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Computational pathology improves risk stratification of a
multi-gene assay for early stage ER+ breast cancer
Yuli Chen1,2,13, Haojia Li 2,13, Andrew Janowczyk2,3, Paula Toro2, Germán Corredor 2,4, Jon Whitney2, Cheng Lu1,2, Can F. Koyuncu2,
Mojgan Mokhtari2, Christina Buzzy2, Shridar Ganesan5, Michael D. Feldman6, Pingfu Fu 7, Haley Corbin 8, Aparna Harbhajanka8,
Hannah Gilmore8, Lori J. Goldstein9, Nancy E. Davidson10, Sangeeta Desai 11, Vani Parmar11 and Anant Madabhushi 4,12✉

Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−)
invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers
are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the
association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC.
H&E images from a total of n= 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set:
D1 (n= 116), Validation sets: D2 (n= 121) and D3 (n= 84)). A total of 343 features relating to nuclear morphology, mitotic activity,
and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify
significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and
D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95%
confidence interval (95% CI)= 1.02–5.32, p= 0.045) on D2 and a HR of 2.94 (95% CI= 1.18–7.35, p= 0.0208) on D3. In addition,
IbRiS yielded significant risk stratification within high ODx risk categories (D1+ D2: HR= 10.35, 95% CI= 1.20–89.18, p= 0.0106; D1:
p= 0.0238; D2: p= 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
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INTRODUCTION
Breast cancer is the most frequently diagnosed cancer and the
second leading cause of cancer-related death for females world-
wide1,2. Estrogen receptor-positive (ER+) and lymph node-negative
(LN−) is a common subtype of invasive breast cancer (IBC)3,4, for
which the standard treatment includes the breast-conserving
surgery followed by radiation and adjuvant hormonal therapy. The
adjuvant chemotherapy is however typically only adopted for the
patients in high risk. Given the significant side effects of adjuvant
chemotherapy5,6, it is critical to identify ER+ and LN− IBC patients
with lower ROR who may safely avoid chemotherapy.
Oncotype Dx (ODx)7–9 is a widely applied and extensively

validated molecular assay in clinical practice with ODx score
aiding in estimating the level of recurrence risk of ER+ and LN−
IBC and treatment benefit from adjuvant chemotherapy. The ODx
test is, however, usually tissue destructive and remains expen-
sive10. More importantly, some recent studies11,12 have suggested
that the ODx assigned risk categories are not always optimal. For
example, the test was less accurate on African American patients
as compared to Caucasian patients11. In addition, some patients
identified as in one ODx risk category might actually have
opposite ROR11,12. The inclusion of additional information or new
models that can provide more granular risk stratification within
the ODx risk categories could allow for more accurate persona-
lized treatment regimens for women with ER+ and LN− IBC.

The Nottingham grading system (NGS)13–15 is routinely used by
pathologists to evaluate ROR for ER+ and LN− IBC. The NGS consists
of a three-component visual assessment: (1) nuclear pleomorphism
referring to variations in nuclear shape, size, and chromatin
appearance, (2) mitotic activity relating to tumor cell division and
proliferation, and (3) tubule formation reflecting the percentage of
tumor cells forming tubule structures. The subjectivity and inter-
observer variability however have remained critical challenges for
using NGS in clinical practice with rather unsatisfactory concordance
highlighted in a number of studies16–22.
With the advent of digital pathology, quantitative histomor-

phometry (QH) has been widely used to quantify tumor
morphology from digitized tissue slides to uncover information
potentially undiscernible by human vision systems23–25. Features
related to individual NGS components including nuclear shape
variability, mitotic index and ratio of tubule nuclei have been
explored in numerous QH studies and validated as associated with
risk stratification in breast cancer26–31. However, most studies have
not performed a comprehensive and simultaneous quantitative
analysis of all three NGS components and have not investigated
the added prognostic value that QH-based biomarkers could
provide over the ODx test.
In this study, we hypothesize that integrating all three

components using QH analysis will improve breast cancer
prognosis for clinical decision making. In this work, we present
an Image-based Risk Score (IbRiS) classifier that combines
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computer-extracted features of nuclear morphology, mitotic rates,
and tubule formation to prognosticate outcomes for ER+ and
LN− IBC. The overall workflow is shown in Fig. 1. First, we trained
three different deep learning models on H&E-stained Whole Slide
Images (WSI) of breast cancer, namely (a1) a Generative
Adversarial Network (GAN) for nuclei segmentation, (a2) a deep
Convolutional Neural Network (CNN) for mitosis detection, and
(a3) a U-Net model for tubule segmentation. Second, based on
these computationally derived segmentation/detection masks, we
extracted a total of 343 QH features related to nuclear
morphology, mitotic count, and tubule formation from the tumor
region. Subsequently, we identified the top four prognostic
features from each of the three feature categories using a Cox
proportional hazards regression model32. The top identified
features were further ensembled to construct a final prognostic
Cox regression model (IbRiS) by associating them with patient
clinical outcomes. Finally, we independently validated the
prognostic significance of IbRiS on two cohorts from two different

institutions, comprising a total of 205 patients with ER+ and LN−
IBC. Given the diverse representation of race, tumor grade, and
treatment regimen between the training and testing sets, we
sought to demonstrate the generalizability of IbRiS for assessing
the aggressiveness of breast cancer using computer-extracted
histologic features. The prognostic performance of IbRiS was also
evaluated within each ODx derived risk category (i.e., low,
intermediate, and high).

RESULTS
Clinicopathological variables of the patient cohorts
The clinicopathological variables and clinical outcomes of patient
cohorts D1, D2, and D3 are provided in Table 1. Patients were
primarily in their 50s and 60s, and multiple ethnicity groups were
included (non-Hispanic white: 62.6%, South Asian: 26.2%, non-
Hispanic black: 9%, other: 2.2%). Notably, unlike the non-Hispanic-

Fig. 1 Illustration of the overall workflow for the experimental design. a Three deep-learning models: (a1) a CNN, (a2) a pixel2pixel GAN,
and (a3) a U-Net model, were trained to detect mitosis, nuclei, and tubules, respectively. b Tumor tiles were exhaustively extracted from the
tumor regions delineated by an experienced breast pathologist. c After detection of mitosis, nuclei, and tubules, quantitative patient-level
features were extracted to describe mitotic rates, nuclear pleomorphism, and tubule formation, respectively. d The four most prognostic
features were selected from each feature category by their association with disease-free survival (DFS) using a Cox regression model. e The
top features identified from individual feature families were ensembled to train a final combined Cox proportional hazards model to stratify
the ER+ and LN− breast cancer patients into high- and low-risk categories on the training set D1 with group differences assessed by two-
sided log-rank test. f The prognostic model was subsequently locked down (g) and evaluated on two independent validation cohorts, D2 and
D3 with the differences between high- and low-risk categories measured by two-sided log-rank test.
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white-dominated training set D1 and the validation set D2, all
patients in the D3 validation set were South Asian women.
Approximately 82% of the patients in D1, D2, and D3 were
diagnosed as histologic grade 2/grade 3. Particularly, 63% of the
patients in D3 were grade 3, much higher than the 16% in D1 and
the 27.3% in D2. The vast majority of the patients in D1 and D3
were HER2 negative (HER2−) (except one HER2 positive (HER2+)
case in D1) while in D2, 42% patients were HER2−, 20% patients
were HER2+, and 38% had unknown HER2 status. Additionally,
65% of all the patients in D1+ 2+ 3 (D1+ D2+ D3) were treated
with adjuvant chemotherapy (28% in D1, 100% in D2, and 68% in
D3). Of note in D1, chemotherapy use was likely guided by the
ODX score, unlike the other two cohorts.

Experiment 1: model construction and validation
A total of 12 prognostic features were obtained by combining the
top 4 features identified in each of the three feature categories (i.e.,
nuclear morphology, mitotic rates, and tubule formation) using a

Cox regression model targeting DFS on D1 (see Supplementary
Table 1 for a brief description of the 12 identified top features). The
distribution of the four identified features from each of the nuclear,
mitotic, and tubule feature categories between the high-risk and
low-risk groups predicted by IbRiS on all cohorts D1+2+3 is
illustrated in Supplementary Fig. 2. Three representative features
(i.e., mitotic counts, locally connected nuclear clusters, and the ratio
of tubule nuclei count to non-tubule nuclei count) are presented in
Fig. 2. Figure 2 shows that patients who did not have DFS events
tended to have fewer mitotic events, fewer connected nuclear
clusters, and a higher proportion of tubule nuclei in relation to
those patients who did experience an event.
A LASSO regularized Cox regression model (IbRiS) was

constructed with the 12 identified features correlating to DFS on
D1 (n= 116) (see Supplementary Table 2 for the non-zero
coefficients of the features). A dichotomized risk category was
generated from the model as described in the “Results” section.
The distribution of the continuous risk scores for each individual
cohort is illustrated in Supplementary Fig. 3. KM survival curves
were generated for high (IbRiSH) and low (IbRiSL) risk groups for
datasets D1, D2, and D3, respectively, with hazard ratio (HR)= 6.36
(95% confidence interval (CI)= 2.69–15, p= 2 × 10–5) on D1,
HR= 2.33 (95% CI= 1.02–5.32, p= 0.045) on D2, and HR= 2.94
(95% CI= 1.18–7.35, p= 0.0208) on D3 (see Fig. 3). Patients
predicted as high risk by IbRiS had a significantly worse outcome
in terms of DFS than patients in the low-risk group. Notably, the
separation of KM curves between IbRiSH and IbRiSL risk groups
was more evident beyond the early survival times (~50 months),
which reveals the model’s capability in identifying late DFS events.
Since 20% of patients in D2 were HER2 positive and 38% had
unknown HER2 status, we additionally performed survival analysis
of IbRiS on HER2− patients in D2 after excluding the patients with
HER2+ or unknown HER2 status (1st plot in Supplementary Fig. 4)
as well as on HER2− and HER2 unknown patients in D2 after
excluding patients with HER2+ status (2nd plot in Supplementary
Fig. 4). In both KM curves, the trend that the IbRiSH group had a
poorer outcome in terms of DFS was observed, although the
survival differentiation is not statistically significant, potentially
due to the low number of patients included.
Univariate and multivariable Cox proportional hazards analyses

for DFS on IbRiS-derived risk category, clinicopathological
variables, chemotherapy treatment, and ODx risk category on
D1, D2, and D3 are shown in Table 2. On univariate analysis,
except for IbRiS-derived risk categories and age on D1, none of the
clinicopathological factors was significantly prognostic of DFS on
D1, D2, and D3. The patients in IbRiSH had significantly worse DFS
compared to those in IbRiSL with HR= 6.36 (95% CI= 2.69–15,
p= 2e−05) on D1, HR= 2.33 (95% CI= 1.02–5.32, p= 0.0450) on
D2, HR= 2.94 (95% CI= 1.18–7.35, p= 0.0208) on D3). The ODx
risk category was significantly prognostic on D1 (HR= 2.48, 95%
CI= 1–6.2, p= 0.0497) and D2 (HR= 14, 95% CI= 1.74–110,
p= 0.0132) when combining the intermediate and high-risk
category into a single group. In multivariable analysis, IbRiS was
found to be independently prognostic of DFS in the training set
and both independent testing sets with HR= 6.05 (95%
CI= 2.33–16, p= 0.0002) on D1, HR= 4.51 (95% CI= 1.1–18,
p= 0.0366) on D2, and HR= 4.12 (95% CI= 1.45–12, p= 0.0078)
on D3. Note that we excluded the ODx risk category from the
multivariable analysis on D2 due to the limited number of patients
with ODx scores (23% in D2) available. In order to investigate the
interdependency between IbRiS and ODx risk category on D2,
Lin’s concordance correlation coefficient33 was calculated with the
value of 1 indicating a perfect agreement and −1 representing
completely disagreement. The concordance was found to be low
between IbRiS (low versus high-risk group) and ODx test (low and
intermediate versus high ODx risk category: 0.16 (95%
CI=−0.21–0.49); low versus intermediate and high ODx risk
category: 0.26 (95% CI=−0.08–0.54)).

Table 1. Summary of clinicopathological variables of the three patient
cohorts.

Clinical variables Training set
D1 (UH) N(%)

Validation set
D2 (ECOG)
N(%)

Validation set
D3 (TMC) N(%)

No of patients 116 121 84

Age 59.7 ± 10.4 50.0 ± 8.8 50.4 ± 10.4

≥50 years 99(85%) 63(52%) 40(48%)

<50 years 17(15%) 58(48%) 44(52%)

Race

Non-Hispanic white 89(77%) 112(93%) 0(0%)

Non-Hispanic black 26(22%) 3(2%) 0(0%)

South Asian 0(0%) 0(0%) 84(100%)

Other 1(1%) 6(5%) 0(0%)

PR status

Positive 98(84%) 105(87%) 72(86%)

Negative 17(15%) 16(13%) 12(14%)

Unknown 1(1%) 0(0%) 0(0%)

HER2 status

Positive 1(0.9%) 24(20%) 0(0%)

Negative 112(96.5%) 51(42%) 84(100%)

Unknown 3(2.6%) 46(38%) 0(0%)

Histologic grade

Grade 1 26(22%) 15(12.4%) 1(1%)

Grade 2 72(62%) 57(47.1%) 30(36%)

Grade 3 18(16%) 33(27.3%) 53(63%)

Unknown 0(0%) 16(13.2%) 0(0%)

Tumor size

≤20mm 75(65%) 65(54%) 17(20%)

>20mm 40(34%) 55(45%) 60(72%)

Unknown 1(1%) 1(1%) 7(8%)

Chemotherapy

Yes 32(28%) 121(100%) 57(68%)

No 82(71%) 0(0%) 6(7%)

Unknown 2(1%) 0(0%) 21(25%)

Event status

Event 22(19%) 23(19%) 21(25%)

Censored 90(78%) 98(81%) 51(61%)

Unknown 4(3%) 0(0%) 12(14%)
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Experiment 2: IbRiS-derived risk category versus ODx risk
category
We sought to demonstrate the prognostic ability of IbRiS-derived
risk scores within each individual ODx category. ODx scores were
available for n= 116 patients in D1 and n= 28 patients in D2. As
shown in the KM curves in Fig. 4, patients in the IbRiSH group
experienced a higher relapse probability than those classified as
IbRiSL in the high ODx categories for both D1 and D2. Specifically, in
the high ODx risk category (D1+2), among the 10 patients predicted
as IbRiSL, 9 patients had favorable outcomes (non-DFS event with a
median follow-up of ~7 years) while among the 7 patients identified
as high risk by IbRiS, 5 of them suffered recurrence/death.
We additionally generated KM plots for DFS for the low versus

intermediate versus high ODx risk categories to demonstrate the
prognostic performance of ODx risk category on D1 and D2, as
shown in Supplementary Fig. 5.

Experiment 3: IbRiS-derived risk category versus histologic
grade
We sought to demonstrate the prognostic ability of IbRiS-derived risk
categories in subgroups stratified by pathologist-assigned histologic

grades. As shown in the KM curves in Fig. 5, for the high-grade
groups, patients predicted as IbRiSH had significantly worse
prognosis than those predicted as IbRiSL for all the three cohorts.
Specifically, for the pathologist-assigned high-grade group (D1+2+3),
50% of patients identified as IbRiSH suffered from DFS events, while
among the patients classified as IbRiSL only 14% recurred/died.
We additionally generated KM plots for DFS for the low versus

intermediate versus high histologic grade groups to demonstrate
the prognostic performance of histologic grade on D1, D2 and D3
as shown in Supplementary Fig. 5. The survival analysis of clinical
risks (simultaneously considering tumor grade and tumor size)34 in
terms of DFS was also performed on the combination of three
cohorts (D1+2+3) as shown in Supplementary Fig. 6.

DISCUSSION
Oncotype Dx (ODx)8,9 is a widely applied multi-gene-based assay
in clinical practice that has been clinically validated to be
prognostic and predictive of treatment benefit of adjuvant
chemotherapy. However, ODx is expensive and tissue destructive.
More importantly, consistent disagreement in risk classification
between the ODx test and other molecular assays has been

Fig. 2 Representative H&E WSI comparison of a recurrent (top row) and a censored (bottom row) patient. The first column (a, f) shows the
original WSI with the pathologist-annotated tumor region. The second column (b, g) illustrates the distribution of mitotic counts on the WSI with
warmer color in the scale bar indicating a higher mitosis number. The third column (c, h) is a magnified view of a tumor tile. The fourth column
(d, i) demonstrates the top-identified nuclear feature, which quantifies the number of connected nuclei clusters (connected in green line). The fifth
column (e, j) shows the tubule feature “ratio of tubule nuclei count to non-tubule nuclei count” with tubule nuclei highlighted in cyan.

Fig. 3 Prognostic performance of IbRiS on D1-D3. KM curve estimates for DFS for IbRiSH (red) versus IbRiSL (blue) across D1–D3 (a–c), with
IbRiSH demonstrating a significantly worse prognosis compared to IbRiSL on D1, D2, and D3 using two-sided log-rank approach.
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identified, with ODx incorrectly identifying a number of patients
who are likely to have a low risk of recurrence as high risk. In one
comparison study12 between ODx and Prosigna (another FDA
approved Prognostic Gene Signature), Prosigna was found to be a
better indicator of ROR than the ODx test. In addition, ODx was
found to be significantly less accurate in African American versus
Caucasian breast cancer patients, suggesting ODx was not well
calibrated for racial/ethnic minority populations11.

In this study, we presented a digital-pathology-based classifier
to risk stratify ER+ and LN− breast cancer patients by
comprehensively measuring characteristics related to the nuclear
histomorphology, tubule formation, and mitotic activity from H&E-
stained slide images. Additionally, we investigated if the image
risk model (IbRiS) was able to provide further granular prognostic
value over the ODx test. While a few studies have shown the
association between QH features extracted from digitized H&E-

Table 2. Univariate and multivariable analysis for DFS on IbRiS-derived risk category, clinicopathological variables, chemotherapy treatment, and
ODx risk category on D1, D2, and D3.

Univariate analysis

Clinical variables UH (D1)
Hazard ratio (95% confidence
interval, p), patient number

ECOG 2197 (D2)
Hazard ratio (95% confidence
interval, p), patient number

TMC (D3)
Hazard ratio (95% confidence
interval, p), patient number

Age (<50 years vs. ≥50 years) HR= 0.33 (95% CI= 0.12–0.85,
p= 0.0218), N= 116

HR= 0.85 (95% CI= 0.37–1.9,
p= 0.6927), N= 121

HR= 0.97 (95% CI= 0.41–2.3,
p= 0.9426), N= 84

Race (Non-Hispanic white vs.
Others)

HR= 0.55 (95% CI= 0.22–1.4,
p= 0.1918), N= 116

N/A N/A

Tumor size (<20mm vs. ≥20mm) HR= 0.93 (95% CI= 0.37–2.3,
p= 0.8715), N= 115

HR= 1.47 (95% CI= 0.64–3.4,
p= 0.3588), N= 120

HR= 0.93 (95% CI= 0.31–2.8,
p= 0.8944), N= 77

PR (PR− vs. PR+) HR= 3.53 (95% CI= 0.47–26,
p= 0.2185), N= 115

HR= 1.66 (95% CI= 0.39–7.1,
p= 0.4953), N= 121

HR= 1.57 (95% CI= 0.37–6.7,
p= 0.545), N= 84

HER2 (HER2− vs. HER2+) HR= 2.5642 (95% CI= 0.02–18.80,
p= 0.5678), N= 113

HR= 0.79 (95% CI= 0.25–2.5,
p= 0.6843), N= 75

N/A

Histologic grade (high vs.
intermediate vs. low)

HR= 1.92 (95% CI= 0.94–3.9,
p= 0.0725), N= 116

HR= 1.58 (95% CI= 0.77–3.2,
p= 0.216), N= 105

HR= 0.85 (95% CI= 0.36–2,
p= 0.7084), N= 84

Histologic grade (high and
intermediate vs. low)

HR= 1.83 (95% CI= 0.54–6.2,
p= 0.333), N= 116

HR= 6.89 (95% CI= 0.94–877.43,
p= 0.0599), N= 105

N/A

Histologic grade (high vs.
intermediate and low)

HR= 2.48 (95% CI= 0.96–6.4,
p= 0.0609), N= 116

HR= 1.21 (95% CI= 0.47–3.1,
p= 0.6945), N= 105

HR= 0.85 (95% CI= 0.36–2,
p= 0.7084), N= 84

Chemotherapy (yes vs. no) HR= 1.28 (95% CI= 0.52–3.2,
p= 0.5909), N= 114

N/A HR= 0.56 (95% CI= 0.16–1.9,
p= 0.3623), N= 63

Oncotype Dx (ODx) category (high
vs. intermediate vs. low)

HR= 1.85 (95% CI= 1.05–3.3,
p= 0.0348), N= 116

HR= 3.07 (95% CI= 1.36–6.9,
p= 0.0067), N= 28

N/A

Oncotype Dx (ODx) category (high
and intermediate vs. low)

HR= 2.48 (95% CI= 1–6.2,
p= 0.0497), N= 116

HR= 14 (95% CI= 1.74–110,
p= 0.0132), N= 28

N/A

Oncotype Dx (ODx) category (high
vs. intermediate and low)

HR= 2.18 (95% CI= 0.73–6.5,
p= 0.1608), N= 116

HR= 3.32 (95% CI= 0.82–13,
p= 0.0937), N= 28

N/A

Model derived risk category (IbRiSH

vs. IbRiSL)
HR= 6.36 (95% CI= 2.69–15,
p= 2e−05), N= 116

HR= 2.33 (95% CI= 1.02–5.32,
p= 0.045), N= 121

HR= 2.94 (95% CI= 1.18–7.35,
p= 0.0208), N= 84

Multivariable analysis

Clinical variables UH (N= 113) ECOG 2197 (N= 65) TMC (N= 58)

Age (<50 years vs. ≥50 years) HR= 0.66 (95% CI= 0.22–2,
p= 0.4739)

HR= 1.75 (95% CI= 0.47–6.5,
p= 0.4023)

HR= 1.03 (95% CI= 0.37–2.9,
p= 0.9515)

Race (Non-Hispanic white vs. Others) HR= 0.69 (95% CI= 0.26–1.9,
p= 0.4614)

N/A N/A

Tumor size (<20mm vs. ≥20mm) HR= 0.8 (95% CI= 0.28–2.3,
p= 0.6732)

HR= 2.33 (95% CI= 0.54–10,
p= 0.2565)

HR= 1.15 (95% CI= 0.37–3.6,
p= 0.8133)

PR (PR− vs. PR+) HR= 2.58 (95% CI= 0.34–20,
p= 0.3611)

HR= 0.41 (95% CI= 0.07–2.3,
p= 0.3124)

HR= 2.72 (95% CI= 0.32–23,
p= 0.3564)

HER2 (HER2− vs. HER2+) HR= 1.15 (95% CI= 0.01–24.28,
p= 0.9340)

HR= 0.89 (95% CI= 0.24–3.4,
p= 0.8688)

N/A

Histologic grade (high vs.
intermediate vs. low)

HR= 1.36 (95% CI= 0.6–3.1,
p= 0.4591)

HR= 1.32 (95% CI= 0.48–3.7,
p= 0.5921)

HR= 1.01 (95% CI= 0.35–2.9,
p= 0.9894)

Oncotype Dx (ODx) category (high vs.
intermediate vs. low)

HR= 2.11 (95% CI= 0.97–4.6,
p= 0.0606)

N/A N/A

Model derived risk category (IbRiSH vs. IbRiSL) HR= 6.05 (95% CI= 2.33–16,
p= 0.0002)

HR= 4.51 (95% CI= 1.1–18,
p= 0.0366)

HR= 4.12 (95% CI= 1.45–12,
p= 0.0078)
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stained slides and the ODx risk categories30,31,35,36, these studies
either solely focused on one component of the three feature
categories (i.e., nuclear morphology, mitotic rates, and tubule
formation) or did not explore the added prognostic value the
image-based signatures could offer over the ODx test. For
example, Whitney et al.35,36 assessed the ability of computerized
nuclear shape and architecture features to predict ODx risk
categories for breast cancer patients. Romo-Bucheli et al.30

developed a deep learning based mitosis detection classifier on
WSIs and further evaluated the correlation of mitosis count with
ODx risk categories for breast cancer patients.
In our study, from the survival analysis of IbRiS in the subgroups

of ODx risk categories, we found that IbRiS was able to add
significant prognostic value to the ODx risk category (Fig. 4). For
the patients distributed in the high ODx category, IbRiS was able
to identify patients with true low ROR. These results suggest that
among the patients identified as high risk by ODx test in clinical
practice, some of them, however, are in fact true low risk and
could be effectively identified by IbRiS, thus safely avoiding
aggressive adjuvant chemotherapy.
IbRiS was validated as prognostic on two independent

validation cohorts independent of clinicopathological variables.
In addition, we performed survival analysis using histologic grade
on D1, D2 and D3 and ODx risk category on D1 and D2
(Supplementary Fig. 5). Notably, the rate of chemotherapy
administration varied among the subgroups in D1 with 26.6%

for IbRiSL versus 35% for IbRiSH, 1.15% for the low versus 23.9% for
the intermediate versus 70.6% for the high histologic grade, and
6.67% for low versus 42.9% for intermediate versus 83% for high
ODx risk category. The heterogeneity in treatment among the
subgroups (in terms of IbRiS-derived risk groups, histologic grades,
or ODx risk categories) resulted in a differing impact on the
corresponding patient outcome. In the scenario of homogeneous
therapy, with higher survival improvement due to higher
chemotherapy administration rate in the high-risk group could
being effectively eliminated, the risk stratification among the risk
groups could be potentially increased in D1.
The Nottingham Grading Scheme (NGS) is one of the most

commonly utilized traditional prognostic factors for IBC by
pathologists in routine clinical practice13,14. The NGS includes
the measurements of nuclear pleomorphism, mitotic count, and
tubular differentiation to assess tumor aggressiveness and stratify
breast cancer patients by ROR. While not significantly prognostic,
histologic grades still showed a certain level of prognostic value in
our study, as evidenced by the marginal significance in univariable
analysis in D1 and D2 (D1: p= 0.0609 for high versus intermediate
and low grade; D2: p= 0.0599 for high and intermediate versus
low grade) and survival analysis for D1+2+3 in Supplementary Fig.
5. A possible reason for the non-significant prognostic value of
histologic grade could be the relatively small number of patients
and DFS events in the cohorts considered. However, the poor to
moderate inter-reader disagreement with breast cancer grading

Fig. 4 Prognostic performance of IbRiS within individual ODx risk category in D1-D2. KM curve estimates for DFS for IbRiSH (red) versus
IbRiSL (blue) in the low, intermediate, and high ODx risk categories, respectively across D1+2 (a, d, g), D1 (b, e, h) and D2 (c, f, i) with the
differences between the risk categories assessed by two-sided log-rank test. IbRiS was significantly prognostic within high ODx risk category
for both D1 and D2.
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has remain a critical challenge in pathology practice16–22. For
example, in an ECOG study of inter-observer reproducibility of
NGS in stage II breast cancer, two committee pathologists only
concurred on the histologic grade for 54% of patients, marginally
higher than the agreement rate expected by chance16. Taking this
into account, it is imperative to develop an objective and accurate
prognostic model as a complementary tool to NGS in clinical
practice to improve the assessment of ROR for breast cancer
patients. For example, Wang et al.37 built DeepGrade, a CNN-based
model for further risk stratification of the breast tumors in
intermediate histology grade. DeepGrade was trained for binary
classification of low versus high histological grade with H&E WSIs
of breast tumors. DeepGrade was then applied to re-stratify the
tumors with intermediate histologic grade into high- (similar with
high-grade) or low- (similar with low grade) risk groups, with the
predicted high-risk group showing a significantly elevated ROR
compared with the low-risk group. Similarly, Jaroensri et al.38

constructed three DL models to predict pathologist-based
reference standards for the three NGS components, respectively.
They also found that the AI-NGS combining the output of the
three DL models delivered non-inferiority performance for breast
cancer prognosis compared with pathologists grading. Our study
differs from these two studies in a couple of critical ways: First, the
abstract image representations captured in the two studies for
model predictions lack biologic interpretability as compared with
the biologically explainable QH features employed in our study.
Second, DeepGrade and AI-NGS were both trained with histologic
grade as ground truth and the models’ prognostic significance
were then demonstrated. In contrast, in our study, IbRiS was
constructed by directly associating the image features with
survival outcome. Additionally, the prognostic relevance of the
IbRiS classifier was investigated in the context of all three
histologic grade groups. As shown in Fig. 5, IbRiS significantly

stratified the high- and low-risk patients within the high histologic
groups. These results suggest that with the added prognostic
value of IbRiS to histologic grade, the patients at true low risk
could be further distinguished from the high-grade group who
could potentially safely omit the adjuvant chemotherapy.
The potential clinical impact of IbRiS lies in complementing the

ODx test and histologic grade in clinical practice for a more
accurate assessment of ROR for breast cancer patients. In some
ways, IbRiS more closely mirrors a multi-gene expression-based
test like ODx in that it produces a recurrence score based on the
weighted combination of the expression of individual and
interpretable image features. At least part of the reason for the
widespread clinical adoption of ODx has been the inherent
interpretability of the test39, i.e., being able to connect the
recurrence score to the individual genes. Therefore, it stands to
reason that IbRiS might be more amenable to clinical adoption
than black-box-based deep learning models like DeepGrade. In
addition, IbRiS only requires a digital slide image of the biopsy or
surgically excised tissue specimen and computing resources to
provide the risk score. With the prevalence of WSI scanners, the
IbRiS model holds vast potential to serve as an inexpensive and
faster alternative prognostic tool in clinical settings, especially in
low resource settings where molecular assays like ODx may not be
available. Furthermore, IbRiS provides an opportunity to efficiently
analyze tumor heterogeneity by processing multiple tissue slides
from one tumor and identifying the most relevant features from
across the slides for predicting cancer outcomes.
Limitations of our study included the fact that our model was

retrospectively validated based on prognostic significance unlike
the ODx test, which was prospectively validated for both
prognostic significance and treatment benefit prediction. Addi-
tionally, our study focused solely on LN− and ER+ IBC patients
and had a relatively small sample size. Future work will entail

