Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CYP72A enzymes catalyse 13-hydrolyzation of gibberellins

A Correction to this article was published on 03 October 2019

This article has been updated

Abstract

Bioactive gibberellins (GAs or diterpenes) are essential hormones in land plants that control many aspects of plant growth and development. In flowering plants, 13-OH GAs (having low bioactivity—for example, GA1) and 13-H GAs (having high bioactivity—for example, GA4) frequently coexist in the same plant. However, the identity of the native Arabidopsis thaliana 13-hydroxylase GA and its physiological functions remain unknown. Here, we report that cytochrome P450 genes (CYP72A9 and its homologues) encode active GA 13-hydroxylases in Brassicaceae. Plants overexpressing CYP72A9 exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalysed the conversion of 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than the wild type, whereas stratification-treated seeds and seeds from long-term storage did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily was also investigated and discussed here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The GA biosynthesis pathway in Arabidopsis.
Fig. 2: Overexpression of CYP72A9 results in a dwarf phenotype and decreases endogenous GA4 levels.
Fig. 3: CYP72A9 is a GA 13-hydroxylase.
Fig. 4: Tissue-specific expression and subcellular localization of CYP72A9.
Fig. 5: Decreased primary seed dormancy of cyp72a9 mutants.
Fig. 6: Phylogenetic and biochemical analysis of CYP72A proteins from three Brassicaceae plants, rice, and soybean.
Fig. 7: Updated GA metabolism in developing seeds and silique of Arabidopsis.

Similar content being viewed by others

Data availability

All data and materials generated during this study are available from the corresponding author upon request.

Change history

  • 03 October 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Cowling, R. J., Kamiya, Y., Seto, H. & Harberd, N. P. Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis. Plant Physiol. 117, 1195–1203 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, Y. Y. et al. Effects of gibberellins on seed germination of phytochrome deficient mutants of Arabidopsis thaliana. Plant Cell Physiol. 36, 1205–1211 (1995).

    CAS  PubMed  Google Scholar 

  3. Magome, H. et al. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl Acad. Sci. USA 110, 1947–1952 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R. & Weigel, D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eriksson, S., Bohlenius, H., Moritz, T. & Nilsson, O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172–2181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedden, P. & Thomas, S. G. Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012).

    CAS  PubMed  Google Scholar 

  7. Zhu, Y. Y. et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442–456 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Varbanova, M. et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19, 32–45 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rieu, I. et al. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420–2436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, Y. L. et al. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat. Plants 4, 289–298 (2018).

    CAS  PubMed  Google Scholar 

  11. Kanno, Y. et al. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51, 1988–2001 (2010).

    CAS  PubMed  Google Scholar 

  12. Zhang, Y. Y. et al. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J. 67, 342–353 (2011).

    CAS  PubMed  Google Scholar 

  13. Nomura, T. et al. Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes. Plant Cell Physiol. 54, 1837–1851 (2013).

    CAS  PubMed  Google Scholar 

  14. Wang, C. et al. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol. Plant 9, 195–204 (2016).

    CAS  PubMed  Google Scholar 

  15. Shao, J. et al. (+)-Thalianatriene and (-)-retigeranin B catalyzed by sesterterpene synthases from Arabidopsis thaliana. Org. Lett. 19, 1816–1819 (2017).

    CAS  PubMed  Google Scholar 

  16. Chen, Q. et al. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci. China Life Sci. 62, 947–958 (2019).

    PubMed  Google Scholar 

  17. Jiang, C. F., Gao, X. H., Liao, L., Harberd, N. P. & Fu, X. D. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin–DELLA signaling pathway in Arabidopsis. Plant Physiol. 145, 1460–1470 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Seo, M. et al. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 48, 354–366 (2006).

    CAS  PubMed  Google Scholar 

  19. Finkelstein, R., Reeves, W., Ariizumi, T. & Steber, C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387–415 (2008).

    CAS  PubMed  Google Scholar 

  20. Prall, W., Hendy, O. & Thornton, L. E. Utility of a phylogenetic perspective in structural analysis of CYP72A enzymes from flowering plants. PLoS ONE 11, e0163024 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Turk, E. M. et al. CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol. 133, 1643–1653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lange, T., Hedden, P. & Graebe, J. E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc. Natl Acad. Sci. USA 91, 8552–8556 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, Y. L. et al. The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase—molecular cloning and functional expression. Proc. Natl Acad. Sci. USA 92, 6640–6644 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

    CAS  PubMed  Google Scholar 

  25. Shu, K., Liu, X. D., Xie, Q. & He, Z. H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol. Plant 9, 34–45 (2016).

    CAS  PubMed  Google Scholar 

  26. Nelson, D. & Werck-Reichhart, D. A P450-centric view of plant evolution. Plant J. 66, 194–211 (2011).

    CAS  PubMed  Google Scholar 

  27. Yano, R. et al. Metabolic switching of astringent and beneficial triterpenoid saponins in soybean is achieved by a loss-of-function mutation in cytochrome P450 72A69. Plant J. 89, 527–539 (2017).

    CAS  PubMed  Google Scholar 

  28. Irmler, S. et al. Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450CYP72A1 as secologanin synthase. Plant J. 24, 797–804 (2000).

    CAS  PubMed  Google Scholar 

  29. Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

    CAS  PubMed  Google Scholar 

  30. Umemoto, N. et al. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol. 171, 2458–2467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zi, J. C., Mafu, S. & Peters, R. J. To gibberellins and beyond! Surveying the evolution of (Di)terpenoid metabolism. Annu. Rev. Plant Biol. 65, 259–286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, G. et al. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 148, 1254–1266 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, W. et al. Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell 27, 1907–1924 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W. R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, G. & Pichersky, E. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J. 49, 1020–1029 (2007).

    CAS  PubMed  Google Scholar 

  36. Xu, H. et al. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes. Mol. Plant 6, 1301–1317 (2013).

    CAS  PubMed  Google Scholar 

  37. Nelson, B. K., Cai, X. & Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    CAS  PubMed  Google Scholar 

  38. Urban, P., Mignotte, C., Kazmaier, M., Delorme, F. & Pompon, D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J. Biol. Chem. 272, 19176–19186 (1997).

    CAS  PubMed  Google Scholar 

  39. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzym. 272, 51–64 (1996).

    CAS  Google Scholar 

  40. Martinez-Andujar, C. et al. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc. Natl Acad. Sci. USA 108, 17225–17229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, X. D. et al. CHR729 is a CHD3 protein that controls seedling development in rice. PLoS ONE 10, e0138934 (2015).

    Google Scholar 

  42. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Fu (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for providing the ga1-t mutant seeds, Q. Xie (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for providing the vector pCAMBIA 1300-pYAO-cas9 and J. Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for the GA standard. This work was financially supported by the National Natural Science Foundation of China (grant no. 31970315), the National Key Research and Development Projects (SQ2018YFA090071-03), the ‘Priority Research Program’ of the Chinese Academy of Science (grant no. ZDRW-ZS-2019-2), the State Key Laboratory of Plant Genomics of China (SKLPG2016A-13) to G.W., the National Natural Science Foundation of China (grant no. 31770398) to J.C. and the US National Institutes of Health (grant no. GM109773) to R.J.P.

Author information

Authors and Affiliations

Authors

Contributions

G.W. designed the research. J.H. performed the majority of experiments. Q.C. and Y.M. generated the Arabidopsis transgenic plants and analysed their phenotypes. J.Y., X.W. and M.X. performed part of the biochemical assays of CYP72A members from soybean and rice. P.X. and J.C. measured the GAs in plants by ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometer. J.H. and G.W. analysed the data. R.J.P. and G.W. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Guodong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Danièle Werck and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Chen, Q., Xin, P. et al. CYP72A enzymes catalyse 13-hydrolyzation of gibberellins. Nat. Plants 5, 1057–1065 (2019). https://doi.org/10.1038/s41477-019-0511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0511-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing