Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins

Abstract

Successful double fertilization in flowering plants relies on two coordinated gamete fusion events, but the underlying molecular processes are not well understood. We show that two sperm-specific DOMAIN OF UNKNOWN FUNCTION 679 membrane proteins (DMP8 and DMP9) facilitate gamete fusion, with a greater effect on sperm–egg fusion than on sperm–central cell fusion. We also show that sperm adhesion and sperm cell separation depend on egg cell-secreted EGG CELL 1 proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sperm-expressed DMP8 and DMP9 are involved in double fertilization.
Fig. 2: Single fertilization mainly relates to the central cell, whereas most unfused dmp8,9C sperm cells remain attached to the egg cell.

Similar content being viewed by others

Data availability

All of the main data supporting the findings of this study are available within the article and its Supplementary Information files. Materials used in this study are available from the corresponding author on request.

References

  1. Dresselhaus, T., Sprunck, S. & Wessel, G. M. Curr. Biol. 26, R125–R139 (2016).

    Article  CAS  Google Scholar 

  2. Sprunck, S. Biochem. Soc. Trans. 38, 635–640 (2010).

    Article  CAS  Google Scholar 

  3. Hamamura, Y. et al. Nat Commun. 5, 4722 (2014).

    Article  CAS  Google Scholar 

  4. Denninger, P. et al. Nat. Commun. 5, 4645 (2014).

    Article  CAS  Google Scholar 

  5. Mori, T., Igawa, T., Tamiya, G., Miyagishima, S. Y. & Berger, F. Curr. Biol. 24, 170–175 (2014).

    Article  CAS  Google Scholar 

  6. Huang, J., Ju, Y., Wang, X., Zhang, Q. & Sodmergen. J. Integr. Plant Biol. 57, 496–503 (2015).

    Article  Google Scholar 

  7. Sprunck, S. et al. Science 338, 1093–1097 (2012).

    Article  CAS  Google Scholar 

  8. Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. Nat. Cell Biol. 8, 64–71 (2006).

    Article  CAS  Google Scholar 

  9. von Besser, K., Frank, A. C., Johnson, M. A. & Preuss, D. Development 133, 4761–4769 (2006).

    Article  Google Scholar 

  10. Engel, M. L., Holmes-Davis, R. & McCormick, S. Plant Physiol. 138, 2124–2133 (2005).

    Article  CAS  Google Scholar 

  11. Kasaras, A. & Kunze, R. Plant Biol. 12, 140–152 (2010).

    Article  CAS  Google Scholar 

  12. Beale, K. M., Leydon, A. R. & Johnson, M. A. Curr. Biol. 22, 1090–1094 (2012).

    Article  CAS  Google Scholar 

  13. Kasahara, R. D. et al. Curr. Biol. 22, 1084–1089 (2012).

    Article  CAS  Google Scholar 

  14. Steffen, J. G., Kang, I. H., Macfarlane, J. & Drews, G. N. Plant J. 51, 281–292 (2007).

    Article  CAS  Google Scholar 

  15. Scott, R. J., Armstrong, S. J., Doughty, J. & Spielman, M. Mol. Plant 1, 611–619 (2008).

    Article  CAS  Google Scholar 

  16. Fédry, J. et al. PLoS Biol. 16, e2006357 (2018).

    Article  Google Scholar 

  17. Valansi, C. et al. J. Cell Biol. 216, 571–581 (2017).

    Article  CAS  Google Scholar 

  18. Fédry, J. et al. Cell 168, 904–915 (2017).

    Article  Google Scholar 

  19. Hernández, J. M. & Podbilewicz, B. Development 144, 4481–4495 (2017).

    Article  Google Scholar 

  20. Chalbi, M. et al. Development 141, 3732–3739 (2014).

    Article  CAS  Google Scholar 

  21. Kasaras, A., Melzer, M. & Kunze, R. BMC Plant Biol. 12, 54 (2012).

    Article  CAS  Google Scholar 

  22. Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T. & Berger, F. Curr. Biol. 17, 1032–1037 (2007).

    Article  CAS  Google Scholar 

  23. Resentini, F. et al. Plant Physiol. 173, 155–166 (2017).

    Article  CAS  Google Scholar 

  24. Alonso, J. M. et al. Science 301, 653–657 (2003).

    Article  Google Scholar 

  25. Kleinboelting, N. et al. Nucleic Acids Res. 40, D1211–D1215 (2012).

    Article  CAS  Google Scholar 

  26. Johnson-Brousseau, S. A. & McCormick, S. Plant J. 39, 761–775 (2004).

    Article  CAS  Google Scholar 

  27. Gebert, M., Dresselhaus, T. & Sprunck, S. Plant Cell 20, 2798–2814 (2008).

    Article  CAS  Google Scholar 

  28. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Plant Cell 2, 755–767 (1990).

    Article  CAS  Google Scholar 

  29. Vogler, F. et al. Plant Reprod. 27, 153–167 (2014).

    Article  CAS  Google Scholar 

  30. Coimbra, S. et al. Sex. Plant Reprod. 23, 199–205 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q.-J. Chen (China Agricultural University, Beijing, China) for CRISPR–Cas9 vectors, F. Berger (Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria), G. Drews (University of Utah, Salt Lake City, UT, USA) and M. Johnson (Brown University, Providence, RI, USA) for providing seed material and the Nottingham Arabidopsis Stock Centre (NASC) for providing T-DNA insertion lines. We are grateful to A. Hildebrand for plant care and M. Kammerer for helping with genotyping. This work is supported by the Collaborate Research Centers SFB924 (TP A04 to S.S.) and SFB960 (TP B05 to S.S.), funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Contributions

S.S. conceived the project. P.C. and S.S. designed the experiments. P.C. and M.L. performed the experiments. P.C., M.L. and S.S. analysed the data. S.S. and P.C. interpreted the data and prepared the figures. S.S. wrote the manuscript with input from P.C.

Corresponding author

Correspondence to Stefanie Sprunck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Reviewer accreditation: Nature Plants thanks Benjamin Podbilewicz and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Methods, Supplementary References and Supplementary Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyprys, P., Lindemeier, M. & Sprunck, S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5, 253–257 (2019). https://doi.org/10.1038/s41477-019-0382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0382-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing