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Integrated radiomic framework for breast cancer and tumor
biology using advanced machine learning and multiparametric
MRI
Vishwa S. Parekh 1,2 and Michael A. Jacobs1,3

Radiomics deals with the high throughput extraction of quantitative textural information from radiological images that is not
visually perceivable by radiologists. However, the biological correlation between radiomic features and different tissues of interest
has not been established. To that end, we present the radiomic feature mapping framework to generate radiomic MRI texture
image representations called the radiomic feature maps (RFM) and correlate the RFMs with quantitative texture values, breast tissue
biology using quantitative MRI and classify benign from malignant tumors. We tested our radiomic feature mapping framework on
a retrospective cohort of 124 patients (26 benign and 98 malignant) who underwent multiparametric breast MR imaging at 3 T. The
MRI parameters used were T1-weighted imaging, T2-weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and diffusion
weighted imaging (DWI). The RFMs were computed by convolving MRI images with statistical filters based on first order statistics
and gray level co-occurrence matrix features. Malignant lesions demonstrated significantly higher entropy on both post contrast
DCE-MRI (Benign-DCE entropy: 5.72 ± 0.12, Malignant-DCE entropy: 6.29 ± 0.06, p = 0.0002) and apparent diffusion coefficient (ADC)
maps as compared to benign lesions (Benign-ADC entropy: 5.65 ± 0.15, Malignant ADC entropy: 6.20 ± 0.07, p = 0.002). There was
no significant difference between glandular tissue entropy values in the two groups. Furthermore, the RFMs from DCE-MRI and DWI
demonstrated significantly different RFM curves for benign and malignant lesions indicating their correlation to tumor vascular and
cellular heterogeneity respectively. There were significant differences in the quantitative MRI metrics of ADC and perfusion. The
multiview IsoSVM model classified benign and malignant breast tumors with sensitivity and specificity of 93 and 85%, respectively,
with an AUC of 0.91.

npj Breast Cancer  (2017) 3:43 ; doi:10.1038/s41523-017-0045-3

INTRODUCTION
Radiomics is an emerging field which deals with the high
throughput extraction of quantitative textural features from
radiological images.1–4 The central hypothesis of radiomics is that
by examining the textural features in medical images, it is possible
to decode tissue characteristics and pathology. The current
radiomic methods extract information about the gray-scale
patterns, inter-pixel relationships and shape based properties of
the region of interest (ROI).5–11 Multiple studies have used radiomic
analysis for differentiating between benign and malignant breast
tumors,12–20 associating radiomic features with histological types
of invasive breast cancer21 and predicting chemotherapy response
in breast cancer patients.22,23 In addition, radiomic analysis has
been applied to different tissue pathologies such as lung, prostate
cancer, and liver cancer, and recently reviewed.4 Most of the
studies in radiomics are focused on extraction of a single
quantitative texture value corresponding to all the voxels within
the tumor. As a result, visualization or interpretation of tumor
heterogeneity or the correlation between tissue biology of the
tumor and the surrounding normal tissue has not been explored.
The unique ability of multiparametric magnetic resonance imaging
(mpMRI) to better characterize tissue parameters provides us with
an opportunity to investigate the correlation between tissue

biology and quantitative radiomic metrics. Multiparametric mag-
netic resonance imaging (MRI) of breast involves acquisition of
advanced functional MRI parameters of dynamic contrast
enhanced-MRI (DCE-MRI) and diffusion weighted imaging (DWI).
In DCE-MRI, a time series acquisition of T1-weighted MRI scans
results in time intensity curves corresponding to different tissue
types. Moreover, tissue vascularity can be evaluated using
pharmacokinetic modeling (PK) of the DCE. Similarly, radiomic
analysis of the PK images would produce textural evolution curves
which provide information about the underlying vascular “texture”
heterogeneity corresponding to different tissue types. Similarly,
radiomic analysis applied to the apparent diffusion coefficient
(ADC) map obtained from DWI investigates the underlying cellular
heterogeneity of the tissue of interest.
To that end, we propose a radiomic feature mapping framework

which transforms MRI images into radiomic feature maps for
visualization and analysis of textural information present in the
images. The radiomic feature maps (RFMs) highlight unique
textural information such as contrast, uniformity, heterogeneity,
etc. about the radiological images. This information can be
correlated with quantitative texture values and quantitative MRI
metrics. The motivation behind the development of radiomic
feature mapping is to empower the radiologists with the ability to
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“see” the hidden textural information present in the radiological
images and correlate it with tissue biology. Furthermore, we
evaluate the textural information of the normal tissue (glandular),
benign, and malignant tumors and correlate this textural
information with the corresponding vascular and cellular proper-
ties of these tissue types. Finally, we analyzed the diagnostic
capabilities of RFM features for prediction of clinical diagnosis as
benign or malignant using a new multi-view feature embedding
and classification model.

RESULTS
Experimental summary
The radiomic feature maps were computed and analyzed for one
hundred and twenty-four women with breast lesions that under-
went mpMRI scan. The mean age of the patients was 52 years
(range: 24–80 years). Ninety-eight women (79%) had malignant
lesions and twenty-six women (21%) had benign lesions. Figures 1
and 2 illustrate typical entropy feature maps corresponding to a
benign and a malignant patient. The radiomic features were
extracted using our radiomic method that creates whole breast
texture images of each feature. The overview of the radiomic
feature mapping procedure for classification of a multiparametric
radiological dataset as benign or malignant is illustrated in Fig. 3. A
total of 690 RFMs were generated for the twenty-three image
multiparametric MRI dataset of each patient. Regions of interest
were defined on each tissue type using the Eigen filter segmenta-
tion method and the MR radiomic feature maps were computed for
different breast tissue. Finally, ROI size (area in cm2), ADC value and
PK-DCE parameters for different regions of interest in each of these
patients were obtained. There was no significant difference in the
tumor size between benign and malignant patient groups (Benign
size: 3.24 ± 2.67 cm2, Malignant size: 2.44 ± 0.31 cm2, p = 0.77).
Table 1 summarizes the entropy values corresponding to the

different regions of interest from the DCE-MRI and ADC map.
Malignant lesions demonstrated significantly higher entropy on

both post contrast DCE-MRI and ADC maps as compared to
benign lesions (Benign DCE entropy: 5.72 ± 0.12, Malignant
DCE entropy: 6.29 ± 0.06, p = 0.0002; Benign ADC entropy: 5.65 ±
0.15, Malignant ADC entropy: 6.20 ± 0.07, p = 0.002). There was no
significant difference in the glandular tissue entropy values
between the two groups (Benign DCE entropy: 6.08 ± 0.10
Malignant DCE entropy: 5.91 ± 0.05, p = 0.16; Benign ADC entropy:
6.06 ± 0.32 Malignant ADC entropy: 6.06 ± 0.19, p = 1.00).

Analysis of textural evolution curves
Figure 4 illustrates the textural evolution curves corresponding to
the different radiomic features obtained from DCE MRI. Figure 4a
and 4b exhibit the textural evolution curves of the normalized
mean values obtained from the entropy feature maps (top)
corresponding to tumor and glandular tissue respectively. The
error bars in the textural evolution curves represent the standard
error for the normalized mean of the entropy values. In Fig. 4b,
there is no change in the texture for glandular tissue for both
benign and malignant patients. However, the shapes of textural
evolution curves were significantly different between benign and
malignant lesions illustrating the difference in contrast uptake
within benign and malignant lesions. The normalized entropy
values during the wash-in phase were significantly (p < 0.05) higher
for malignant than for benign lesions depicting a rapid textural
enhancement for malignant lesions. Similarly, the normalized
entropy values during the washout phase were significantly lower
for malignant than for benign lesions depicting a rapid textural
washout for malignant lesions. Moreover, similar trends were
observed in the textural evolution curves obtained from range
feature maps as illustrated in Fig. 4 (Bottom). Preliminary analysis of
textural evolution curves from entropy feature maps based on the
time to peak and the textural wash out slope is shown below.

a. Time to peak: The average time to peak for benign lesions
(2.21 ± 0.16mins) was significantly longer (p = 0.0003) than for
malignant lesions (1.24 ± 0.07mins).

Fig. 1 Typical multiparametric breast image of a malignant patient. a Dynamic contract enhanced, b T2-weighted, c T1-weighted, d
Pharmacokinetic-DCE (PK-DCE) overlay of Ktrans and EVF, where red indicates high Ktrans and blue demonstrates low Ktranse ADC maps, and f
whole breast entropy feature map
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b. Textural wash out slope: The slope of the textural washout
curves was also significantly different (p = 0.001) between
benign (0.001 ± 0.001) and malignant lesions (−0.002 ±
0.0003).

Analysis of textural evolution metric on DWI
We observed an increase in the first order energy of the lesion
tissue from DWI-b0 to b600 with a texture evolution metric that
was significantly higher (p < 0.001) for malignant (3.09 ± 0.23) than
for benign patients (1.84 ± 0.25). Similarly, the contrast in the
lesion tissue also increased significantly (p = 0.001) for malignant
(1.73 ± 0.14) than benign lesions (1.07 ± 0.13). The texture evolu-
tion metrics for five different radiomic feature maps portraying
different textural characteristics have been summarized in Table 2.

Multi-view feature embedding and classification
The multi-view feature embedding and classification framework
was set up as illustrated in Fig. 5. The optimal set of
hyperparameters for the multi-view classification framework,
obtained using leave one out cross validation based grid search,
were f1 = 18, f2 = 0 f3 = 6, f4 = 8, f5 = 0, f6 = 0, neighborhood
parameter k = 45, dimensionality d = 10 and misclassification
penalty ratio = 2.5:1. The parameter space for each of the input
parameters were set as follows:

a. The subset of features, fi selected from each MRI dataset were
iteratively selected based on the area under the ROC curve
computed using univariate logistic regression.

b. The neighborhood parameter was varied from 5 through 120
in steps of 5.

c. The dimensionality of the transformed feature space was
varied between one and ten.

d. The misclassification penalty ratio between benign and
malignant classes was selected from the set {2:1, 2.5:1, 3:1,
3.5:1, 4:1}.

The multi-view feature embedding and classification model
trained using leave-one-out cross validation resulted in sensitivity
and specificity of 93 and 85%, respectively, with an AUC of 0.91 in
classifying benign from malignant lesions. The ROC curves for the
IsoSVM classification model and other kernels are shown in Fig. 6.
The search space for the misclassification penalty parameter for
the SVM kernels was increased to all the ratios in the set {2:1, 2.5:1,
3:1,3.51, 4:1, 4.5:1,5:1,5.5:1,6:1} The resultant sensitivity, specificity
and AUC from all the SVM classifiers are shown in Table 3. The
multi-view feature transformation and classification framework
was further tested using ten-fold cross validation performed
across 100 trials. The optimal set of hyperparameters obtained
with ten-fold cross validation concurred with the previously
obtained optimal set of hyperparameters using leave one out
cross validation. The average sensitivity and specificity achieved
from ten-fold cross validation experiment were 91 and 82%,
respectively, with an AUC of 0.87. The result from ten-fold cross
validation ascertains the stability of the unified RFM signature, as
well as the IsoSVM classifier. For comparison, the classification of
benign from malignant using tumor size alone produced an AUC
of 0.77 which was significantly lower than the AUC of 0.91
obtained from the unified RFM signature using the IsoSVM
classifier.

DISCUSSION
We have demonstrated that our radiomic feature maps for
visualization and evaluation of radiological texture in radiological
images produced excellent features that were correlated to breast
tissue biology and compared with quantitative metrics of
radiological parameters. Malignant lesions demonstrated increased
entropy compared to benign lesions for both ADC maps and DCE
MRI. In contrast, glandular tissue entropy was similar across all
subjects. Furthermore, the radiomic feature maps (RFMs) demon-
strated excellent sensitivity and specificity in classifying benign

Fig. 2 Typical multiparametric breast image of a benign patient. a Dynamic contract enhanced, b T2-weighted, c T1-weighted, d
Pharmacokinetic-DCE (PK-DCE) overlay of Ktrans and EVF, where red indicates high Ktrans and blue demonstrates low Ktranse ADC maps, and f
whole breast entropy feature map
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from malignant lesions. Moreover, this study relates the quantita-
tive metrics of ADC maps and PK-DCE to radiomics values for
characterization of breast lesions and normal tissue.
Radiomic features, such as, entropy have been shown to classify

between benign and malignant tumors in addition to predicting
patient survival and treatment response in previous studies as
reviewed in ref. 4. However, our work explored the whole image
visualization and interpretation of these quantitative radiomic
values employing RFMs. Indeed, the entropy feature maps exhibit
higher entropy and intra-tumor heterogeneity for malignant
tumors compared to benign tumors. The RFMs would provide
the radiologists with a tool for visual interpretation of the radiomic
feature values. Furthermore, radiomic feature maps provide a
visualization of intra-tumor heterogeneity as opposed to a single
quantitative value provided by quantitative radiomic analysis.

In addition, radiomic feature maps produce voxel-wise radiomic
values improving the quantitative measure. In contrast, single
quantitative value corresponding to the whole tumor region may
not define the entire tumor. This study investigated the relation-
ship between RFMs and underlying tissue biology derived from
quantitative radiological images. Preliminary analysis of RFMs
corresponding to DCE-MRI suggest that time evolution of RFMs is
indicative of heterogeneity in the vasculature of the tissue
microenvironment. We observed that the textural evolution curves
obtained from mean value of the radiomic feature maps had
significantly different curve characteristics for benign and
malignant tumors. Furthermore, the glandular tissue correspond-
ing to benign and malignant patients demonstrated no shape
difference, indicating there is no textural evolution difference with
contrast uptake within glandular tissue. The radiomic features

Table 1. Summary of radiomic feature values and quantitative MpMRI metrics

Feature Glandular tissue Benign lesion Malignant lesion p value

Entropy (Post-contrast DCE) 5.95± 0.05 5.72± 0.12 6.29± 0.06 0.0002

Entropy (ADC map) 6.06± 0.16 5.65± 0.15 6.20± 0.07 0.002

ADC map values (mm2 × 10−3) 2.13± 0.03 1.69± 0.08 1.26± 0.03 0.00001

Ktrans (min−1) values 0.27± 0.21 0.69± 0.45 0.001

EVF (Ve) values 0.27± 0.10 0.61± 0.31 0.006

Tumor size (cm2) 3.24± 2.67 2.44± 0.31 0.77

Ktrans = volume transfer constant, EVF (Ve) extracellular extravascular space

Fig. 3 Concept of the radiomic feature mapping framework. a. The multiparametric radiological dataset (N= 23) is transformed into a high
dimensional radiomic feature space (D= 690) consisting of radiomic feature maps generated using Laplacian of Gaussian, texture statistical
kernels (n= 30). b. The RFM space is first transformed to patient network using the IsoSVM and then high dimensional radiomic feature map
space from each patient is classified as benign or malignant

Integrated radiomic framework for breast cancer
VS Parekh and MA Jacobs

4

npj Breast Cancer (2017)  43 Published in partnership with the Breast Cancer Research Foundation



provided new metrics for comparison of the different tissue types.
Moreover, the vascular parameters of Ktrans and EVF have been
shown to be different between benign and malignant tumors. In
concordance, the radiomic values also demonstrated significant
differences between tissue types. In the previous studies, the ADC
value and PK-DCE for a given region of interest has been
established as an excellent biomarker in classification between
benign and malignant breast tumors.24–31 Here, we establish
radiomic entropy (and others) of the ADC map and DCE-MRI
within the tumor ROI as a biomarker for correlation with cellular

and vascular heterogeneity. The ADC and DCE entropy was
significantly different between benign and malignant tumors.
Furthermore, the entropy ADC feature map provides more insight
into the cellular distribution within the tumor, whereas, the DCE
radiomic metric provides information about the vascularity texture
of the tissue. Additionally, a metric for quantification of tissue
heterogeneity evolution with increasing b value was developed
and analyzed. A subset of the texture evolution metrics for DWI
were significantly different between benign and malignant lesions
indicating a potential biomarker in the texture evolution metric. In
addition, the glandular ADC and radiomics values were similar
across all subjects. These findings lay the groundwork in radiomic
metrics to describe normal vs abnormal tissue, which is needed for
increased use of radiomics in clinical applications.
The training efficacy of most machine learning algorithms

depend on the balance between the number of instances
corresponding to each class. Typically, benign breast tumors are
more frequently observed in clinical setting as compared to
malignant tumors. However, in research setting, MRI for malignant
breast tumors are more frequently obtained than for benign breast
tumors producing a class imbalance that may result in perfor-
mance bias of the trained classifier towards one class. Class
imbalance is a frequent occurrence in health care machine learning
applications. Our work approached the problem of class imbalance

Fig. 4 The DCE-MRI entropy evolution curves corresponding to mean value of the entropy feature map and the range feature map. The range
feature corresponds to the difference between the maximum and minimum intensity values of all the voxels within the sliding window. The
error bars correspond to standard error. (Top) Normalized entropy and (bottom) range feature evolution curves. a Lesion graphs of benign
(blue) and malignant (red). b Contralateral glandular tissue from benign (blue) and malignant patients (red). The shape of the radiomic feature
evolution curves were significantly different between the benign and malignant lesions (p< 0.05). However, there was no significant
difference between the contralateral glandular tissue from benign and malignant patients. Indicative of consistent radiomic features in normal
tissue

Table 2. Summary of the texture evolution metric extracted from
different RFMs DWI

Benign lesion Malignant lesion p value

Energy 1.84± 0.25 3.09± 0.23 <0.001

GLCM dissimilarity 0.98± 0.06 1.26± 0.05 0.001

GLCM contrast 1.07± 0.13 1.73± 0.14 0.001

GLCM homogeneity 1.10± 0.05 0.99± 0.02 0.08

First order entropy 0.93± 0.02 0.97± 0.01 0.12

GLCM Gray level co-occurrence matrix
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by assigning different misclassification penalty to each class type.
Our results indicate that setting an appropriate misclassification
penalty significantly improves the classification accuracy.
Our work has certain limitations. First, the radiomic feature map

creation and classification were performed on retrospective data
and no separate validation data was used. Second, this study
evaluated radiomic feature maps corresponding to only first and
second order statistical features. Other statistical radiomic
methods such gray level run length matrix features,8 Neighbor-
hood gray tone difference matrix feature10 have not been

Fig. 5 Illustration of the multi-view feature embedding and classification framework. The six MRI datasets are first transformed into radiomic
feature map (RFM) space using radiomic feature mapping. The RFMs for DCE-MRI are transformed into textural evolution curves, which are
subsequently reduced to one dimensional embedding using the Isomap algorithm. The vector of one dimensional embedding corresponding
to each RFM forms the 30 dimensional DCE-MRI radiomic signature. The RFMs for DCE High spatial resolution MRI and DWI are transformed
into their respective radiomic signatures based on the textural evolution metric. The remaining datasets of ADC map, T1WI, and T2WI are
directly transformed into radiomic signatures by calculating the mean of the RFMs. Finally, subsets of features (f1, f2,…,f6) from each RFM
signature form a unified RFM signature used to train the IsoSVM Classification model

Fig. 6 The receiver operating characteristic curves corresponding to
the IsoSVM classification (black), radial basis function (RBF) kernel
SVM (blue), linear kernel SVM (red), quadratic kernel SVM (dashed
green) and the cubic kernel SVM kernel (dotted black) evaluated
using leave one out cross validation. The area under the ROC were
obtained at 0.91, 0.82, 0.78, 0.65, and 0.71 for IsoSVM, RBF, linear,
quadratic, and cubic kernel SVMs, respectively

Table 3. Summary of sensitivity, specificity and AUC for the IsoSVM
classifier and various SVM kernels

Classifier Input parameters Sensitivity Specificity AUC

IsoSVM k= 45; d= 10; PR=
2.5:1

0.93 0.85 0.91

Radial basis
function SVM

Sigma= 19; PR=
5:1

0.80 0.77 0.82

Linear SVM PR= 3.5:1 0.85 0.62 0.78

Quadratic SVM PR= 5.5:1 0.85 0.54 0.65

Cubic SVM PR= 5:1 0.93 0.50 0.71

AUC area under the curve, IsoSVM hybrid isomap and support vector
machine, PR the misclassification penalty ratio between benign and
malignant classes
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evaluated in this study. Third, RFMs provide voxel wise hetero-
geneity information of the whole tissue of interest. However, the
feature used in the texture evolution curves and classification
model was the mean derived from the RFMs. In the future studies,
the goal would be to evaluate each voxel of interest and produce
voxel-wise classification.
In summary, RFMs present a new powerful tool for analysis of

textural information present within anatomical and quantitative
radiological images and may provide a new perspective into the
biological information that radiomics is capable of providing and
the potential it holds in future diagnostic applications.

CONCLUSION
This work presents radiomic feature maps (RFMs) for visualization
of textural information present in anatomical and quantitative radi-
ological images. The correlation between the quantitative radi-
ological biomarkers (ADC and PK-DC) with radiomic values
provided by RFMs was established in this paper. Our results
suggest that the textural evolution curves obtained from DCE-MRI
RFMs were significantly different for benign and malignant tumors
establishing a correlation with vascular heterogeneity. Similarly,
the cellular heterogeneity, evaluated using entropy of the ADC
map along with textural evolution metric on DWI was significantly
different between malignant and benign tumors. Finally, the
IsoSVM feature selection and classification model achieved
excellent sensitivity and specificity in comparison to state of the
art classification methods despite highly imbalanced data.

MATERIALS AND METHODS
Clinical data
The radiomic feature mapping framework was tested on a multiparametric
MRI dataset obtained from a retrospective cohort of 124 patients (mean
age = 52, range = 24–80) to classify between malignant and benign lesions.
Out of the 124 patients, 98 had malignant lesions while 26 patients had
benign lesions. Patients were selected for the study based on the potential
for malignant breast lesions with a BIRADS score of 3 or greater from
2008–2010. This retrospective study was approved by the IRB at our facility
and conforms to HIPAA requirements.

Multiparametric MRI imaging protocol
All patients were scanned on a 3-T clinical MRI system using a bilateral
dedicated 4 channel phase-array breast coil in the prone position. MRI
sequences acquired included ultrafast spoiled gradient echo (T1-TFE) T1-
weighted images (TR/TE: 5.37/2.3ms; Slice thickness (ST) = 3mm; Field of
view (FOV): 35 × 35 cm; Flip angle (FA) = 120) and fat suppressed (FS) T2-
weighted spin echo images (TR/TE: 6122/70ms; ST = 4mm; FOV:35 × 35
cm; FA = 900). The DCE-MRI was obtained using FS and non-FS, three-
dimensional, FSPGR T1-weighted (TR/TE = 4.2/2.1 ms; FOV:35 × 35 cm; ST =
5mm) sequences. One non-FS pre-contrast and fourteen post-contrast
images (15 secs per acquisition) for PK analysis were obtained after
intravenous administration via a power injector of a GdDTPA contrast
agent (0.2 mL/kg(0.1mmol/kg)).32,33 Two minutes of T1 fat-suppressed
high temporal resolution (15 sec per acquisition) imaging was obtained to
capture the wash-in phase of contrast enhancement, followed by a high
spatial resolution scan for 2 min. Diffusion weighted imaging was obtained
using an FS spin echo Echo Planar Imaging sequence (TR/TE = 5000/90ms,
SENSE = 2, ST = 3–4mm, b = 0–600 s/mm2) on three planes.

Quantitative MR image analysis
ADC maps were constructed from DWI using a monoexponential equation.
DCE Subtraction images were constructed by subtracting pre-contrast
from the post-contrast high spatial resolution DCE images.

Dynamic MRI with Pharmacokinetic (PK) Contrast Enhancement
The vascularity of breast tissue was obtained using different semi-
quantitative and quantitative metrics.34,35 The semi-quantitative metrics
use the temporal evolution of the time series curves from the DCE MR

images and are scaled into three categories relating to the potential
characterization of the tissue and other known metrics.32,36,37

The PK-DCE quantitative metrics derived were volume transfer constant
(Ktrans (min−1)), the fractional volume of the extracellular extravascular
space (EVF (Ve)), and the transfer rate constant (kep (min−1)) using
commercial software DynaCad (InVivo, Gainesville, Florida).32,33 For both
benign and malignant patients, glandular and lesion tissue, the mean
values and standard deviations of the transfer constant (Ktrans) extra-
vascular volume fraction-EVF (Ve) were recorded.

Registration
The mpMRI images were co-registered using the algorithm developed in
ref. 38. The registration algorithm reduces information loss during rescaling
and reslicing of the MRI volumes using a 3D wavelet transformation. The
pre-contrast DCE image was used as the reference registration image for all
other images.

Image segmentation
Normal glandular tissue, benign and malignant tumors were segmented
from the mpMRI dataset using the Eigenfilter algorithm.39 Eigenfilter is a
well-established semi-automatic segmentation algorithm based the Gram-
Schmidt orthonormalization algorithm using tissue signatures to define
different tissue types.40–42

Radiomic feature mapping
The radiomic feature mapping framework transforms each MRI image into
a multidimensional radiomic feature map space (RFMS), defined as RFMS=
{RFM1, RFM2,…,RFMN } ∈ RD,where RFMi represents the ith radiomic feature
map (RFM), D represents the number of voxels in the MRI image and N
represents the number of RFMs generated. The RFM framework algorithm
that transforms radiological data into the RFMS is defined below(Fig. 3).
First, a set S of N radiomic filters from different radiomic features is
generated. The size of the radiomic filters or the neighborhood scaling
parameter, W is determined by the user depending on the spatial
resolution of the input MRI image. Second, the quantization of the MRI
image intensities to G levels for radiomic first and second order statistics
require the MRI image intensities to be quantized. The value of G is
determined by the user based on the range of intensities, as well as the
number of bits required to represent voxel intensity in the input image. In
the final step, the MRI image is convolved with each of the N radiomic
filters in the set, S to produce N radiomic feature maps. As a result, every
voxel in the original MRI image has a corresponding radiomic feature value
in each RFM. The mean of the radiomic values were calculated from
different regions of interest (ROI) in each RFM as features for classification
and further analysis. Consequently, every RFM feature from every patient
corresponds to the average value taken from sliding same sized image
window (W xW) across the whole ROI ensuring there is no mathematical
dependence between the computed RFM features and size of the ROI.
The input parameters for this study were G = 256, W = 9, and N = 30. Out

of 30 RFMs, 7 were generated using first order statistics, 22 were generated
using second order statistics and one was generated using Laplacian of
Gaussian filter.

Comparison between radiomic feature maps, quantitative
radiomic metrics, and MRI metrics
Single quantitative radiomic values corresponding to benign lesion,
malignant lesion, and glandular tissue were computed. The quantitative
radiomic values corresponding to each ROI were compared with the
functional metrics from the DWI and PK-DCE MRI images for their
diagnostic ability to classify between benign and malignant lesions using a
paired t-test and univariate logistic regression.

Textural evolution curves
The PK-DCE MRI RFMs provided information on the vascular heterogeneity
within lesion tissue. The RFM textural evolution curves capture the time
evolution of tissue heterogeneity as a function of contrast uptake using the
time series derived from DCE images. The mean radiomic feature value
across all the voxels within a region of interest in the RFMs was used to
construct textural evolution curves for each tissue type. In order to
compare the textural evolution curves across different ROIs, normalization
of the radiomic feature values were applied.
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Analysis of textural evolution curves from entropy feature maps were
done using the time to peak and the textural wash out slope from the DCE
RFMs. The time to peak is defined as the time it took for the textural
evolution curves to reach its maximum value. The textural wash out slope
is as the textural wash out of the textural evolution curves within the lesion
tissue. This was computed as the slope of the line connecting the peak
texture enhancement in the first 2 min to the last time point including all
the intermediate time points.

Textural evolution metric for DWI
The textural evolution metric (TEM) was developed to investigate the
change in tissue heterogeneity of different tissue types. We defined a
textural evolution metric (TEM) for DWI as follows:

TEMDWI ¼ RFMb>0

RFMb0

Similarly, a textural evolution metric (TEM) was defined for the high
spatial resolution DCE-MRI dataset (HR-DCE-MRI) as shown here:

TEMHR�DCE�MRI ¼ PostHR�DCE�MRI

PreHR�DCE�MRI

Statistical analysis
We computed summary statistics (mean and standard error of the mean)
for the radiomic metrics and functional metrics from mpMRI. An unpaired
t-test was performed to compare the RFMs for the benign and malignant
patient datasets. Statistical significance was set at p≤ 0.05. Univariate
logistic regression analysis was used to find associations between the RFMs
and the final diagnosis. Receiver operating characteristic (ROC) curve
analysis was performed to assess the diagnostic performance of each RFM
in characterizing benign vs. malignant lesions.

Multi-view IsoSVM framework for feature embedding and
classification
The radiomic feature maps were computed from a mpMRI dataset
resulting in a high dimensional feature space. Furthermore, the radiomic
feature maps corresponding to different imaging sequences highlight
different functional textural properties of the tissue of interest. Conse-
quently, we developed a multiview feature embedding and classification
framework termed IsoSVM by modifying and combining the Isomap43 and
support vector machine (SVM) algorithms.44 The overview of the IsoSVM
framework is shown in Fig. 5.

