Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules

This article has been updated

Abstract

During establishment of arbuscular mycorrhizal symbioses, fungal hyphae invade root cells producing transient tree-like structures, the arbuscules, where exchange of photosynthates for soil minerals occurs. Arbuscule formation and collapse lead to rapid production and degradation of plant and fungal membranes, their spatiotemporal dynamics directly influencing nutrient exchange. We determined the ultra-structural details of both membrane surfaces and the interstitial apoplastic matrix by transmission electron microscopy tomography during growth and senescence of Rhizophagus irregularis arbuscules in rice. Invasive growth of arbuscular hyphae was associated with abundant fungal membrane tubules (memtubs) and plant peri-arbuscular membrane evaginations. Similarly, the phylogenetically distant arbuscular mycorrhizal fungus, Gigaspora rosea, and the fungal maize pathogen, Ustilago maydis, developed memtubs while invading host cells, revealing structural commonalities independent of the mutualistic or parasitic outcome of the interaction. Additionally, extracellular vesicles formed continuously in the peri-arbuscular interface from arbuscule biogenesis to senescence, suggesting an involvement in inter-organismic signal and nutrient exchange throughout the arbuscule lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transmission electron micrographs of Rhizophagus irregularis-colonized rice cortex cells showing paramural fungal memtubs.
Fig. 2: Tomography and 3D reconstruction of fungal memtubs.
Fig. 3: Transmission electron micrographs documenting PAM evaginations and membrane-bound vesicles within the PAS.
Fig. 4: Tomography and 3D reconstruction of PAS-localized apoplastic vesicular structures.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author on request.

Change history

  • 06 January 2021

    In the version of this Article originally published, Supplementary Videos 1 and 2 were missing. These videos are now available.

References

  1. Choi, J., Summers, W. & Paszkowski, U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 56, 135–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Gutjahr, C. & Parniske, M. Cell biology: control of partner lifetime in a plant-fungus relationship. Curr. Biol. 27, R420–R423 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Balestrini, R., Hahn, M. G., Faccio, A., Mendgen, K. & Bonfante, P. Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiol. 111, 203–213 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paszkowski, U., Kroken, S., Roux, C. & Briggs, S. P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl Acad. Sci. USA 99, 13324–13329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harrison, M. J., Dewbre, G. R. & Liu, J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14, 2413–2429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breuillin-Sessoms, F. et al. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell 27, 1352–1366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobae, Y. & Hata, S. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol. 51, 341–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Javot, H., Pumplin, N. & Harrison, M. J. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 30, 310–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, S. Y. et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24, 4236–4251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roth, R. & Paszkowski, U. Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol. 39, 50–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Wewer, V., Brands, M. & Dormann, P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J. 79, 398–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Bravo, A., Brands, M., Wewer, V., Dormann, P. & Harrison, M. J. Arbuscular mycorrhiza-specific enzymes fatm and ram2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214, 1631–1645 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Keymer, A. et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6, e29107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keymer, A. & Gutjahr, C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Curr. Opin. Plant Biol. 44, 137–144 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Q., Blaylock, L. A. & Harrison, M. J. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22, 1483–1497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobae, Y. & Fujiwara, T. Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. Plant Cell Physiol. 55, 1497–1510 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Girbardt, M. Über die Substruktur von Polystictus versicolor L.Arch. Mikrobiol. 28, 255–269 (1958).

    Article  CAS  PubMed  Google Scholar 

  20. Bonfantefasolo, P., Grippiolo, R. & Scannerini, S. Light and electron-microscopic features of the vesicular-arbuscular mycorrhiza in vitis roots. Caryologia 32, 120–120 (1979).

    Google Scholar 

  21. Gianinazzipearson, V. & Gianinazzi, S. Cellular and genetic aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genome 31, 336–341 (1989).

    Article  Google Scholar 

  22. Cox, G. & Sanders, F. Ultrastructure of host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol. 73, 901–90 (1974).

    Article  Google Scholar 

  23. Ivanov, S. et al. Nat. Plants https://doi.org/10.1038/s41477-019-0364-5 (2019).

  24. Lanver, D. et al. The biotrophic development of Ustilago maydis studied by rna-seq analysis. Plant Cell 30, 300–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. An, Q., Ehlers, K., Kogel, K. H., van Bel, A. J. & Huckelhoven, R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol. 172, 563–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. An, Q., Huckelhoven, R., Kogel, K. H. & van Bel, A. J. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol. 8, 1009–1019 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Barton, R. Electron microscope studies on surface activity in cells of chara vulgaris. Planta 66, 95–105 (1965).

    Article  Google Scholar 

  30. Lucas, W. J., Keifer, D. W. & Pesacreta, T. C. Influence of culture-medium pH on charasome development and chloride transport in chara-corallina. Protoplasma 130, 5–11 (1986).

    Article  CAS  Google Scholar 

  31. Moore, R. T. & Mcalear, J. H. Fine structure of mycota. 5. Lomasomes—previously uncharacterized hyphal structures. Mycologia 53, 194–19 (1961).

    Google Scholar 

  32. Marchant, R. & Moore, R. T. Lomasomes and plasmalemmasomes in fungi. Protoplasma 76, 235–247 (1973).

    Article  Google Scholar 

  33. Pigott, C. D. Fine-structure of mycorrhiza formed by cenococcum-geophilum fr on tilia-cordata mill. New Phytol. 92, 501–512 (1982).

    Article  Google Scholar 

  34. Heath, I. B. & Greenwoo, Ad. Structure and formation of lomasomes. J. Gen. Microbiol. 62, 129–12 (1970).

    Article  Google Scholar 

  35. Bracker, C. E. Ultrastructure of fungi. Annu. Rev. Phytopathol. 5, 343–34 (1967).

    Article  Google Scholar 

  36. Dexheimer, J., Gianinazzi, S. & Gianinazzipearson, V. Ultrastructural cytochemistry of the host-fungus interfaces in the endomycorrhizal association Glomus mosseae-Allium cepa . Pflanzenphysiol. 92, 191–206 (1979).

    Article  Google Scholar 

  37. Scannerini, S. & Bonfantefasolo, P. Comparative ultrastructural analysis of mycorrhizal associations. Can. J. Bot. 61, 917–943 (1983).

    Article  Google Scholar 

  38. Lefebvre, F. A. & Lecuyer, E. Small luggage for a long journey: transfer of vesicle-enclosed small RNA in interspecies communication. Front. Microbiol. 8, 377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marx, C., Dexheimer, J., Gianinazzipearson, V. & Gianinazzi, S. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. 4. Ultracytoenzymological evidence (atpase) for active transfer processes in the host-arbuscule interface. New Phytol. 90, 37–43 (1982).

    Article  CAS  Google Scholar 

  40. Gianinazzipearson, V., Smith, S. E., Gianinazzi, S. & Smith, F. A. Enzymatic studies on the metabolism of vesicular arbuscular mycorrhizas. 5. Is h+-atpase a component of atp-hydrolyzing enzyme-activities in plant fungus interfaces? New Phytol. 117, 61–74 (1991).

    Article  CAS  Google Scholar 

  41. Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. & Gianinazzi, S. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211, 609–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Dexheimer, J., Marx, C., Gianinazzipearson, V. & Gianinazzi, S. Ultracytological studies of plasmalemma formations produced by host and fungus in vesiculararbuscular mycorrhizae. Cytologia 50, 461–471 (1985).

    Article  Google Scholar 

  43. Micali, C. O., Neumann, U., Grunewald, D., Panstruga, R. & O’Connell, R. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol. 13, 210–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Rutter, B. D. & Innes, R. W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 173, 728–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Regente, M. et al. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J. Exp. Bot. 68, 5485–5495 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Helber, N. et al. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23, 3812–3823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Lo Presti, L. et al. An assay for entry of secreted fungal effectors into plant cells. New Phytol. 213, 956–964 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. McDonald, K. L. & Auer, M. High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41, 137 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Hillmer, S., Viotti, C. & Robinson, D. G. An improved procedure for low-temperature embedding of high-pressure frozen and freeze-substituted plant tissues resulting in excellent structural preservation and contrast. J. Microsc. 247, 43–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bates and S. Gold for technical assistance, and Y. Kobae for kindly providing PT11-GFP transgenic rice lines. R. Roth was supported by Marie Curie FP7-PEOPLE-2013-IEF grant No. 629887 and by the Isaac Newton Trust RG74108; and U. Paszkowski by the BBSRC grant No. BB/N008723/1.

Author information

Authors and Affiliations

Authors

Contributions

R.R. and U.P. conceptualized the project. R.R., S.H. and C.F. carried out the experiments. R.R. and S.H. conducted the TEM and IGL analysis. C.F. and S.H. carried out the tomography and R.R. performed the IMOD 3D reconstruction. R.R. and M.C. did the quantitative analysis. R.R. and U.P. wrote the manuscript.

Corresponding author

Correspondence to Uta Paszkowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal Peer Review Information Nature Plants thanks Rogers Innes, Erik Limpens and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Table 1.

Reporting Summary

Video 1

TEM tilt tomography and IMOD 3-D modeling shows memtubs, which remain connected with the fungal plasma membrane. Scale bar, 100 nm.

Video 2

TEM tilt tomography and IMOD 3-D modeling shows extracellular vesicles in the peri-arbuscular space and membrane evaginations continuous with the PAM. Scale bar, 100 nm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, R., Hillmer, S., Funaya, C. et al. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nature Plants 5, 204–211 (2019). https://doi.org/10.1038/s41477-019-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0365-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing