Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Generation of self-compatible diploid potato by knockout of S-RNase

Subjects

Abstract

Re-domestication of potato into an inbred line-based diploid crop propagated by seed represents a promising alternative to traditional clonal propagation of tetraploid potato, but self-incompatibility has hindered the development of inbred lines. To address this problem, we created self-compatible diploid potatoes by knocking out the self-incompatibility gene S-RNase using the CRISPR–Cas9 system. This strategy opens new avenues for diploid potato breeding and will also be useful for studying other self-incompatible crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knockout of S-RNase overcomes self-incompatibility in potato.

Similar content being viewed by others

References

  1. Duvick, D. N. Adv. Agron. 86, 83–145 (2005).

    Article  Google Scholar 

  2. Bachem, P. C. et al. Am. J. Potato Res. 91, 594–609 (2014).

    Article  Google Scholar 

  3. Ramulu, K. S., Dijkhuis, P. & Roset, S. Theor. Appl. Genet. 65, 329–338 (1983).

    Google Scholar 

  4. Lindhout, P. et al. Potato Res. 54, 301–312 (2011).

    Article  Google Scholar 

  5. Li, Y., Li, G., Li, C., Qu, D. & Huang, S. Chinese Potato 27, 96–99 (2013).

    CAS  Google Scholar 

  6. Jansky, S. H. et al. Crop Sci. 56, 1412–1422 (2016).

    Article  CAS  Google Scholar 

  7. Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. & Gavrilenko, T. Bot. Rev. 80, 283–383 (2014).

    Article  Google Scholar 

  8. Kao, T. H. & McCubbin, A. G. Proc. Natl Acad. Sci. USA 93, 12059–12065 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Hosaka, K. & Hanneman, R. E. Jr. Euphytica 99, 191–197 (1998).

    Article  Google Scholar 

  10. Hosaka, K. & Hanneman, R. E. Jr. Euphytica 103, 265–271 (1998).

    Article  CAS  Google Scholar 

  11. Phumichai, C., Mori, M., Kobayashi, A., Kamijima, O. & Hosaka, K. Genome 48, 977–984 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Endelman, J. B. & Jansky, S. H. Theor. Appl. Genet. 129, 935–943 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Duangpan, S., Zhang, W., Wu, Y., Jansky, S. H. & Jiang, J. Plant Physiol. 163, 21–29 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jansky, S. H., Chung, Y. S. & Kittipadukal, P. J. Plant Regist. 8, 195–199 (2014).

    Article  Google Scholar 

  15. Leisner, C. P. et al. Plant J. 94, 562–570 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Dzidzienyo, D. K., Bryan, G. J., Wilde, G. & Robbins, T. P. Theor. Appl. Genet. 129, 1985–2001 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Anderson, M. A. et al. Nature 321, 38–44 (1986).

    Article  CAS  Google Scholar 

  18. Kondo, K. et al. Plant J. 29, 627–636 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Karp, A., Jones, M. G. K., Foulger, D., Fish, N. & Bright, S. W. J. Am. Potato J. 66, 669–684 (1989).

    Article  Google Scholar 

  20. Livak, K. J. & Schmittgen, T. D. Methods 25, 402–408 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, S. K. et al. G3 3, 2031–2047 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Xing, H. et al. BMC Plant Biol. 14, 327 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ducreux, L. J., Morris, W. L., Taylor, M. A. & Millam, S. Plant Cell Rep. 24, 10–14 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Advanced Technology Talents in Yunnan Province (2013HA025) and the National Natural Science Foundation of China (31601360 to C.Z.). This work was also supported by the Chinese Academy of Agricultural Science (ASTIP-CAAS) and the Shenzhen municipal and Dapeng district governments.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and C.Z. conceived and designed the experiments. M.Y. and Z.Y. performed the potato transformation. Z.P. and Y.X. conducted the genotyping and phenotyping of T0 and T1 plants. D.T. performed the bioinformatics analyses. D.L. made the CRISPR–Cas9 construct. C.Z., Z.P., M.Y. and S.H. wrote the manuscript.

Corresponding authors

Correspondence to Chunzhi Zhang or Sanwen Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2 and Supplementary Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Peng, Z., Tang, D. et al. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants 4, 651–654 (2018). https://doi.org/10.1038/s41477-018-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0218-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing