Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Demography and its effects on genomic variation in crop domestication

Abstract

Over two thousand plant species have been modified morphologically through cultivation and human use. Here, we review three aspects of crop domestication that are currently undergoing marked revisions, due to analytical advancements and their application to whole genome resequencing (WGS) data. We begin by discussing the duration and demographic history of domestication. There has been debate as to whether domestication occurred quickly or slowly. The latter is tentatively supported both by fossil data and application of WGS data to sequentially Markovian coalescent methods that infer the history of effective population size. This history suggests the possibility of extended human impacts on domesticated lineages prior to their purposeful cultivation. We also make the point that demographic history matters, because it shapes patterns and levels of extant genetic diversity. We illustrate this point by discussing the evolutionary processes that contribute to the empirical observation that most crops examined to date have more putatively deleterious alleles than their wild relatives. These deleterious alleles may contribute to genetic load within crops and may be fitting targets for crop improvement. Finally, the same demographic factors are likely to shape the spectrum of structural variants (SVs) within crops. SVs are known to underlie many of the phenotypic changes associated with domestication and crop improvement, but we currently lack sufficient knowledge about the mechanisms that create SVs, their rates of origin, their population frequencies and their phenotypic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of demography and selection during plant domestication.
Fig. 2: The effects of demography on deleterious variants.
Fig. 3: The fitness effects of domestication and clonal propagation.
Fig. 4: SVs in populations and an example of an affected phenotype.

Similar content being viewed by others

References

  1. Gaut, B. S., Díez, C. M. & Morrell, P. L. Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet. 31, 709–719 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Hammer, K. Das domestikationssyndrom. Kulturpflanze 32, 11–34 (1984).

    Article  Google Scholar 

  3. Gerbault, P. et al. Storytelling and story testing in domestication. Proc. Natl. Acad. Sci. USA 111, 6159–6164 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Lu, J. et al. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet. 22, 126–131 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Miller, A. J. & Gross, B. L. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98, 1389–1414 (2011).

    Article  PubMed  Google Scholar 

  7. Doebley, J. in Isozymes in plant biology (eds Soltis, D. E. & Soltis, P. S.) 165–191 (Chapman and Hall, London, 1989).

  8. Eyre-Walker, A., Gaut, R. L., Hilton, H., Feldman, D. L. & Gaut, B. S. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl. Acad. Sci. USA 95, 4441–4446 (1998).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Hillman, G. C. & Davies, M. S. Domestication rates in wild-type wheats and barley under primitive cultivation. Biol. J. Linn. Soc. 39, 39–78 (1990).

    Article  Google Scholar 

  10. Ladizinsky, G. Pulse domestication before cultivation. Econ. Bot. 41, 60–65 (1987).

    Article  Google Scholar 

  11. Harlan, J. R., de Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).

    Article  PubMed  Google Scholar 

  12. Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primative cultivation and their archaelogical implications. J. World Prehist. 4, 157–222 (1990).

    Article  Google Scholar 

  13. Zhang, L. B. et al. Selection on grain shattering genes and rates of rice domestication. New Phytol. 184, 708–720 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, Q., Zheng, X., Luo, J., Gaut, B. S. & Ge, S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol. Biol. Evol. 24, 875–888 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. USA 108, 8351–8356 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).

    Article  PubMed  Google Scholar 

  19. Caicedo, A. L. et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3, 1745–1756 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Purugganan, M. D. & Fuller, D. Q. Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65, 171–183 (2011).

    Article  PubMed  Google Scholar 

  22. Allaby, R. G., Stevens, C., Lucas, L., Maeda, O. & Fuller, D. Q. Geographic mosaics and changing rates of cereal domestication. Philos. T. Roy. Soc. B 372, 20160429 (2017).

    Article  Google Scholar 

  23. Ishikawa, R. et al. Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species. Genes Genet. Syst. 85, 265–271 (2010).

    Article  PubMed  Google Scholar 

  24. Ishii, T. et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45, 462–465 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. Velasco, D., Hough, J., Aradhya, M. & Ross-Ibarra, J. Evolutionary genomics of peach and almond domestication. G3-Genes Genom. Genet. 6, 3985–3993 (2016).

    Google Scholar 

  29. Wang, L. et al. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 18, 215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meyer, R. S. et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat. Genet. 48, 1083–1088 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D. & Gaut, B. S. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl. Acad. Sci. USA 114, 11715–11720 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Adler, D. S. & Tushabramishvili, N. in Settlement Dynamics of the Middle Palaeolithic and Middle Stone Age Vol. 2 (ed. Conard, N. J.) Ch. 5 (Kerns Verlag, Tubingen, 2004).

  33. Nielsen, R. & Beaumont, M. A. Statistical inferences in phylogeography. Mol. Ecol. 18, 1034–1047 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of being structured: instantaneous coalescence rates and human evolution–lessons for ancestral population size inference. Heredity 116, 362–371 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Schrider, D. R., Shanku, A. G. & Kern, A. D. Effects of linked selective sweeps on demographic inference and model selection. Genetics 204, 1207–1223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).

    Article  PubMed  Google Scholar 

  37. Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. USA 113, 6388–6396 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Moyers, B. T., Morrell, P. L. & McKay, J. K. Genetic costs of domestication and improvement. J. Hered. 109, 103–116 (2017).

    Article  Google Scholar 

  39. Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    Article  PubMed  Google Scholar 

  40. Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. Chun, S. & Fay, J. C. Evidence for hitchhiking of deleterious mutations within the human genome. PLoS Genet. 7, e1002240 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Charlesworth, B. The role of background selection in shaping patterns of molecular evolution and variation: evidence from variability on the Drosophila X chromosome. Genetics 191, 233–246 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. Liu, Q., Zhou, Y., Morrell, P. L. & Gaut, B. S. Deleterious variants in Asian rice and the potential cost of domestication. Mol. Biol. Evol. 34, 908–924 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Arunkumar, R., Ness, R. W., Wright, S. I. & Barrett, S. C. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics 199, 817–829 (2015).

    Article  PubMed  Google Scholar 

  46. Ohta, T. The nearly neutral model of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992).

    Article  Google Scholar 

  47. Casals, F. et al. Whole-exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans. PLoS Genet 9, e1003815 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lohmueller, K. E. The distribution of deleterious genetic variation in human populations. Curr. Opin. Genet. Dev. 29, 139–146 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. Lohmueller, K. E. et al. Proportionally more deleterious genetic variation in European than in African populations. Nature 451, 994–997 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Marsden, C. D. et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA 113, 152–157 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Balick, D. J., Do, R., Cassa, C. A., Reich, D. & Sunyaev, S. R. Dominance of deleterious alleles controls the response to a population bottleneck. PLoS Genet. 11, e1005436 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kono, T. J. Y. et al. Comparative genomics approaches accurately predict deleterious variants in plants. bioRxiv https://doi.org/10.1101/112318 (2018).

  57. Kono, T. J. et al. The role of deleterious substitutions in crop genomes. Mol. Biol. Evol. 33, 2307–2317 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Renaut, S. & Rieseberg, L. H. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other composite crops. Mol. Biol. Evol. 32, 2273–2283 (2015).

    Article  PubMed  CAS  Google Scholar 

  59. Ramu, P. et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat. Genet. 49, 959–963 (2017).

    Article  PubMed  CAS  Google Scholar 

  60. Brandvain, Y. & Wright, S. I. The limits of natural selection in a nonequilibrium world. Trends Genet. 32, 201–210 (2016).

    Article  PubMed  CAS  Google Scholar 

  61. Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).

    Article  PubMed  Google Scholar 

  62. Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc. Natl. Acad. Sci. USA 113, 440–449 (2016).

    Article  CAS  Google Scholar 

  63. Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: advances and applications. Nat. Rev. Genet. 13, 85–96 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Kremling, K. A. G. et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555, 520–523 (2018).

    Article  PubMed  CAS  Google Scholar 

  65. Mezmouk, S. & Ross-Ibarra, J. The pattern and distribution of deleterious mutations in maize. G3-Genes Genom. Genet. 4, 163–171 (2014).

    Google Scholar 

  66. Yang, J. et al. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet. 13, e1007019 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rodgers-Melnick, E. et al. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc. Natl. Acad. Sci. USA 112, 3823–3828 (2015).

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Wang, H., Vieira, F. G., Crawford, J. E., Chu, C. & Nielsen, R. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 27, 1029–1038 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Diez, C. M. et al. Olive domestication and diversification in the Mediterranean Basin. New Phytol. 206, 436–447 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Cornille, A. et al. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 8, e1002703 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Duan, N. et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat. Commun. 8, 249 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hufford, M. B. et al. The genomic signature of crop-wild introgression in maize. PLoS Genet. 9, e1003477 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Wang, M. et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49, 579–587 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. Cheng, F. et al. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci. Data 3, 160119 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cao, K. et al. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol. 15, 415 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Hazzouri, K. M. et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun. 6, 8824 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. Swanson-Wagner, R. A. et al. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. 20, 1689–1699 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Stein, J. C. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat. Genet. 50, 285–296 (2018).

    Article  PubMed  CAS  Google Scholar 

  80. Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    Article  PubMed  CAS  Google Scholar 

  81. Zhang, Z. et al. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 27, 1595–1604 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Stuart, T. et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. eLife 5, e20777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vigouroux, Y. et al. Rate and pattern of mutation at microsatellite loci in maize. Mol. Biol. Evol. 19, 1251–1260 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. Gaut, B., Yang, L., Takuno, S. & Eguiarte, L. E. The patterns and causes of variation in plant nucleotide substitution rates. Annu. Rev. Ecol. Evol. S. 42, 245–266 (2011).

    Article  Google Scholar 

  87. Gordon, S. P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8, 2184 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Walbot, V. Saturation mutagenesis using maize transposons. Curr. Opin. Plant Biol. 3, 103–107 (2000).

    Article  PubMed  CAS  Google Scholar 

  89. Naito, K. et al. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl. Acad. Sci. USA 103, 17620–17625 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60, 43–66 (2009).

    Article  PubMed  CAS  Google Scholar 

  91. Diez, C. M. et al. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol. 199, 264–276 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Szathmáry, E., Jordán, F. & Pál, C. Molecular biology and evolution. Can genes explain biological complexity. Science 292, 1315–1316 (2001).

    Article  PubMed  Google Scholar 

  93. Panchy, N., Lehti-Shiu, M. & Shiu, S. H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Lockton, S. & Gaut, B. S. Plant conserved non-coding sequences and paralogue evolution. Trends Genet. 21, 60–65 (2005).

    Article  PubMed  CAS  Google Scholar 

  95. Wang, Y., Wang, X. & Paterson, A. H. Genome and gene duplications and gene expression divergence: a view from plants. Ann. NY Acad. Sci. 1256, 1–14 (2012).

    Article  PubMed  Google Scholar 

  96. Yu, J. et al. PTGBase: an integrated database to study tandem duplicated genes in plants. Database 2015, bav017 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dong, J. et al. Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads. Proc. Natl. Acad. Sci. USA 113, 7949–7956 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Jelesko, J. G., Carter, K., Thompson, W., Kinoshita, Y. & Gruissem, W. Meiotic recombination between paralogous RBCSB genes on sister chromatids of Arabidopsis thaliana. Genetics 166, 947–957 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zhang, L. & Gaut, B. S. Does recombination shape the distribution and evolution of tandemly arrayed genes (TAGs) in the Arabidopsis thaliana genome. Genome Res. 13, 2533–2540 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gaut, B. S., Wright, S. I., Rizzon, C., Dvorak, J. & Anderson, L. K. Recombination: an underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 8, 77–84 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tattini, L., D’Aurizio, R. & Magi, A. Detection of genomic structural variants from next-generation sequencing data. Front Bioeng. Biotechnol. 3, 92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Maretty, L. et al. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. Nature 548, 87–91 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Zhao, Q. et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Chakraborty, M. et al. Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat. Genet. 50, 20–25 (2018).

    Article  PubMed  CAS  Google Scholar 

  106. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Yao, W. et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 16, 187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gymrek, M. et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet. 48, 22–29 (2016).

    Article  PubMed  CAS  Google Scholar 

  109. Olsen, K. M. & Wendel, J. F. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64, 47–70 (2013).

    Article  PubMed  CAS  Google Scholar 

  110. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006).

    Article  PubMed  CAS  Google Scholar 

  112. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  PubMed  CAS  Google Scholar 

  113. Kawase, M., Fukunaga, K. & Kato, K. Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol. Genet. Genom. 274, 131–140 (2005).

    Article  CAS  Google Scholar 

  114. Kobayashi, S., Goto-Yamamoto, N. & Hirochika, H. Retrotransposon-induced mutations in grape skin color. Science 304, 982 (2004).

    Article  PubMed  Google Scholar 

  115. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24, 1242–1255 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Fuller, D. Q. Long and attenuated: comparative trends in the domestication of tree fruits. Veg. Hist. Archaeobot. 27, 165–176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rogers, R. L. et al. Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans. Mol. Biol. Evol. 31, 1750–1766 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers, A. Muyle, E. Solares and T. Batarseh for comments. BSG is supported by NSF grants 1741627 and 1655808. DKS is supported by an NSF Postdoctoral Research Fellowship in Biology (1609024). QL is supported by the National Natural Science Foundation of China (grant no. 31471431) and the Training Program for Outstanding Young Talents of Zhejiang A&F University. YZ is supported by Y.Z. is supported by the International Postdoctoral Exchange Fellowship Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods for Figure 4, Supplementary Figure 1, Supplementary Table 1, Supplementary References and Supplementary Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaut, B.S., Seymour, D.K., Liu, Q. et al. Demography and its effects on genomic variation in crop domestication. Nature Plants 4, 512–520 (2018). https://doi.org/10.1038/s41477-018-0210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0210-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing