HER2+ breast cancer
has demonstrated that mutations in known cancer driver genes
such as PIK3CA™'81° the immune response?® and the HER2-
enriched mRNA intrinsic molecular subtype may all have a role in
predicting treatment response>''>17:21 Qverall these studies
have largely focused on analysis of pre-treatment tumour biopsies
alone. Few studies'” have used longitudinally collected samples
for temporal dissection of the genomic changes that may occur
during the evolution of neoadjuvant treated HER2+ breast cancer
tumours. Clonal evolution analysis may help elucidate character-
istics of tumours that do not respond to treatment and as such
may have residual disease at surgery.

Here, in order to identify which clinicopathological and
genomic features may be predictive of neoadjuvant therapy
response, whole exome DNA sequencing (WXS) was performed on
normal-tumour sample pairs collected from 22 of 88 cases who
took part in the TCHL phase-ll clinical trial. Recurrent somatic copy
number alterations (SCNA), single nucleotide variants (SNVs),
InDels, mutational signatures and estimated T cell fraction were
identified from analysis of WXS data. Clinicopathological and
genomic features extracted from pre-treatment tumour biopsy
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Overview of the HER2 + TCHL WXS cohort. a Graphical overview of the HER2 + TCHL whole exome sequencing (WXS) breast cancer

cohort (22 cases). Text annotation details the percentage (%) and number of the 22 cases which had either pathological complete response
(pCR) or residual disease (RD) in response to neoadjuvant treatment (left). Longitudinal collected samples collected as part of the TCHL phase
Il clinical trial included pre-treatment (PreTx), Post treatment (PostTx) cycle 1 (Day 20) tumour biopsies, surgical resection and if occurred,
metastatic tumour samples. b Tileplot outlines for each HER2+ breast cancer case in the TCHL WXS cohort (left-right) the type of tumour
sample collected and clinicopathological characteristics (top-bottom). ER estrogen receptor, IHC immunohistochemistry, PR progesterone

receptor.

data were used as input to a series of predictive models for
predicting future pathological complete response. The predictive
models were trained and tested in independent, external cohorts
of patients with early stage HER2+ breast cancer. Validation of
model accuracy was performed in the HER2+TCHL cohort
presented here. From this, we identified a set of features which
together are important for predicting pCR. Furthermore, tumour
evolutionary analysis was carried out for 5 / 22 cases for which
high depth WXS was available from samples taken at multiple
timepoints during the course of treatment. In-depth genomic
characterization of pre-treatment biopsies and later timepoints in
early stage HER2+ breast cancer together with predictive
modelling has the potential to identify biomarkers of neoadjuvant
therapy tumour response.

RESULTS

Clinical characteristics of HER2+ whole exome DNA
sequencing cohort

WXS was performed on normal-tumour sample pairs collected
from twenty-two patients with HER2+ early stage breast cancer
who had received neoadjuvant anti-HER2 targeted therapy in
combination with chemotherapy as part of the TCHL phase I
clinical trial (ICORG10-05/NCT01485926) (Fig. 1a). Tumour samples
included twenty-two pre-treatment core biopsies and for 5 of 22
cases longitudinally collected samples including 4 post-treatment
cycle one (Day-20) biopsies, 1 surgical resection sample and 3
metastatic tumours (Fig. 1b; Supplementary Table 1). Evaluation of
tumour response status at primary surgery identified ~41% (n =9)
had attained a pathological complete response (pCR) while ~59%
(n=13) were non-pCR having residual disease (RD) (Table 1).
Clinicopathological characteristics of this cohort included median
age at diagnosis of 49 years [40,79] and 45 years [34,69] for those
who had a pathological complete response or residual disease
respectively. Hormone receptor status of the primary tumour at
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diagnosis included 12 ER-positive and 10 ER-negative cases. Of
note, ~69% (9 of 13 cases) with RD were ER-positive, consistent
with other studies where has been observed rates of pCR in
neoadjuvant treated HER2+ breast cancer are lower in patients
with ER-positive tumours>”1117,

Somatic genomic alterations in pre-treatment tumour
biopsies

In order to characterise the pre-treatment somatic genomic
alteration landscape of neoadjuvant treated tumours, somatic
mutation and copy number calling was performed on normal-
tumour sample pairs for all patients (Fig. 2a; Supplementary Fig. 1, 2).
As expected HER2 (ERBB2) was the most frequently altered gene in
this cohort with all cases having either a copy number amplification
or gain in the HER2 (ERBB2) gene (Fig. 2a). We identified frequent
copy number alterations, SNVs and InDels in other breast cancer
driver genes previously reported to be frequently altered in HER2+
specific breast cancer (Supplementary Fig. 3; Supplementary Table
2-4) including CDK12, MYC, PIK3CA with copy number loss or
somatic mutations in known tumour suppressor genes including
TP53 and NF1.

Characterisation of ERBB2 (HER2) and PI3K-AKT-mTOR
pathway specific genomic alterations

Dysregulated PI3K-AKT-mTOR pathway signaling due to either
activating somatic mutations in PIK3CA or reduced expression of
the protein phosphatase tumour suppressor PTEN is often
reported to be associated with development of anti-HER2 therapy
resistance and may be predictive of pCR in HER2+ breast
cancer'**23, As such we investigated HER2, PIK3CA and PTEN
specific genomic alterations in this cohort in greater detail. There
was no statistically significant difference in ERRB2 (HER2) total
gene copy number (pCR:19 and RD:29 median total copies;
P =0.79) and ERBB2 (HER2) cancer cell fraction (pCR: 0.33 and RD:
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Table 1. Clinical characteristics of the HER2+ neoadjuvant treated
cohort stratified by tumour response status.
pCR RD
No. of samples (%) 9 (40.9) 13 (59.1)
Age at diagnosis* 49 [40, 79] 45 [34, 69]
Overall Stage (%)
Il 6 (75.0) 12 (92.3)
1] 2 (25.0) 1(7.7)
ER Status by IHC (%)
Positive (+) 3 (33.3) 9 (69.2)
Negative (—) 6 (66.7) 4 (30.8)
PR Status by IHC (%)
Positive (+) 3 (33.3) 8 (61.5)
Negative (—) 6 (66.7) 5 (38.5)
HER2 Status
Positive (+) 9 (40.9) 13 (59.1)
Negative (—) 0 0
Clinical Subtype (%)
ER+/PR+/HER2+ 2 (22.2) 8 (61.5)
ER+/PR—/HER2+ 1(11.1) 1(7.7)
ER—/PR—/HER2+ 5 (55.6) 4 (30.8)
ER—/PR+/HER2+ 1(11.1) 0 (0.0)
Anti HER2 Targeted therapy (%)"
Trastuzumab 4 (50.0) 3 (33.3)
Trastuzumab + Lapatinib 4 (50.0) 6 (66.7)
pCR pathological complete response, RD residual disease.
*Median [range].
*Samples for WXS collected as part of the ICORG10-05/NCT01485926
Phase Il TCHL clinical trial TCH (Trastuzumab), TCHL (Trastuzumab-+
Lapatinib).

0.37 median CCF; P=0.26) when comparing pCR (n=9) to RD
(n=13) groups (Fig. 3a; Wilcox Test, P>0.05; Supplementary
Table 5). A subclonal ERBB2 (HER2) somatic missense mutation
(p.1148M) was detected in the receptor ligand domain for both the
pre-treatment tumour biopsy (~0.12 VAF) and patient matched
brain metastatic tumour (~0.08 VAF) for Case #32 (Fig. 3b;
Supplementary Table 6). Its functional relevance is uncertain given
that ERBB2 (HER2) receptor activity is independent of bound
ligand.

For the PIK3CA gene, somatic copy number alterations in pre-
treatment tumour biopsies included copy number gain in ~45%
(10/22) or amplification in ~18% (4/22) of HER2+ breast cancer
cases. We identified in 4 cases (7 tumour samples: 4 pre-treatment
biopsies, 1 post cycle 1 treatment biopsy and 1 metastatic tumour)
an exon 20 somatic missense mutation p.H1047R (Fig. 3d;
Supplementary Table 6). Here, 2 of 4 cases with a PIK3CA
p.H1074R mutation had a pCR (both ER+), with the other two
cases having residual disease (1 ER+, 1 ER—). Interestingly, PIK3CA
somatic copy number alterations were overall mutually exclusive
of PIK3CA H1047R mutation. There was no statistically significant
difference in PIK3CA gene total copy number (P =0.92) between
PCR (n=9) and RD (n = 13) groups (Fig. 3c; Wilcox Test, P> 0.05).
We did note however, numerical higher median PIK3CA copy
number in pre-treatment biopsies which went on to have residual
disease (P=0.92) with the exception of one case with PIK3CA
amplification (total copy number > 10) which had a pCR (Fig. 3c).
For PTEN, copy number deletion or loss was identified in 4 of 22
pre-treatment tumour biopsies with all having residual disease at
surgery (Fig. 2a). Interestingly, in one case where we identified a
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PTEN copy number amplification, this patient had attained a pCR,

suggesting high levels of PTEN may have contributed to tumour
regression??,

Mutational signature profiles of HER2+ pre-treatment
biopsies

Next, we investigated which mutational processes may be
operational in pre-treatment biopsies. To perform mutational
signature analysis we utilised catalogues of both somatic
passenger and driver SNVs for each tumour (n=22 samples)
(See Methods). Mutational signatures extracted from pre-
treatment biopsies were fitted to breast cancer specific signatures
(Breast A-K) (Fig. 4a; Supplementary Table 7.1). Overall the most
frequent mutational signatures detected from pre-treatment
tumour biopsy data (n = 22), in descending order, were Breast C
(n=14) and Breast B (n=12) (both APOBEC mutagenesis
associated), Breast A (n = 10) (mismatch repair deficiency (MMRd)),
Breast J (n=10) (Ageing associated), Breast K (n=10)(homo-
logous recombination repair deficiency (HRD)), Breast F (n=9)
(aetiology unknown) and Breast G (n = 7) (TP53 mutation) (Fig. 4a).
Less frequent (<=3 of 22 cases) signatures identified were Breast
D (MMRd), Breast E (aetiology unknown) and Breast H (Fig. 4b;
Supplementary Table 7.1). To confirm these findings we applied
deconstructSigs, a method validated for whole exome sequencing
data to fit COSMIC reference mutational signatures to the same set
of tumour samples (Supplementary Fig. 4a-c; Supplementary
Table 7.2). For the top five frequently detected mutational
signatures in this cohort: Breast C, Breast B, Breast A, Breast J,
Breast K (analogous to COSMIC reference Sig.13, Sig.2, Sig.6, Sig.1
and Sig.3), the overall percent (%) sample agreement between
Signal breast organ specific signature detection and analogous
COSMIC reference signature detection using deconstructSigs was
~95%, ~86%, ~59%, ~64% and ~73% respectively (Supplementary
Table 7.2). Mutational signature profiles from a previously
published primary breast cancer study?>-%, which included some
pre-treatment HER2+ tumour biopsies (n=19), were overall
similar in composition and sample frequency to the study cohort
described here except for the presence of mutational signature
Breast / (Fig. 4c; Supplementary Figs. 5, 6a). We prioritised APOBEC
associated mutational signatures for further analysis given the
frequency of the signatures in HER2+ pre-treatment tumours and
having robustly confirmed detection across two methods and
analogous mutational signature reference sets (Supplementary
Table 7.2).

We first sought to assess if the APOBEC associated mutational
signatures were more prevalent in the HER2+ versus HER2-
negative tumour subtype overall. To address this, we utilised
mutational signature profiles from previously published indepen-
dent WXS datasets of primary breast cancer tumours (Supple-
mentary Fig. 5). We observed that whilst the APOBEC associated
mutational signatures Breast B and Breast C are present at some
level in tumours across all breast cancer tumour subtypes, Breast
B (P=0.023) and Breast C (P=0.0014) are significantly more
prevalent in ER—/HER2+ versus ER—/HER2-neg tumour subtype
(Fig. 4d; Supplementary Fig. 6b; ANOVA test followed by post-hoc
pairwise Wilcox test). In an independent cohort enriched for pre-
treated breast cancer tumours with WXS data and COSMIC
reference mutational signature profiles (Sammut et al., (2022)),
the APOBEC associated mutational signature Sig. 13 (analogous
to Breast C) was significantly different between ER+/HER2+
versus ER-/HER2- tumour subtypes (Wilcox test P=0.02). There
was no statistically significant difference in the relative contribu-
tion of Sig. 13 (Breast C) between the ER—/ HER2+ versus ER
—/HER2-neg in this cohort (Fig. 4e; Wilcox Test P = 0.065). Having
observed greater prevalence of the APOBEC associated muta-
tional signatures in HER2+ versus HER2— tumour subtypes, we
next sought to assess which signatures be associated with future
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Fig. 2 Somatic genomic alterations of HER2+ pre-treatment biopsies. a Oncoplot of recurrent somatic genomic alterations including
somatic copy number alterations (SCNA) (top) and SNVs and InDels (middle) in known breast cancer driver genes frequently altered in HER2+
specific tumour subtype across HER2+ pre-treatment biopsies (n=22) (left-right). Samples annotated (bottom) by clinico-pathological
characteristics of the HER2+ neoadjuvant treated WXS cohort. Also annotated is tumour ploidy, ERBB2 (HER2) copy number cancer cell
fraction (CCF) extracted from FACETS SCNA data for each tumour sample.
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Fig. 3 Characterisation of ERBB2 (HER2) and PIK3CA specific genomic alterations. a Boxplots show the distribution of total copy number
(TCN) (left) and cancer cell fraction (CCF) (right) values for ERBB2 (HER2) SCNA in pCR (n = 9; white) versus RD (n = 13; grey) classified pre-
treatment tumour samples (Wilcox Test, all not statistically significant (P> 0.05)). b Lolliplot of recurrent missense mutation L148M (green dot)
identified in ERBB2 (HER2) protein from WXS data. ¢ Boxplots show the distribution of total copy number (TCN) (left) and cancer cell fraction
(ccf) (right) values for PIK3CA SCNA in pCR (n = 9; white) versus RD (n = 13; grey) classified pre-treatment tumour samples (Wilcox Test, all not
statistically significant (P> 0.05)). d Lolliplot of recurrent missense mutation H1047R (green dot) identified in PIK3CA protein from WXS data.
Horizontal lines in the box plots denote the lower quartile (Q1), median and upper quartile (Q3). The box bounds the interquartile range
(IQR = Q3—Q1) with the whiskers denoting 1.5 X IQR. Wilcoxon rank sum tests, all P values two-sided.

neoadjuvant therapy response. We compared the relative
contribution of the Breast A-K signatures, if present (relative
contribution > 0), in pre-treatment tumours from patients in the
TCHL cohort which had attained a pCR to those with residual
disease (Fig. 4f; Supplementary Fig. 7). We found no statistically
significant difference in the relative contribution of each
mutational signature when comparing pCR to RD groups (Fig.
4f). We noted however when performing the same test using
COSMIC reference signature profile values instead, there was a
statistically significant higher relative contribution of Sig. 13
(Wilcox test P=0.028) (analogous to Breast C) in tumours which
had attained a pCR (Fig. 4g; Supplementary Fig. 4d). However, this
finding did not validate when testing APOBEC associated
signatures in pre-treatment tumour biopsy samples from the
external Sammut et al., (2022) (Fig. 4h; Supplementary Fig. 7) or
the LeSurf et al, (2017) HER2+ breast cancer cohorts (Supple-
mentary Fig. 8).

Published in partnership with the Breast Cancer Research Foundation

Clinicopathological and genomic features associated with
neoadjuvant treatment response

In breast cancer many studies have reported on features derived
from clinicopathological, DNA and/or RNA sequencing data and
more recently digital pathology which may be associated with
response to neoadjuvant therapy'>'72728 |n the HER2 + TCHL
WXS cohort here, we first individually assessed which clinico-
pathological and genomic features extracted from WXS data
generated from pre-treatment tumour biopsies, may be asso-
ciated with therapy response (Fig. 5a, Supplementary Table 8).
When testing each feature individually, there was no statistically
significant association between categorical clinicopathological
features and future neoadjuvant therapy response (Fishers Exact
test P>0.05) (Fig. 5b-d). However, we noted consistent with
previous reports?’293% patients who had residual disease in
response to treatment tended to be younger (median age at
diagnosis 45 years), ER+ (~69% vs ~31% ER+ vs ER-neg; Fishers
Exact test P = 0.192) and have larger tumours (75% vs 25% T Stage
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(Fig. 5b-d). From mutation data, there was no significant
association between TP53 (P=0.379) or PIK3CA (P=0.264)
somatic coding mutation status and neoadjuvant therapy
response (Fig. 5e, f; Fishers exact test). Again, we noted however,
46% versus 20% of patients with a somatic coding mutation in
TP53 had residual disease compared to those with a pCR (Fig. 5e;
Fishers exact test P = 0.379). Whereas 8% versus 33% of patients
with a somatic coding mutation in PIK3CA had residual disease
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compared to those with a pCR (Fig. 5e; Fishers exact test
P =0.264). Overall coding tumour mutational burden (TMB) (Fig.
5e; Wilcox Test P = 0.076) and the fraction of the genome which is
copy number altered was greater in pre-treatment tumours with
residual disease (Fig. 5f; Wilcox test P=0.012). We observed
increased homologous recombination deficiency (HRD) copy
number derived scores in pre-treatment tumour biopsies of
patients with residual disease compared to those who had a pCR
(Fig. 5f; Wilcox test P =0.042). T cell fraction was calculated from
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Fig. 4 Mutational signature profiles of HER2+ pre-treatment biopsies. a Stacked barchart of the relative contribution [0-1] of breast cancer
specific reference mutational signatures (Breast A-K) detected in each pre-treatment tumour biopsy sample (left-right) from the HER2 + TCHL
WXS cohort. b Barchart shows frequency of breast organ specific mutational signatures (top-bottom) across all pre-treatment biopsy samples
(n = 22). ¢ Stacked barchart of the relative contribution [0-1] of breast cancer specific reference mutational signatures (Breast A-K) detected in
each pre-treatment biopsy tumour sample (left-right) from Degasperi et al., (2020) HER2+ breast cancer cohort (n = 19 tumours). d Boxplots
show distribution of APOBEC associated mutational signature (Breast B (blue), C (green)) values stratified by clinical tumour subtype in
Degasperi et al., (2020) breast cancer cohort (438 total tumours) (Wilcox Test; Tumour subtype pairwise comparisons P-values text annotation.
Highlighted in bold text is statistically significant pairwise comparisons P <0.05). e Boxplots show distribution of APOBEC associated
mutational signature (COSMIC Reference Signature 2 (light green), Signature 13 (pink)) values stratified by clinical tumour subtype in Sammut
et al,, (2022) breast cancer cohort (Wilcox Test; Tumour subtype pairwise comparison P-values text annotation. Highlighted in bold text is
statistically significant pairwise comparisons P < 0.05). f Boxplots show the distribution of relative contribution values in pre-treatment tumour
biopsies (n = 22) of frequent breast organ specific reference signatures (Breast A-K) (present in >2 samples) in pCR (n = 9; white) compared to
RD (n=13; grey) classified tumours (Wilcox Test P<0.05). g Boxplots show distribution of analogous APOBEC associated mutational
signatures (Sig.2 (P =0.38), Sig.13 (P = 0.028)) using deconstructSigs and COSMIC reference signatures in pCR (white) compared to RD (grey)
classified tumours (Wilcox Test P<0.05). h Boxplots show distribution of APOBEC associated mutational signature (COSMIC Reference
Signature 2 (light green), Signature 13 (pink)) values stratified by tumour response status (pCR vs RD) in HER2+ only tumours in Sammut et al.,
(2022) breast cancer cohort (57 tumour samples) (Wilcox Test, P> 0.05). Horizontal lines in the box plots denote the lower quartile (Q1),
median and upper quartile (Q3). The box bounds the interquartile range (IQR = Q3—Q1) with the whiskers denoting 1.5 x IQR. Wilcoxon rank

sum tests, all P values two-sided.

WXS data for each patient matched tumour-normal sample using
T Cell EXTRECT. WXS TCRA T cell fraction was significantly
decreased in pre-treatment tumour biopsies compared to
matched normal sample for both pCR (P=0.032) and RD
(P=10.00048) cases (Fig. 5g; Paired Wilcox test). Interestingly,
although not statistically significant, consistent with previous
reports we observed decreased T cell fraction in pre-treatment
biopsies from patients who had residual disease compared to
those who had a pCR (Fig. 5h; Wilcox test P=0.17).

To assess the accuracy of the digital pathology (WXS data derived
TCRA T cell fraction for estimating T cells) we first evaluated its
association with previously reported®® histopathology-derived
tumour infiltrating lymphocyte (TIL) scores from pre-treatment
tumour biopsy samples (Supplementary Fig. 9, 10a). Here, matched
WXS TCRA T cell fraction and TIL scores were available for 18/22
cases in the WXS TCHL Cohort with 11/18 cases having T cell,
CD8 +T cell and cytotoxic lymphocyte histopathology specific
scoring also available for analysis (Supplementary Fig. 9). There was
a strong positive correlation between WXS derived TCRA T cell
fraction and histopathology scoring of T cell (rho = 0.74, P = 0.0087),
CD8+T cell (rho=0.76; P=0.0071) and cytotoxic lymphocyte
(rho=0.73; P=0.01) TILs (Supplementary Fig. 10b). As a further
validation, when selecting the subset of cases in the WXS TCHL
Cohort for which RNA-Seq from pre-treatment tumour biopsy data
was also available (13 of 22 cases) (Supplementary Figs. 11, 12;
Supplementary Table 15), we applied MCP-Counter to pre-treatment
tumour biopsies to evaluate the enrichment of stromal and immune
cell types. Whole exome sequencing TCRA T cell fraction values were
positively correlated with RNA-Seq data derived enrichment scores
for the T cell (rho=0.53; P=0.063), CD8+T cell (rho=0.79;
P=0.0013) and cytotoxic lymphocyte (rho=0.69; P =0.0095)
tumour microenvironment cell types (Supplementary Fig. 12). This
suggests level of tumour infiltrating lymphocytes and immune
response may be particularly important for predicting neoadjuvant
therapy response in HER2+ breast cancer tumours.

Predicting response to neoadjuvant treatment in HER2+
specific tumour subtype using logistic regression modelling
Sammut et al,, (2022) recently reported on clinical and/or tumour
specific characteristics which may be associated with neoadjuvant
therapy response in breast cancer?’. For patients with HER2-
negative tumours they found genomic features associated with
response to chemotherapy typically correlated with proliferation,
TP53 mutation, tumour mutational burden, chromosomal instabil-
ity, BRCA, HRD and APOBEC associated mutational signatures.
Interestingly, for patients with HER2+ tumours treated with
combination anti-HER2 targeted therapy and chemotherapy,

Published in partnership with the Breast Cancer Research Foundation

response was largely independent of proliferation. This suggested
that features associated with neoadjuvant therapy response may
differ according to HER2 status. Therefore, having individually
assessed which clinicopathological or DNA sequencing derived
genomic features may be associated with neoadjuvant therapy
response, we next used multivariate logistic regression modelling
to investigate which of these features together may be predictive
of pCR specifically in the setting of HER2+ disease.

In order to build the predictive model, we utilized publicly
available datasets?” of clinicopathological and WXS data from
neoadjuvant treated HER2+ breast cancer for training (TransNEO
cohort; 57 HER2+ pre-treatment tumour biopsies) (Supplementary
Table 9) and independent test set (ARTemis/PBCP cohort; 18
HER2+ pre-treatment tumour biopsies; Supplementary Table 10).
The HER2 + TCHL WXS Cohort presented here was used as an
independent validation dataset (TCHL cohort; 22 pre-treatment
tumour biopsies) (Supplementary Fig. 6; Supplementary Table 11).

In a similar approach to Sammut et al., (2022), a series of five
PCR prediction logistic regression models were trained (Supple-
mentary Table 12) using different combinations of clinicopatho-
logical, genomic and tumour infiltrating lymphocyte associated
features which included: (1) Clinical, (2) lymphocyte density, (3)
Genomic+lymphocyte density, (4) a full model (Clinical+Geno-
mic+lymphocyte density) (Fig. 6a) and lastly (5) a reduced
model (Age—+ER status+lymphocyte density) which used only
those predictor variables that were statistically significant
(P < 0.05) in the full model (Fig. 6b). In the external independent
test set (ARTemis/PBCP cohort), the area under the curve (AUQ)
for each predictive model were as follow: 0.565 (Clinical), 0.591
(lymphocyte density alone), 0.545 (Genomic+lymphocyte den-
sity), 0.656 (Full model), 0.727 (Reduced model (Age+ER status
+ lymphocyte density) (Fig. 6¢; Supplementary Table 13). In the
validation set (HER2 + TCHL WXS cohort) the AUCs were: 0.521
(Clinical), 0.65 (lymphocyte density alone), 0.709 (Genomic
+lymphocyte density), 0.632 (Full model), 0.59 (Reduced model
(Age+ER status + lymphocyte density)) (Fig. 6¢; Supplementary
Table 13). Overall, the best performing models in the ARTemis/
PBCP test set were the Full (Clinical+Genomic+Lymphocyte
density) and Reduced (Age+ER status+lymphocyte density)
predictive models. However, in the TCHL validation set, the Full
and Reduced models performed moderately well with the best
performing model being the Genomic+Lymphocyte density
model.

Consistent with our previous observation (Fig. 5h) regarding
higher T cell fraction in HER2+ cases which had pCR compared
to those with RD, we found that increasing lymphocyte density
in the TransNEO cohort of 57 HER2+ pre-treatment tumour
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biopsies were significantly associated with increased pCR rate
(Fig. 6d; Simple logistic regression, Odds Ratio: 2.3, 95% C.I:
1.28-4.61; P=10.008). When stratifying standardized lympho-
cyte density in the TransNEO and ARTemis/PBCP cohort and T
cell fraction in the TCHL cohort by ER status, we noted in the
TransNEO training set cohort, lymphocyte density was parti-
cularly high for ER4+ tumours which had attained a pCR
(Fig. 6e).
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Clonal tumour evolution in neoadjuvant treated HER2+
tumours

Tumour evolutionary analysis was carried out for 5/22 cases for
which higher depth WXS was available from samples taken at
multiple timepoints during the course of treatment. All five cases
profiled had a poor response to neoadjuvant therapy, with 4 of 5
cases having residual disease and the remaining case being first
assessed as having a pCR but subsequently developed brain
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Fig. 5 Clinicopathological and genomic features associated with neoadjuvant treated tumour response status (pathological complete
response (pCR) vs residual disease (RD)). a Schematic diagram of genomic feature extraction from WXS data of pre-treatment tumour
biopsies for pCR (n =9) vs RD (n = 13) comparison. b Density plot (left) and boxplots (right) of age at diagnosis distribution for HER2+ cases
(N = 22) stratified by tumour response status. ¢ Stacked barchart of the proportion (%) of ER+ and ER-neg subtype tumours (d) Stacked
barchart of the proportion (%) of tumour size (< =2 cm, >2 cm-5cm, > =5 c¢m) derived from T Stage classification (e) Stacked barchart of the
proportion (%) of pCR versus RD pre-treatment tumour biopsy samples with either presence (status = 1) or absence (status = 0) of TP53 or
PIK3CA somatic coding mutation (left) (Fishers exact test, P> 0.05). Boxplots of coding tumour mutational burden (TMB) values in pCR versus
RD pre-treatment tumour biopsies (19/22 samples; 2 extreme outlier samples removed)(Wilcox test P > 0.05). f Boxplots of the distribution of
copy number derived feature values: fraction of genome altered (FGA) (left) and homologous recombination deficiency (HRD) score (right) in
PCR versus RD pre-treatment tumour biopsies (Wilcox test P < 0.05). g Boxplots of the distribution of T cell fraction values in patient-matched
normal with pre-treatment tumour biopsy sample stratified by tumour response status (Paired Wilcox test P <0.05). h Boxplots of the
distribution of T cell fraction values in pre-treatment tumour biopsies stratified by tumour response status (Wilcox test; P> 0.05). Horizontal
lines in the box plots denote the lower quartile (Q1), median and upper quartile (Q3). The box bounds the interquartile range (IQR = Q3—-Q1)

with the whiskers denoting 1.5 X IQR.

metastatic disease (Fig. 7a). Overall, the mutational signature
profiles of pre-treatment tumours were similar in composition to
patient-matched Post Cycle 1 treatment tumour biopsy and/or
subsequently collected tumours samples taken either at surgery or
from metastatic disease (Fig. 7b). PyCloneVl was used to infer
clonal population structure from copy number and purity adjusted
variant allele frequencies (VAFs) of somatic mutations detected in
longitudinally collected tumour samples for each of the five cases
(Fig. 7c). The number of clones detected in each case were: 6
clones (A-F) in Case #3 (ER+), 8 clones (A-H) in Case #6 (ER+), 8
clones (A-H) in Case #29 (ER+), 5 clones (A-E) in Case #32 (ER—)
and 7 clones (A-G) in Case #39 (ER—) (Fig. 7c). For each case, one
clone detected in the pre-treatment tumour biopsy stably
maintained a clonal prevalence value of 1.0 (i.e. all cancer cells
harbour the mutations) across all timepoints, with each containing
known HER2+ breast cancer specific driver genes (Supplementary
Table 14). For example, the following mutations were identified as
clonal in Case #3 and Case #29: PIK3CA and TP53; in Case #6, Case
#29, Case #32: AURKA, FAT3 or PRKDC. Interestingly, we detected a
mutation in RING-type E3 ubiquitin ligase (RNF43), a gene which is
reported to negatively regulate WNT signaling in cancer present in
clonal clusters across all cases and timepoints (Supplementary
Table 8).

Clonal dynamics varied for all other subclones in each case with
a clonal prevalence less than 1.0. We observed subclones present
in pre-treatment biopsies which may harbour drug persistor
somatic mutations associated with therapy response. For example,
in Case #39, the clonal prevalence of the subclone labelled G,
containing mutations in FGFR1, KMT2D, MYC driver genes, was
~0.27 in the pre-treatment tumour biopsy, decreased to ~0.22 in
post cycle 1 treatment tumour biopsy but increased to ~0.34 in
the lymph node biopsy (Fig. 7c). In Case #32, the subclone labelled
B containing mutations in FAT3 and KMT2C, was present at a high
clonal prevalence of ~0.68 in the pre-treatment biopsy and
persisted in the brain metastatic tumour at a clonal prevalence of
~0.26. We found for some dynamic clones, such as Case #3,
subclone E (Clonal prevalence of ~0.46 in PreTx to ~0.99 in PostTx)
and Case #29, subclone F (Clonal prevalence of ~0.53 in PreTx to
~0.99 in PostTx) they did not contain known HER2+ breast cancer
driver gene mutations but potentially novel mutations which may
be selected for under the pressure of therapy. Taken together,
HER2+ breast tumours are composed of (sub)clonal clusters of
mutations which are established in therapy naive tumours,
maintained through treatment and may be associated with poor
neoadjuvant therapy response.

DISCUSSION

Despite the advances in the treatment of HER2+ breast cancer, up
to ~30% of patients with early stage disease may not have a
pathological complete response to neoadjuvant therapy. Predic-
tive biomarkers of neoadjuvant therapy response are needed to
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better identify patients with early stage disease who may benefit
from tailored treatment in the adjuvant setting. Here, through
comprehensive characterisation of genomic alterations and T cell
fraction in pre-treatment tumour biopsies along with annotated
clinicopathological characteristics we identified a subset of these
features which may be associated with response to neoadjuvant
therapy for HER2+ breast cancer patients. Many studies have
reported that across all tumour subtypes in breast cancer, tumours
with higher levels of tumour infiltrating lymphocytes are
associated with increased pCR rate'”2%2731-33 |n agreement with
these studies, we found the number of tumour infiltrating
lymphocytes and/or T cell fraction present in pre-treatment
tumour biopsies as an important feature of HER2+ tumours
which attained a pCR. In a multivariate logistic regression model of
pCR, age at diagnosis, ER status and a standardised measure of
immune cell involvement either from digital pathology derived
lymphocytic density or T cell fraction extracted from whole exome
sequencing were found to be particularly important at predicting
response. In terms of model accuracy, the area under the ROC
curve value for this model in the TransNEO cohort training set was
0.82, 0.727 in the test dataset (ARTemis/PBCP Cohort) and 0.59 in
the validation set (TCHL Cohort). Data from the TCHL Cohort were
collected in the period before the update on standard of care
regimen in the neoadjuvant setting where dual blockade with
pertuzumab is now used. Currently lapatinib is not recommended
for use in the neoadjuvant setting. Additional studies will need to
be conducted in larger patient cohorts where standard treatment
regimens are used to robustly assess model performance. Despite
this, we believe we have some evidence here that our findings
from the logistic regression modelling may be generalised to
current standard treatment approach. The datasets (TransNEO and
ARTemis/PBCP cohorts) utilised for training and testing the logistic
regression model were from early stage HER2+4 patient cohorts
who had received chemotherapy in combination with Trastuzu-
mab +/— Pertuzumab in the neoadjuvant setting. As such,
regardless of which anti-HER2 regimen used, we believe that
biomarkers of future therapy response such as age, ER status and
level of tumour infiltrating lymphocytes may generalise to
standard dual blockade regimens.

Many studies have highlighted the significance of the immune
response in bolstering a good response to neoadjuvant therapy in
early stage HER2+ breast cancer. However, the sources of greater
immunogenicity in pre-treatment tumour biopsies associated with
pCR is still largely unexplored in HER2+ tumours. Few have
identified which specific factors are key to eliciting an anti-tumour
immune response. LeSurf et al., (2017) had predicted in silico using
DNA and RNA sequencing data of pre-treatment tumour biopsies
from HER2+ breast cancer cases tumour neoantigen and binding
affinity scores for each case'. They found that despite the
identification of frequent TP53 and PIK3CA mutations and the
production of putatively active neoantigens, there was a non-
significant higher neoantigen load between pCR and RD cases.
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Fig. 6 Predicting response to neoadjuvant treatment in HER2+ specific tumour subtype using logistic regression modelling. a Plot of
multivariate analysis of associations between clinical + genomic variables+ lymphocyte density predictor variables (Full model) and pCR in
the TransNEO training dataset (57 tumours). Odds ratios were calculated using multiple logistic regression model fitted using clinical and
genomic features described in figure panels 5b-h. Significant associations (P < 0.05; logistic regression) are denoted by a bold asterisk (*). Error
bars represent 95% confidence intervals. b Plot of multivariate analysis of associations between Age+ ER status+ lymphocyte density
predictor variables in a reduced model fitted using TransNEO training dataset (57 tumours). Significant associations (P < 0.05; logistic
regression) are denoted by a bold asterisk (*). Error bars represent 95% confidence intervals. ¢ Plot of area under the curve (AUC) values for
each of the five pCR predictive models (left-right) in the training set (TransNEO), test set (ARTemis/PBCP) and validation set (TCHL). Dashed
lines are reference lines for the full and reduced fitted model AUCs. d Plot of the lymphocyte density simple logistic regression model odds
ratio values in the TransNEO cohort. Significant association (P < 0.01; logistic regression) is denoted by a bold double asterisk (**). Error bars
represent 95% confidence intervals. e Boxplots of standardized lymphocyte density value distribution stratified by ER status and tumour
response status (pCR, RD) in the TransNEO, ARTemis/PBCP and TCHL HER2+ breast cancer cohorts. Horizontal lines in the box plots denote the
lower quartile (Q1), median and upper quartile (Q3). The box bounds the interquartile range (IQR =Q3—Q1) with the whiskers denoting
1.5 x IQR.

In studies with gene expression profiling, cases assigned to the
HER2-enriched (HER2-E) intrinsic molecular subtype were found to
be associated with increased rates of pCR compared to the
Luminal A, B, basal-like and normal-like subtypes'''>=735 An
overall limitation of our study is we do not have patient-matched
high quality RNA sequencing for the entire cohort. As such, due to
the limited sample size we could not perform intrinsic molecular
subtyping or assess if reported gene expression signatures
including immune infiltration, cell proliferation, luminal differen-
tiation and HER2 (ERBB2) gene expression333 would increase the
accuracy of the predictive model. Transcriptional features derived
from gene expression profiling of pre-treatment HER2+ tumour
biopsies have previously been shown to influence prediction of
pCR'™. It could be possible that inclusion of intrinsic molecular

Interestingly, in this study, analysis of mutational signatures in pre-
treatment tumour biopsies pointed to a greater prevalence of
APOBEC associated mutational signatures in HER2+ versus HER2-
neg tumours overall but furthermore the relative contribution of
APOBEC associated mutational signature, Breast C, analogous to
COSMIC reference signature 13, was highest in ER-/HER2+
compared to ER—/HER2— clinical tumour subtypes. APOBEC
associated mutagenesis has been reported to be associated with
increased cell proliferation and levels of tumour infiltrating
lymphocytes which can elicit an anti-tumour immunogenic
response®*, Although not statistically significant, in the TCHL
cohort here, we noted the median relative contribution of Breast C
mutational signature was higher in tumours that had attained pCR

compared to those that had residual disease. However, this
observation did not validate in an independent cohort of pre-
treatment HER2+ tumours when stratified by therapy response
status.
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subtype along with lymphocyte density and age at diagnosis may
increase the predictive accuracy of the model, but also it would be
interesting to further investigate the status of APOBEC associated
mutational signature Breast C stratified by HER2-E versus other
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Fig. 7 Clonal tumour evolution in matched tumour samples taken at multiple timepoints during treatment for 5 of 22 HER2+ breast
cancer cases. a Summary from top-bottom of TMB, ploidy, FGA, ERBB2 (HER2) copy number log ratio (cnlr), cancer cell fraction (ccf), discrete
total copy number (tcn) values, somatic copy number alteration (SCNA) type, ERBB2 (HER2), PIK3CA, TP53 mutation respectively if present with
associated variant allele fraction (VAF) value, T cell fraction and HRD score for each matched tumour sample taken at multiple timepoints (pre-
treatment, post cycle 1 (day 20) neoadjuvant treatment, surgery or relapse if occurred for 5 of 22 breast cancer cases from the HER2 + WXS
cohort. b Stacked barchart of the relative contribution [0-1] of breast cancer specific reference mutational signatures (Breast A-K) detected in
longitudinal patient matched samples (n = 13) (left-right). ¢ Clonal prevalence line plots for each tumour clone detected using PyCloneV!I for
patient-matched tumour samples (n = 13) taken at multiple timepoints during treatment for 5 of 22 HER2+ breast cancer cases (left-right).

intrinsic molecular subtypes. Despite low discriminative power to
predict pCR in the multivariate logistic regression, we overall
observed a higher number of copy number alterations in pre-
treatment tumour biopsies from patients with residual disease at
surgery. Interestingly, in metastatic HER2+ breast cancer, copy
number alteration burden, specifically copy number loss has been
shown to be increased in rapid non responders versus exceptional
responders of trastuzumab treatment’” and in breast cancer
patients with HER2+ brain metastases®® suggesting that increas-
ing levels of chromosomal instability is a particularly aggressive
feature of non-responsive and treatment resistant tumours.
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The status of the hormone estrogen receptor (ER) in HER2+
tumours and bi-directional ER-HER2 pathway crosstalk has
repeatedly been shown to influence the clinical behaviour and
therapy response of breast cancers®. Consistently, it has been
shown that ER negative HER2+ (ER—/HER2-+) breast cancers are
associated with increased rates of pCR>7'11>1735 Here, we also
observed that ER—/HER2+ tumours tended to respond better to
neoadjuvant therapy with an odds ratio of ~6.97 for ER-neg versus
ER+ in a predictive model of pCR along with age at diagnosis and
lymphocyte density.

Altered PI3K pathway signalling is one of the most widely
reported mechanisms of trastuzumab resistance in breast
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cancer’??>4% Here, in a subset of cases which had residual
disease, we noted that therapy resistance may be due to genomic
aberrations in PI3K-AKT-mTOR pathway genes including PIK3CA
and PTEN. We detected only PIK3CA exon 20 mutations
(p.H1074R) in this cohort. Along with exon 9 mutations these
are the two most frequently mutated PIK3CA mutations in breast
cancer. While, overall PIK3CA mutation has been shown to be
associated with decreased pCR rate in HER2+ tumours'®, others
have suggested that response may be dependent on exon 9
versus exon 20 mutations. PIK3CA exon 9 mutations have been
shown to be more prevalent in cases which had residual disease
which has been suggested not to be the case for exon 20 specific
mutations'*3°, Few studies have assessed if copy number gain or
amplification in PIK3CA may be associated with response,
however here, we observed that PIK3CA copy number gains are
largely exclusive of single point mutations and may be higher in
pre-treatment tumours which had residual disease at surgery.

Overall, longitudinal studies are lacking in particular for tracking
subclonal expansion during the course of neoadjuvant treatment
in early stage HER2+ breast cancer. The ability to deeply sequence
cancer genomes has shed some light on the complexity of cancer
evolution and identify subclones which may contribute to
treatment response, disease progression or metastatic spread®’.
Here, for 5 of 22 cases which had a poor response to neoadjuvant
treatment, clonal evolution analysis was carried out on patient-
matched longitudinally collected tumour samples for which high-
depth WXS data was available. Similar to others, we found pre-
treatment HER2+ breast tumours contain clonally relevant driver
mutations which are both important for tumour development and
growth. Subclonal diversity and dynamics were evident across all
cases with potential therapy resistant subclones detected contain-
ing known HER2+ breast cancer driver genes such as AURKA or
novel candidate mutations such as RNF43 for future studies.

Our study has some limitations which will need to be addressed
in larger cohorts in order to validate the findings described here.
Firstly, as previously discussed, additional studies will need to be
conducted in cohorts receiving standard treatment regimens to
robustly assess model performance. Secondly, due to the limited
sample size, we focused on testing differences between pCR and
residual disease and were not able to further investigate these
differences when stratifying by ER+ versus ER-neg, HER2-+ tumour
subtypes specifically.

In this study, predictive modelling of clinical and tumour
specific characteristics of early-stage HER2+ breast cancer
identified that age at diagnosis, ER status and level of immune
cell infiltration may together be important for predicting future
response to neoadjuvant therapy. The specific aspects of breast
tumour biology involved in inducing an immune-rich environment
to promote a good response to neoadjuvant therapy are still
largely unexplored in HER2+ breast cancer. Here, we point to the
possibility of APOBEC associated mutagenesis as one potential
source of immunogenicity in ER-neg/HER2+ primary tumours.
However, larger cohorts are needed to more comprehensively
understand and validate these findings.

MATERIALS AND METHODS
Study design and patients

The design of the TCHL phase Il neoadjuvant study (https://
clinicaltrials.gov/ct2/show/NCT01485926;  CTRIAL-IE  (ICORG)
10-05) assessing TCH (Docetaxel, Carboplatin and Trastuzumab)
and TCHL (Docetaxel, Carboplatin, Trastuzumab and Lapatinib) in
ERBB2 (HER2) positive breast cancer patients was previously
reported in detail'®. Eligibility criteria included female breast
cancer patients diagnosed with Stage T2,T3,T4a-d (TNM Staging
AJCC 7th edition) or any T with lymph node positive disease
tumour, HER2/neu positive (34 by IHC or fluorescence in situ
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hybridisation (FISH) positive), ECOG performance status score < 1
eligible for neo-adjuvant chemotherapy and trastuzumab therapy,
for which FFPE tissue was available from diagnostic biopsy and/or
definitive surgical intervention. Eighty-eight patients with HER2+
breast cancer enrolled in the clinical trial were randomised to
receive either neoadjuvant TCH, TCL or TCHL. As per the clinical
trial protocol (NCT01485926; CTRIAL-IE (ICORG) 10-05), evaluation
of response to neoadjuvant treatment was performed using
tumour specimen in patients undergoing mastectomy or breast
conserving procedure. Patients received trastuzumab post-
operatively for 1 year. One of the secondary objectives of the
trial was to identify biomarkers of anti-HER2 therapy response or
resistance. As such, if available, core biopsy tumour samples were
taken from patients at pre-treatment, post treatment cycle 1 (Day
20), surgery and for some patients who had progressed, tumour
samples were taken from lymph node or distant metastatic
disease.

Ethics approval

In this study, we used samples that were collected under clinical
trial protocols (ICORG 10-05; ClinicalTrials.gov, NCT01485926).
Standardised ICORG procedures were used to acquire ethical
approval for these studies. At the time of recruitment, patients
were given an information leaflet and a consent form for storage
and collection of biological materials, including blood and tissue
samples, as well as future use of their samples for research
purposes. All participants in this study had provided written
informed consent. The study protocol was approved by the
institutional review boards of St. James’s Hospital, Dublin;
St.Vincent's University Hospital, Dublin; Bon Secours Hospital,
Cork; Cork University Hospital; Beaumont Hospital, Dublin; Mater
Misericordiae University and Private Hospitals, Dublin; Galway
University Hospital, Galway; Letterkenny General Hospital, Letter-
kenny; Mid-Western Regional Hospital, Limerick; Sligo General
Hospital, Sligo; and Waterford Regional Hospital, Waterford

Sample acquisition

Sufficient tissue for whole exome sequencing (WXS) was available
from 24 normal and 39 tumour samples respectively collected
from 28 of 88 patients enrolled in the TCHL phase Il clinical trial.
Following quality control checks, matched normal-tumour sam-
ples collected from 22 of 28 patients were included for
sequencing data analysis. Tumour samples included 22 pre-
treatment, 4 post-treatment cycle one (Day-20) biopsies, 1 surgical
resection specimen and 3 metastatic tumours.

Whole exome DNA sequencing

Tumour and normal samples were either snap frozen or formalin
fixed paraffin embedded (FFPE). Fresh-frozen/FFPE samples were
divided into three segments and a piece of tissue from the top
and bottom part of each segment was sectioned, stained with
haematoxylin and eosin and extensive pathological review was
carried out by a trained pathologist to ensure there was a
minimum of 30% tumour within the segment of the tumour
samples and no tumour present in the normal samples. DNA was
extracted from the tumour and normal samples using an AllPrep
DNA mini kit (Qiagen, Hilden, Germany), and from whole blood
samples using a DNA blood mini kit (Qiagen), according to the
manufacturers protocol. DNA was quantified by Qubit fluorometer
(Invitrogen, Carlsbad, CA, USA) and DNA integrity was examined
by agarose gel electrophoresis. For each tumour and matched
normal tissue or blood sample, exome capture was performed on
sheared genomic DNA using the SeqCap EZ Library SR from
Nimblegene. Paired end sequencing was carried out in two
batches, first by VIB Belgium on an lllumina HiSeq2500 with a
further subset of samples (Case #3, #6, #12, #29, #32, #39 and #45)
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selected for high depth sequencing (92X average for normal;
~280X average for tumour) by BGI Genomics (Hong Kong) on an
lllumina HiSeq XTEN.

Sequence alignment and pre-processing

The quality of raw sequencing read FASTQ files was determined
using FastQC, and adapter and primer sequences and low quality
3’ end reads were cleaned using Trimmomatic (v.0.27) (https://
github.com/usadellab/Trimmomatic) with the following para-
meters “Phred 33 LEADING:20 TRAILING:20 SLIDINGWIN-
DOW:4:20 MINLEN: 36" to remove adapter sequencing and trim
low base quality calls. Sequencing reads were mapped to the
human reference genome (hg38/GRCh38) using the Burrows-
Wheeler Aligner (bwa mem v.0.7.5a-r405) using default para-
meters. According to the GATK4 best practise pipeline*?, read
duplicates were marked using Picard (v.1.1118). De-duplicated
read alignments sorted using samtools (v1.5) were next processed
by base quality score recalibration (BQSR) with the following
references supplied with the “--known-sites” option:
dbsnp_146.hg38.vcf.gz, Mills_and_1000G_gold_standard.in-
dels.hg38.vcf.gz, 1000G_phasel.snps.high_confidence.vcf.gz.

Sample relatedness check

Prior to somatic variant calling Somalier (v.0.2.13) (https://
github.com/brentp/somalier) was used to calculate sample
relatedness from sequencing data to ensure normal-tumour
sample pairs came from the same individual.

Somatic mutation calling

Somatic single nucleotide variants (SNVs), insertions and deletions
(InDels) were called using Mutect2 (v.4.1.8)** and Strelka (v.
2.9.10)* respectively from matched normal and tumour pairs.
Strelka was run with the ——exome option (for WXS data only) and
—-callRegions option to restrict mutation calling to
chr1-22,X,Y,M. In order to filter for false positive somatic mutation
calls such as common variants and mapping artifacts, Mutect2 was
run with gnomAD germline population reference and a panel of
normal (PON) samples, generated using the CreateSomaticPane-
I0fNormals function part of the GATK4 (v.4.1.8) best practise
pipeline. FFPE samples are known to contain mutational biases in
the C>T/G> A transition. OxoG filter was applied through the
read orientation bias model with Mutect2 to remove mutations
with FFPE strand bias. GATK4 GetPileupSummaries and Calcula-
teContamination was used with a set number of known germline
common variants reported in EXAC at a population minor allele
frequency >0.05 to calculate cross sample contamination.
FilterMutectCalls was run using default parameters. Filtered
Mutect2 and Strelka somatic variant calls were combined into
one vcf using GATK3 (v.3.8.1) CombineVariants. Bcftools (v.1.12)
(http://samtools.github.io/bcftools/bcftools.html) norm function
was used to left align and normalise InDels. Variants passing
quality control were annotated using MSK vcf2maf (https://
github.com/mskcc/vcf2maf) and variant effect predictor (VEP
v.96) using GRCh38, which outputs both a .vcf and .maf file
format. Annotated maf files were used by MAFTools** for
downstream somatic mutation analysis, with annotated .vcf used
as input for mutational signature analysis.

Estimation of tumour mutational burden

Tumour mutational burden (TMB) is defined here as the number of
somatic mutations per megabase of exome. The mutation rate per
Mb was calculated used maftools as the total number of coding
variants (SNVs, indels) divided by the length of the capture in
megabases (50 Mb).
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Mutation clonal evolution analysis

PyClone-VI (v.0.1.1)* was used to infer the clonal population
structure within longitudinally collected patient matched tumour
samples for which high depth sequencing was performed. To
prepare PyClone-VI compatible input files, filtered PASS only
mutations present in all matched tumour samples for one patient
were concatenated together use bcftools merge to generate a
“master” VCF to guide force calling of alleles with REF and ALT
allele counts using GATK4 Mutect2 (--alleles flag) in each
tumour sample for that patient. Variant allele frequency data was
integrated with allele specific copy number calls and tumour
purity values from FACETS using FACETS Suite based on the
McGranahan et al,, methodology*” for estimating the cancer cell
fraction (CCF) for each mutation. Copy number and purity
adjusted mutations with a major copy number >0 were clustered
using PyClone-VI with the following parameters: maximum of 40
clusters, using the beta binomial probability density distribution
for allele counts, performing 10 random restarts with 10,000 max
iterations. Clonal prevalence was calculated at each time point by
taking the median cellular prevalence value for each mutation
cluster (clone).

Somatic copy number calling approach

Somatic copy number calling was first performed using FACETS*®
(method described in detail below). For tumour samples flagged
as noisy or low purity or where ERBB2 copy number state was
ambiguous (3/30 tumour samples), CNVKit*® (method described
below) was used to independently re-interrogate copy number
calls (Supplementary Fig. 1a). Taking a set of known breast cancer
driver genes including ERBB2 (HER2), CNVKit was used to cross
validate FACETS inferred copy number calls (Supplementary Fig.
1b). Specifically for any discordant FACETS-CNVkit copy number
calls in ERBB2 (HER2) gene, the integrated genome viewer (IGV)
was used to manually review the read coverage in FACETS derived
segmentation for chr17 around the ERBB2 (HER2) amplicon
(Supplementary Fig. 2) and re-assign copy number status if
needed based on this assessment.

Allele specific DNA copy number inference using FACETS
Total and allele-specific copy number states were inferred for all
tumour samples using FACETS Suite (v 2.0.8) and FACETS (v.0.6.1)
(https://github.com/mskcc/facets-suite). Tumour and matched
normal bam files were pre-processed using snp-pileup (v.0.6.1)
with parameters -q20 —-Q20 -P100 -r25,0. A two pass implemen-
tation of FACETS using snp pileup files as input, was utilised were
a low sensitivity run (cval = 150) first infers the purity and log-ratio
related to diploidy, as per methodology®®. A second higher
sensitivity run (cval = 25) to detect focal events, determines the
copy number state of each gene. Classification of copy number
were as follow: Amplification (AMP) total copy number (TCN) >9;
Gain >3 TCN <8; Deletion (DEL) TCN = 0; Loss TCN = 1.

Somatic copy number calling using CNVkit

Somatic copy number calling was additionally performed using
CNVkit (v.0.9.9) (https://github.com/etal/cnvkit) on matched
tumour-normal bam files. Calling was performed in exome capture
regions excluding regions with low coverage or known to be
inaccessible/problematic for sequencing including centromeres,
telomeres and other highly repetitive regions. A pooled normal
reference was generated from all normal sample bam files. Log2
copy number ratio calls were rescaled using sample specific
tumour cell fraction (tumour purity estimate inference by FACETS)
and normal ploidy values with simple rounding applied to
generate integer value copy number calls.
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Analysis of copy number derived genomic features

Three genomic scar scores were calculated from allele specific
copy number calls in FACETS: (1) fraction of chromosome which
contains loss of heterozygosity (LOH), (2) Large state transitions
(LST), (3) Number telomeric allele imbalance (ntAl) events.

Inference of the fraction of genome altered (FGA) by copy
number alteration (CNA) was calculated for each tumour sample
using the calculate fraction cna() function as part of
the FACETS Suite (v 2.0.8) R package. For each tumour sample, the
size of the chromosomal segments that deviate from the diploid
copy number estimate is divided by the total size of all segments
where diploid segment length is adjusted for whole genome
duplication (WGD) events or not.

Calculation of T cell fraction from WXS data

The R package for T cell EXTRECT®' (https://github.com/
McGranahanLab/TcellEXTRECT) was used to calculate the TCRA T
cell fraction from whole exome sequencing of matched normal
and tumour samples. Pre-defined TCRA gene segments in the
tcra_seg_hg38 data file was used to extract coverage values using
the runTcellEXTRECT () function.

Mutational signatures

Somatic point mutations (filtered sequencing read depth (DP) > 10)
from matched normal-tumour mutation calling (Intersection set for
Mutect2 & Strelka filtered (PASS only) calls) were used as input for
mutational signature analysis. Note for Case #12 the pre-treatment
tumour biopsy sample contained 100 or fewer substitutions and so
for more optimal signature analysis the Mutect2 & Strelka filtered
(PASS only; DP > 20) call set was utilised instead. The Signal®? version
2 (https://signal.mutationalsignatures.com/analyse2) framework was
used for mutational signature extraction and signature fitting.
Somatic single base substitutions were categorised by their
trinucleotide context to generate a 96-channel mutational profiles.
Regions of clustered substitutions i.e., kaetegis regions were filtered.
The SignatureFit algorithm was run with the following parameters:
GRCh38 human genome reference, breast originating organ, 250
bootstraps, threshold 1%, p-value < 0.05. To assess the robustness of
mutational signature detection when using WXS data, the
deconstructSigs R package® and exome trimer count normalisation
method was applied to the same set of somatic mutation catalogues
used as input to Signal framework. Extracted signatures were fitted
to COSMIC reference signatures (version 2 (March 2015); https://
cancer.sanger.ac.uk/signatures/signatures_v2/).

Publicly available datasets for external validation and analysis
of genomic alterations

In order to compile a list of HER2+ subtype specific known breast
cancer driver genes somatic copy number alterations, SNV and
InDels were cross referenced to a list of HER2+ subtype specific
breast cancer driver genes previously reported in two studies®*>>
to be frequently altered in HER2+ breast cancer. Rinaldi et al.,
(2020) had reported on the frequency of somatic genomic
alterations stratified by breast cancer subtype including HER2+
from analysis of targeted sequencing of ~11,000 unmatched
primary breast, local recurrence and distant metastatic tumours
using the FoundationOne assay®*. Smith et al, (2021) had
performed genomic profiling of 733 HER2-amplified breast
tumours from 664 patients with HER2+ metastatic breast cancer>®.
Those genes reported in the study to have a somatic mutation
frequency >1% were combined with the Rinaldi et al, (2020)
geneset to compile a list of known driver genes that were
frequently altered in HER2+ breast cancer. ComplexHeatmap R
package®® was used to visualize co-occurrence and frequency of
SCNA and SNVs in pre-neoadjuvant treatment tumour biopsies.
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For analysis of mutational signature profiles, the Degasperi
et al, (2020) breast organ specific mutational signature profiles
(Breast A-K) from breast tumours originally sequenced as part of
the Nik Zainal et al., (2016) study of 560 primary breast cancer
genomes?® was used. Supplementary Table 1 from the Nik Zainal
study (included as Supplementary Table 16 here) detailed clinico-
pathological information for all 560 breast cancer cases and was
used to (a) assign a clinical subtype based on ER,PRHER2 status of
the primary tumour, (b) identify which cases were HER2+ subtype
(73/560) and (c) were annotated as having a tumour sample that
was removed pre-treatment (24/73). These identifiers were then
cross referenced against the Degasperi et al.,, (2020) (Supplemen-
tary Table 17) mutational signature profiles to retrieve a table of
patients for whom breast organ specific mutational signature
profiling had been performed (438/560). 68 of 438 cases were
HER2+ subtype specific with 19 of 68 annotated as having their
tumour sample removed pre-treatment. Two additional publicly
available independent WXS breast cancer cohorts with annotated
neoadjuvant therapy tumour response status (pCR or RD) were
utilized for analysis of COSMIC reference mutational signature
profiles (Signature 1-30) in pre-treatment tumour biopsies from
patients with breast cancer who received neoadjuvant therapy:
LeSurf et al., (2017)"> and Sammut et al., (2022)%” comprised of 48
and 168 breast cancer cases respectively. Briefly, from the LeSurf
research article, Supplementary Table S1 and S8 containing
pathologic response information and deconstructSigs derived
mutational signature profiles were downloaded and imported into
R for visualisation. From the Sammut et al., (2022)%” study, clinical
and sample information was downloaded from Supplementary
Table 1. deconstructSigs derived mutational signature profiles
were downloaded from supplementary data available at https://
github.com/cclab-brca/neoadjuvant-therapy-response-
predictor.git.

Estimation of tumour microenvironment cell fraction

FastQC was used to assess quality control metrics for single end
sequencing reads (FASTQ) from RNA sequencing data. BBDuk from
the BBMap toolkit (https://sourceforge.net/projects/bbmap/) was
used for sequencing adapter removal and read trimming. Two-
pass read alignment to the GRCh37 human reference transcrip-
tome was performed using STAR (https://github.com/alexdobin/
STAR) followed by read duplicate marking and removal using
Picard. Read counting was carried out using the featureCounts
function from the Subread (https://subread.sourceforge.net/).
Read count data was normalised using transcripts per million
(TPM) method. The MCPcounter package (v1.2.0) in R was used to
run the Microenvironment cell population (MCP) counter
method®” using normalised gene expression data from RNA
sequencing of 13 pre-treatment tumour biopsy samples from
patients in the TCHL Cohort here.

Logistic regression modelling

The glm () function as part of the stats R package was used to fit
a multiple logistic regression model where the binary response
variable was neoadjuvant therapy tumour response status
(1 =pCR, 0 =RD). Residual disease (RD) category was composed
of those cases which were classified as having either partial or no
response. pROC and caret R packages were used for testing the
model and generating area under the curve (AUC) values.

A multiple logistic regression model was trained using
clinicopathological (Age at diagnosis, Tumour (T) Stage, ER IHC
status, Lymph node (LN) status at diagnosis), genomic (HRD Score,
PIK3CA, TP53 somatic mutation status, Coding TMB (per 45.5 Mb),
chromosomal instability (CIN)) and digital pathology (lymphocyte
density) feature data generated as part of the Sammut et al., (2022)
TransNEO study?’. This dataset included genomic profiling of 57
HER2+ subtype pre-treatment (chemotherapy+HER2 targeted
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therapy) biopsies of breast tumours (155 of 168 cases of breast
cancer which had more than 1 cycle of neoadjuvant therapy). As
part of the Sammut et al,, study an external validation dataset had
been generated comprised of 75 patients (18/75 HER2+ subtype)
treated with neoadjuvant therapy recruited for the ARTemis trial or
Personalised Breast Cancer (PBCP) study. Here, the TransNEO and
ARTemis/PBCP specific datasets were utilised for training and test
datasets respectively for multiple logistic regression modelling. As
per the Sammut et al., methodology only cases that had received
at least one cycle of neoadjuvant chemotherapy and one cycle of
anti-HER2 therapy (if HER2+) were used to model which features
are associated with response to neoadjuvant therapy. The
previously described HER2 + TCHL WXS Cohort clinicopathological
and genomic data derived feature were used as a validation
dataset for model testing. Standard normal (z-score) scaling was
applied to TCRA T cell fraction values prior to model testing.

Statistics and reproducibility

Statistical analyses were performed using R version 4.1.2. All statistical
tests (paired Wilcoxon Rank Sum (Mann-Whitney U-test), Wald etc)
and their associated P values are two-sided, with a P value < 0.05
considered to be statistically significant unless otherwise stated.
Reported g values represent Benjamini-Hochberg corrected P values.
Logistic regression models: odds ratios (ORs) with 95% confidence
intervals (Cls) and Wald P values with no correction for multiple
testing applied are presented. Any predictor variables with a Variance
inflation factor (VIF) value >5 were further investigated for multi-
collinearity. R package jtools (v.2.2.0) and sjPlot (v. 2.8.11) were used
to summarise and plot logistic regression model output.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY

All summary data supporting the findings of this study are available within the article
and/or its supplementary materials. For WXS data from the 22 HER2+ breast cancer
cases (matched normal, pre-treatment primary breast tumour biopsy +/— post-
treatment (Cycle 1 (day20) +/— surgically resected primary breast tumour or distant
metastatic tumour samples) and RNA sequencing data for 13 pre-treatment tumour
biopsy samples the processed files are available on figshare [https://doi.org/10.6084/
m9.figshare.22708834]. Raw DNA whole exome sequencing (WXS) data for the tumour-
normal sample pairs and RNA-Seq for tumour samples collected under clinical trial
protocols (ICORG 10-05; ClinicalTrials.gov, NCT01485926) will be made available upon
request and under regulatory compliance via data usage agreement (DUA). Please
contact the corresponding author with data access requests. Tumour infiltrating
lymphocyte (TIL) histopathology scores for TCHL Cohort from the Eustace et al., (2021)
publication is available from [https://doi.org/10.1007/s10549-021-06244-1]. Supplemen-
tary Table 1 from Rinaldi et al, (2020) targeted sequencing study of approx. 11,000
unmatched primary breast, local recurrence and distant metastatic tumours using the
FoundationOne assay is available at [https://doi.org/10.1371/journal.pone.0231999].
Supplementary Tables 1 and 8 from LeSurf et al, (2017) is available at [https://doi.org/
10.1093/annonc/mdx048]. For logistic regression models: training and test set data is
available for download from Sammut et al, (2022) [https://github.com/cclab-brca/
neoadjuvant-therapy-response-predictor]. Breast organ specific mutational signature
profile data from Degasperi et al, (2020) is available from [https://doi.org/10.1038/
543018-020-0027-5] and included here as Supplementary Tables16 and 17.

Received: 21 December 2022; Accepted: 26 July 2023;
Published online: 27 September 2023

REFERENCES
1. Schlam, I. & Swain, S. M. HER2-positive breast cancer and tyrosine kinase inhi-
bitors: the time is now. npj Breast Cancer 7, 56 (2021).
2. Takada, M. & Toi, M. Neoadjuvant treatment for HER2-positive breast cancer. Chin.
Clin. Oncol. 9, 32 (2020).

Published in partnership with the Breast Cancer Research Foundation

N. Cosgrove et al.

npj

3. Korde, L. A. et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted
therapy for breast cancer: ASCO guideline. J. Clin. Oncol. 39, 1485-1505 (2021).

4. Slamon, D. et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J.
Med. 365, 1273-1283 (2011).

5. Huober, J. et al. Survival outcomes of the NeoALTTO study (BIG 1-06): updated
results of a randomised multicenter phase Ill neoadjuvant clinical trial in patients
with HER2-positive primary breast cancer. Eur. J. Cancer 118, 169-177 (2019).

6. Zhu, H. & Dogan, B. E. American Joint Committee on cancer’s staging system for
breast cancer, Eighth Edition: summary for clinicians. Eur. J. Breast Health 17,
234-238 (2021).

7. Cortazar, P. et al. Pathological complete response and long-term clinical benefit
in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164-172 (2014).

8. Gullo, G. et al. Impact of timing of trastuzumab initiation on long-term outcome
of patients with early-stage HER2-positive breast cancer: the "one thousand HER2
patients" project. Br. J. Cancer 119, 374-380 (2018).

9. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer
(NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379,
633-640 (2012).

10. Untch, M. et al. Lapatinib versus trastuzumab in combination with neoadjuvant
anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised
phase 3 trial. Lancet Oncol. 13, 135-44 (2012).

11. Carey, L. A. et al. Molecular heterogeneity and response to neoadjuvant human
epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized
phase Il trial of paclitaxel plus trastuzumab with or without lapatinib. J. Clin.
Oncol. 34, 542-549 (2016).

12. Robidoux, A. et al. Lapatinib as a component of neoadjuvant therapy for HER2-
positive operable breast cancer (NSABP protocol B-41): an open-label, rando-
mised phase 3 trial. Lancet Oncol. 14, 1183-1192 (2013).

13. Guarneri, V. et al. Survival after neoadjuvant therapy with trastuzumab-lapatinib
and chemotherapy in patients with HER2-positive early breast cancer: a meta-
analysis of randomized trials. ESMO Open 7, 100433 (2022).

14. Toomey, S. et al. Impact of somatic PI3K pathway and ERBB family mutations on
pathological complete response (pCR) in HER2-positive breast cancer patients who
received neoadjuvant HER2-targeted therapies. Breast Cancer Res. 19, 87 (2017).

15. Lesurf, R. et al. Genomic characterization of HER2-positive breast cancer and
response to neoadjuvant trastuzumab and chemotherapy-results from the
ACOSOG Z1041 (Alliance) trial. Ann. Oncol. 28, 1070-1077 (2017).

16. Fumagalli, D. et al. RNA sequencing to predict response to neoadjuvant anti-HER2
therapy. JAMA Oncol. 3, 227 (2017).

17. Hurvitz, S. A. et al. Pathologic and molecular responses to neoadjuvant trastu-
zumab and/or lapatinib from a phase Il randomized trial in HER2-positive breast
cancer (TRIO-US B07). Nat. Commun. 11, 5824 (2020).

18. Loibl, S. et al. PIK3CA mutations are associated with reduced pathological com-
plete response rates in primary HER2-positive breast cancer: pooled analysis of
967 patients from five prospective trials investigating lapatinib and trastuzumab.
Ann. Oncol. 27, 1519-25 (2016).

19. Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for
PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat.
Genet. 47, 1212-1219 (2015).

20. Eustace, A. J. et al. The role of infiltrating lymphocytes in the neo-adjuvant
treatment of women with HER2-positive breast cancer. Breast Cancer Res. Treat.
187, 635-645 (2021).

21. Llombart-Cussac, A. et al. HER2-enriched subtype as a predictor of pathological
complete response following trastuzumab and lapatinib without chemotherapy
in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group,
multicentre, phase 2 trial. Lancet Oncol. 18, 545-554 (2017).

22. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a
major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12,
395-402 (2007).

23. O'Brien, N. A. et al. Targeting PI3K/mTOR overcomes resistance to HER2-targeted
therapy independent of feedback activation of AKT. Clin. Cancer Res. 20,
3507-3520 (2014).

24. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab,
and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6,
117-127 (2004).

25. Degasperi, A. et al. A practical framework and online tool for mutational signature
analyses show inter-tissue variation and driver dependencies. Nat. Cancer 1,
249-263 (2020).

26. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-
genome sequences. Nature 534, 47-54 (2016).

27. Sammut, S. J. et al. Multi-omic machine learning predictor of breast cancer
therapy response. Nature 601, 623-629 (2022).

28. Denkert, C. et al. Reconstructing tumor history in breast cancer: signatures of
mutational processes and response to neoadjuvant chemotherapy*. Ann. Oncol.
32, 500-511 (2021).

npj Breast Cancer (2023) 72

15


https://doi.org/10.6084/m9.figshare.22708834
https://doi.org/10.6084/m9.figshare.22708834
https://doi.org/10.1007/s10549-021-06244-1
https://doi.org/10.1371/journal.pone.0231999
https://doi.org/10.1093/annonc/mdx048
https://doi.org/10.1093/annonc/mdx048
https://github.com/cclab-brca/neoadjuvant-therapy-response-predictor
https://github.com/cclab-brca/neoadjuvant-therapy-response-predictor
https://doi.org/10.1038/s43018-020-0027-5
https://doi.org/10.1038/s43018-020-0027-5

npj

N. Cosgrove et al.

16

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43,

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Kim, M. M. et al. Pathologic complete response to neoadjuvant chemotherapy
with trastuzumab predicts for improved survival in women with HER2-
overexpressing breast cancer. Ann. Oncol. 24, 1999-2004 (2013).

Hamy, A. S. et al. Pathological complete response and prognosis after neoadju-
vant chemotherapy for HER2-positive breast cancers before and after trastuzu-
mab era: results from a real-life cohort. Br. J. Cancer 114, 44-52 (2016).

Ali, H. R. et al. Computational pathology of pre-treatment biopsies identifies
lymphocyte density as a predictor of response to neoadjuvant chemotherapy in
breast cancer. Breast Cancer Res 18, 21 (2016).

Griguolo, G., Pascual, T., Dieci, M. V., Guarneri, V. & Prat, A. Interaction of host
immunity with HER2-targeted treatment and tumor heterogeneity in HER2-
positive breast cancer. J. Imnmunother. Cancer 7, 21 (2019).

Dieci, M. V. et al. Integrated evaluation of PAM50 subtypes and immune mod-
ulation of pCR in HER2-positive breast cancer patients treated with chemotherapy
and HER2-targeted agents in the CherLOB trial. Ann. Oncol. 27, 1867-1873 (2016).
Dimarco, A. V. et al. APOBEC mutagenesis inhibits breast cancer growth through
induction of T cell-mediated antitumor immune responses. Cancer Immunol. Res.
10, 70-86 (2022).

Bianchini, G. et al. Biomarker analysis of the NeoSphere study: pertuzumab,
trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus
trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of
HER2-positive breast cancer. Breast Cancer Res. 19, 16 (2017).

Prat, A. et al. Development and validation of the new HER2DX assay for pre-
dicting pathological response and survival outcome in early-stage HER2-positive
breast cancer. eBioMedicine 75, 103801 (2022).

Walsh, N. et al. Whole-exome sequencing of long-term, never relapse exceptional
responders of trastuzumab-treated HER2+ metastatic breast cancer. Br. J. Cancer
123, 1219-1222 (2020).

Cosgrove, N. et al. Mapping molecular subtype specific alterations in breast
cancer brain metastases identifies clinically relevant vulnerabilities. Nat. Commun.
13, 514 (2022).

Giuliano, M,, Trivedi, M. V. & Schiff, R. Bidirectional crosstalk between the estrogen
receptor and human epidermal growth factor receptor 2 signaling pathways in breast
cancer: molecular basis and clinical implications. Breast Care 8, 256-262 (2013).
Pohlmann, P. R, Mayer, I. A. & Mernaugh, R. Resistance to trastuzumab in breast
cancer. Clin. Cancer Res. 15, 7479-7491 (2009).

Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13,
795-806 (2012).

Mckenna, A. et al. The genome analysis toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303
(2010).

Benjamin, D. et al. Calling Somatic SNVs and Indels with Mutect2. (Cold Spring
Harbor Laboratory, 2019).

Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from
sequenced tumor-normal sample pairs. Bioinformatics 28, 1811-7 (2012).
Mayakonda, A, Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient
and comprehensive analysis of somatic variants in cancer. Genome Res. 28,
1747-1756 (2018).

Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population structures
using whole genome data. BMC Bioinforma. 21, 571 (2020).

McGranahan, N. et al. Clonal status of actionable driver events and the timing of
mutational processes in cancer evolution. Sci Transl Med 7, 283ra54 (2015).
Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal hetero-
geneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44,
e131 (2016).

Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy
number detection and visualization from targeted DNA sequencing. PLoS Comput
Biol. 12, e1004873 (2016).

Bielski, C. M. et al. Widespread selection for oncogenic mutant allele imbalance in
cancer. Cancer Cell 34, 852-862.e4 (2018).

Bentham, R. et al. Using DNA sequencing data to quantify T cell fraction and
therapy response. Nature 597, 555-560 (2021).

Degasperi, A. et al. Substitution mutational signatures in whole-
genome-sequenced cancers in the UK population. Science 376, abl9283 (2022).
Rosenthal, R, McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. Decon-
structSigs: delineating mutational processes in single tumors distinguishes DNA
repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31
(2016).

npj Breast Cancer (2023) 72

54. Rinaldi, J. et al. The genomic landscape of metastatic breast cancer: Insights from
11,000 tumors. PLoS One 15, 0231999 (2020).

55. Smith, A. E. et al. HER2 + breast cancers evade anti-HER2 therapy via a switch in
driver pathway. Nat. Commun. 12, 6667 (2021).

56. Gu, Z,, Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations
in multidimensional genomic data. Bioinformatics 32, 2847-9 (2016).

57. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune
and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

ACKNOWLEDGEMENTS

We would like to thank the patients who took part in the TCHL phase Il clinical trial
sponsored by the All Ireland Oncology Research Group (ICORG) and Cancer Trials
Ireland for kindly providing tumour tissue to enable this research study. We would
like to acknowledge the Irish Centre for High End Computing (https://www.ichec.ie/)
for the use of HPC infrastructure for sequencing data analysis. This research was
supported by the Irish Cancer Society CCRC BREAST-PREDICT (CCRC13GAL) and by
the North-East Cancer Research and Education Trust (NECRET). S.J.F. acknowledges
support from the Royal College of Surgeons in Ireland StAR programme and the SFI-
HRB-Wellcome Research Partnership (212529/2/18/Z).

AUTHOR CONTRIBUTIONS

N.C,, and A.E,, contributed equally and are co-first authors. N.C,, J.C, BM,, ST, AE,
B.T.H. SJ.F., study concept and design; J.C, designed and chaired the clinical and
translational study (ICORG10-05/NCT01485926) and supervised the conduct of the
trial. N.C, P.O'D., S.F.M, BM, J.C, BM, P.GM, LG, OB, CP, MA, JMW, ADH, AB.,
D.0'.C, S.D., MM, JF, EK, S.T., AE, BTH., S.JF acquisition, analysis or interpretation
of data; N.C,, P.O'D., AB,, S.J.F bioinformatic data processing and/or analyses; N.C,,
AE., BTH, SJ.F., wrote, reviewed and/or revised the manuscript; critical revision and
approval of final manuscript (all authors); B.T.H., S.J.F., study supervision.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541523-023-00572-9.

Correspondence and requests for materials should be addressed to Bryan T.
Hennessy or Simon J. Furney.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Published in partnership with the Breast Cancer Research Foundation


https://www.ichec.ie/
https://doi.org/10.1038/s41523-023-00572-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Predictive modelling of response to neoadjuvant therapy in HER2&#x0002B; breast cancer
	Introduction
	Results
	Clinical characteristics of HER2&#x0002B; whole exome DNA sequencing cohort
	Somatic genomic alterations in pre-treatment tumour biopsies
	Characterisation of ERBB2 (HER2) and PI3K-AKT-mTOR pathway specific genomic alterations
	Mutational signature profiles of HER2&#x0002B; pre-treatment biopsies
	Clinicopathological and genomic features associated with neoadjuvant treatment response
	Predicting response to neoadjuvant treatment in HER2&#x0002B; specific tumour subtype using logistic regression modelling
	Clonal tumour evolution in neoadjuvant treated HER2&#x0002B; tumours

	Discussion
	Materials and methods
	Study design and patients
	Ethics approval
	Sample acquisition
	Whole exome DNA sequencing
	Sequence alignment and pre-processing
	Sample relatedness check
	Somatic mutation calling
	Estimation of tumour mutational burden
	Mutation clonal evolution analysis
	Somatic copy number calling approach
	Allele specific DNA copy number inference using FACETS
	Somatic copy number calling using CNVkit
	Analysis of copy number derived genomic features
	Calculation of T cell fraction from WXS data
	Mutational signatures
	Publicly available datasets for external validation and analysis of genomic alterations
	Estimation of tumour microenvironment cell fraction
	Logistic regression modelling
	Statistics and reproducibility
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