Fig. 5 Prognostic performance of IbRiS within individual histology grade in D1-D3. KM curve estimates for DFS for IbRiSH (red) versus IbRiSL

(blue) in the low, intermediate, and high histologic grades, respectively across D1+2+3 (a, d, h), D1 (b, e, i), D2 (c, f, j) and D3 (g, k) with the
differences between the risk categories assessed by two-sided log-rank test. IbRiS was significantly prognostic within high histologic grade
groups for all three cohorts.
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validating the digital pathology-based pipeline in additional
independent pan-stage, molecular subtypes, and also in terms
of its predictive benefit for adjuvant chemotherapy.
In summary, this study was the first to quantitatively measure

the joint QH features of nuclear morphology, mitotic rates, and
tubule formation on H&E WSIs and demonstrate its prognostic
significance in terms of DFS for ER+ and LN− IBC. In addition, the
QH features-based model provided more granular risk stratifica-
tion within the ODx defined risk category. The prognostic
capability of these identified features could also potentially be
applicable in IBCs with positive lymph nodes as well as other
molecular subtypes.

METHODS
Dataset description
Our study comprised three independent cohorts (D1, D2, and D3)
of patients with ER+ and LN− IBC. H&E-stained slides of surgically
resected tumor specimen (no neoadjuvant treatment was admi-
nistered) from D1, D2, and D3 were respectively digitized using a
Roche Ventana iScan HT Scanner, a Philips Scanner, and a Ventana
DP 200 Scanner (Hemel Hempstead, UK) at ×40 magnification (0.25
micron per pixel). In our experiments, D1 served as a training set
for feature selection and model construction. D2 and D3 served as
independent validation sets to evaluate the performance of the
final locked-down prognostic model.
The flowchart for the inclusion and exclusion criteria for patient

selection on D1, D2 and D3 are shown in Supplementary Fig. 1. A
summary of clinicopathological variables of the three cohorts of
ER+ and LN− breast cancers is shown in Table 1.
Training cohort D1: breast cancer patients treated between

1996 and 2018 at University Hospitals (UH) having a correspond-
ing ODx score available were identified and retrieved by the
pathologists from the hospital archive. The slides were subse-
quently digitized and transferred. H&E-stained tumor WSI along
with clinicopathological/outcome information were available for
519 patients. Patients without any event (recurrence/metastasis/
death) were only recruited in this study when at least a 5-year
follow-up was available. This process resulted in n= 116 ER+ and
LN− breast cancer patients (n= 22 events) in D1. This study was
approved by the Institutional Review Board (IRB) at University
Hospitals (IRB No 02-13-42C).
Validation cohort D2: The Eastern Cooperative Oncology Group

(ECOG) 219740 is a prospective, randomized, phase III clinical trial
that recruited n= 2778 patients with IBC (1 to 3 positive LN/LN−
with tumor size ≥1 cm) from 1998 to 2007 to compare the
patient’s outcome under two different adjuvant chemotherapy
regimens (i.e., doxorubicin plus docetaxel versus doxorubicin plus
cyclophosphamide; a previous study40 identified no significant
difference in patient outcomes between the two treatment
regimens). ECOG 2197 is deemed an ideal validation set due to
the homogeneity in treatment (all the patients received adjuvant
chemotherapy), which reduced the effect of treatments on patient
outcomes. The access to the ECOG dataset involved a 2-year long
process including a proposal review first through ECOG and
subsequently through the Cancer Therapy Evaluation Program
(CTEP) at the National Cancer Institute (NCI). From this superset,
D2 comprises the subset of n= 121 ER+ and LN− breast cancer
patients (n= 23 events), whose corresponding WSIs and clinical
information were both accessible. ECOG provided us with the de-
identified clinical data from the archived clinical trial along with
the de-identified images. This study was approved by the IRB at
University Hospitals (IRB No 02-13-42C).
Validation cohort D3: D3 comprises n= 84 ER+ and LN− Indian

patients treated in 2009 and with follow-up until 2020 (n= 21
events) at Tata Memorial Center (TMC) which were identified and
retrieved by the pathologist from hospital archive. The H&E

stained tumor slides for individual patients were digitized in and
subsequently transferred from TMC. The study was approved by
Institutional Ethics Committee, TMC, IEC no. 1712.
The study conformed to Health Insurance Portability and

Accountability Act (HIPAA) guidelines and was approved by the
IRB at University Hospitals (IRB No 02-13-42C). The need for
written consent from participants was waived due to the use of
de-identified retrospective data.
The tumor region in the WSI was manually annotated or

checked by a pathologist, with artifacts intentionally avoided (i.e.,
tissue folding, pen mark, staining artifacts, and bubbles). The slide
with the largest representative tumor was selected for the
subsequent analysis for the patients who have multiple slides
available.

Feature extraction
A set of 343 QH features were extracted to describe nuclear
morphology, mitotic rates, and tubule formation based on the
masks of nuclei, mitosis, and tubules, respectively, generated by
three different deep learning models. Additional details regarding
deep learning models, algorithms for feature calculation, and
descriptions of features extracted are available in the Supplemen-
tary Methods. All tiles (2000 × 2000 pixels at ×40 magnification)
containing tumor region as annotated by a pathologist were
exhaustively extracted from the WSIs. In each individual tile,
nuclear morphology, mitotic activity, and tubule formation-related
characteristics were computed. The patient-level features were
then calculated by aggregating (i.e., mean, median, max, sum,
standard deviation, skewness, kurtosis, histogram entropy, and
approximate entropy) these features across all the tiles.
Nuclear histomorphometric feature extraction: we employed a

Pixel2Pixel GAN for nuclei segmentation. Following nucleus
segmentation, we extracted 242 nuclear features to quantify the
nuclear histomorphology of each WSI, including global graph41,
shape, cell cluster graph (CCG)42, cell orientation entropy (CORE)43,
and Haralick texture feature families44. Global graph and CCG
feature families, respectively, describe the global and local spatial
distribution of nuclei; shape features capture nuclear boundary
properties such as smoothness and elongation; the CORE feature
family quantitatively measures the disorder degree of nuclear
orientations; Haralick texture features characterize chromosome
patterns within nuclei.
Mitosis feature extraction: a CNN was trained to detect mitotic

events on H&E-stained WSIs. In addition, an epithelium segmenta-
tion model was trained to identify epithelial nuclei for subsequent
mitosis ratio calculation. Forty-five features were extracted from
each WSI based on detected mitoses to describe the mitosis
prevalence status. More specifically, these features included: (1)
multiple statistical measurements of the mitotic count; (2) ratio of
mitotic count to epithelial nuclei count, ratio of mitotic count to
blue-ratio nuclei count, and ratio of mitotic count to nuclei count,
over all of the extracted tumor tiles across the WSI; (3) the
proportion of tiles presenting a specific mitotic density within the
WSI; and (4) quantitative proliferation score calculated by
simulating the mitosis prevalence assessment in clinical practice.
Tubule feature extraction: tubule formation represents the

portion of tumor cells forming tubular glands19. We trained a
U-Net to automatically segment tubules in breast cancer
histopathological images. A total of 56 tubule features were
extracted to measure tubule formation based on the segmented
tubule masks. Those features comprised various statistical
summaries of tubule ratio metrics on all the tiles across the WSI
of each patient (i.e., the ratio of tubule nuclei count to the non-
tubule nuclei count, the ratio of tubule nuclei count to the
epithelium nuclei count, and the ratio of tubule nuclei count to
the nuclei count) as well as the number of tiles falling between
different tubule ratio intervals.
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Feature selection and classifier construction
In total, 343 features were finally extracted (242 nuclear
pleomorphism features, 45 mitotic count features, and 56 tubule
formation features). A Cox proportional hazards regression model
(henceforth referred to as Cox regression model)32, regularized by
Least Absolute Shrinkage and Selection Operator (LASSO)45, was
constructed to identify important predictors of DFS. First, to keep
the balance among the three feature categories, we implemented
a Cox regression model to identify the top four prognostic
features associated with DFS separately on each of the three
categories on training set D1. The total number of top features
(n= 12) for inclusion within the model was determined as ~10%
of the patient number in the training set. Following feature
identification, a final LASSO regularized Cox regression model was
used to compute the coefficients for each of the features; 11
features were assigned non-zero coefficients as part of inclusion
within IbRiS while one feature had a zero-coefficient value.
An optimal risk score threshold (denoted as “θopt” hereafter)

was identified from the training set D1 (see Supplementary
Methods for details) to dichotomize the continuous risk scores
into binary high/low-risk categories.

Statistical analysis
IbRiS was validated on two independent testing sets, D2 and D3.
Specifically, we calculated a continuous risk score for each patient
on D2 and D3 using the feature coefficients estimated from D1.
We then classified the patients into a binary high (risk score >θopt)
versus low (risk score ≤θopt) risk category of recurrence by
applying θopt identified from D1. DFS was defined as the time
from diagnosis/random treatment assignment until first recur-
rence (loco-regional or distant metastasis) or death, whichever
occurred earlier. Patients were censored when they did not have
an event at the termination of the study or were lost to follow-up
at any time during the study. Kaplan–Meier (KM) survival analysis
with DFS as the endpoint was performed between the IbRiS-
derived high- versus low-risk categories. The rate of DFS was
estimated using the KM method, and the difference of DFS was
assessed using log-rank test46 between the high- and low-risk
categories predicted by IbRiS on D1, D2, and D3. We also
performed subgroup survival analysis respectively for high,
intermediate, and low ODx risk categories (traditional recurrence
score categorization was applied: low: <18, intermediate: 18–30,
high: >30)9 as well as high, intermediate, and low histologic
grades assigned by pathologists.
We conducted a univariate Cox proportional hazard analysis to

evaluate if any of the routinely examined clinical parameters,
treatments, and ODx risk categories were prognostic of DFS on D1,
D2, and D3. The clinical parameters include age (≤50 years versus
>50 years), race (white versus other), tumor size (<20mm versus
≥20mm), Progesterone Receptor (PR) status (negative versus
positive), HER2 status (negative versus positive), histologic grade
(Grade I versus Grade 2 versus Grade 3). Multivariable Cox
analysis47 was also performed to assess the independent
prognostic significance of IbRiS after accounting for the other
clinicopathological variables on D1, D2, and D3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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