Computation of radiomic signatures
The high dimensional mpMRI radiomic feature space was first analyzed to
compute six different radiomics signatures as follows:

a. PK-DCE MRI radiomic signature: The textural evolution curves
corresponding to the radiomic feature maps were transformed into
a radiomic signature using the Isomap algorithm.43 For the PK-DCE
RFM dataset, the 15 dimensional textural curves were transformed
into a single dimensional representation of the textural evolution
curve characteristic. The correlation coefficient between the textural
evolution curves of different patients was used as the distance metric
to compute the geodesic distances for the low dimensional
embedding.

b. DWI and DCE-MRI High spatial resolution radiomic signatures: The
vector of the textural evolution metrics for the radiomic feature maps
was used as the radiomic signature for both the datasets.

c. ADC map, T1WI, and T2WI radiomic signatures: Each one was a single
image, making the vector of the mean of the radiomic feature maps,
their radiomic signature.

Feature selection
The set of radiomic signatures from the MRI datasets resulted in a 180-
dimensional radiomic feature space. The 180-dimensional radiomic feature
space was then transformed and modeled into an IsoSVM classification
model as detailed below.

a. The feature set from each of the radiomic signatures was sorted from
largest to smallest based on the area under the receiver operating

characteristic curve obtained using univariate logistic regression.
b. A subset of top features (f1, f2, …, f6) from each of the radiomic

signatures were selected to create a unified radiomic signature, g = Ufi.
c. The unified radiomic signature, g was then transformed into a linearly

separable, low dimensional feature space, h using the Isomap
algorithm. The feature transformation was executed using Isomap
because the Isomap algorithm is not prone to overfitting because of
its unsupervised nature and at the same time, accounts for the
dependencies between different RFMs.

Classification

a. The support vector machine algorithm trains a classification model to
classify between benign and malignant patients on the transformed
feature space, h. Because SVM is a linear binary classification algorithm
that attempts to create a hyperplane that best separates the different
groups, the application of Isomap algorithm prior to SVM reduces the
non-linearity in the data by transforming the feature space, g to h. The
steps c and d combine to form the hybrid IsoSVM classification model.
Mathematically, the hybrid IsoSVM classifier is represented using the
following equation:

f xð Þ ¼
XN

i¼1

αiyi<ϕ xið Þ;ϕ xð Þ>þ b

where φ() is the Isomap transformation function that maps the unified
radiomic signature, g into a linearly separable space, h, N is the
number of patients in the training set, αi are the Lagrange multipliers,
xi represents the radiomic signatures of training set patients and x
represents the radiomic signature of the test patient. yi represents the
classes where xi resides.

b. For comparison, we tested five different SVM kernels on the unified
radiomic signature, g including the hybrid IsoSVM kernel to classify
the benign and malignant patients to determine the optimal kernel.

c. Finally, due to class imbalance between the number of benign and
malignant patients, the ratio between penalty for misclassification of
different patient data sets was varied to identify the optimal penalty
ratio and shown in the supplementary data.45

The complete set of input parameters (input feature space: f1, f2, …,f6;
Isomap neighborhood parameter, k; Isomap dimensionality, d; and
misclassification penalty ratio) were estimated using leave-one-out and k
fold cross validation (k = 10).

K-fold cross validation
The set of benign and malignant patients were first separately divided into
ten randomly sampled subsets due to imbalance in the number of patients
in each patient group. Next, the ten subsets from both categories were
combined to form ten patient subsets. As a result, the ratio between the
number of benign and malignant patients was maintained similar to the
original patient cohort in the patient subsets. The ten-fold cross validation
procedure was performed on these ten subsets. The complete procedure
of generating ten subsets and performing ten-fold cross validation was
repeated 100 times to avoid any bias that may occur due to specific
partitioning of the data.

Code availability
Our software will be freely available to academic users after issue of
pending patents and a materials research agreement is obtained from the
university. Due to University regulations, any patent pending software is
not available until a patent is issued.

Data availability
All relevant clinical data are available upon request with adherence to
HIPPA laws and the institutions IRB policies.
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