Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene retention, fractionation and subgenome differences in polyploid plants

Abstract

All natural plant species are evolved from ancient polyploids. Polyloidization plays an important role in plant genome evolution, species divergence and crop domestication. We review how the pattern of polyploidy within the plant phylogenetic tree has engendered hypotheses involving mass extinctions, lag-times following polyploidy, and epochs of asexuality. Polyploidization has happened repeatedly in plant evolution and, we conclude, is important for crop domestication. Once duplicated, the effect of purifying selection on any one duplicated gene is relaxed, permitting duplicate gene and regulatory element loss (fractionation). We review the general topic of fractionation, and how some gene categories are retained more than others. Several explanations, including neofunctionalization, subfunctionalization and gene product dosage balance, have been shown to influence gene content over time. For allopolyploids, genetic differences between parental lines immediately manifest as subgenome dominance in the wide-hybrid, and persist and propagate for tens of millions of years. While epigenetic modifications are certainly involved in genome dominance, it has been difficult to determine which came first, the chromatin marks being measured or gene expression. Data support the conclusion that genome dominance and heterosis are antagonistic and mechanically entangled; both happen immediately in the synthetic wide-cross hybrid. Also operating in this hybrid are mechanisms of ‘paralogue interference’. We present a foundation model to explain gene expression and vigour in a wide hybrid/new allotetraploid. This Review concludes that some mechanisms operate immediately at the wide-hybrid, and other mechanisms begin their operations later. Direct interaction of new paralogous genes, as measured using high-resolution chromatin conformation capture, should inform future research and single cell transcriptome sequencing should help achieve specificity while studying gene sub- and neo-functionalization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plant phylogenetic scheme with polyploidization events located in large-scale evolutionary time.
Fig. 2: An illustration of the PEB model for understanding how a new wide-hybrid or allotetraploid might or might not exhibit heterosis.

Similar content being viewed by others

References

  1. Salmanminkov, A., Sabath, N. & Mayrose, I. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2, 16115 (2016).

    Article  CAS  Google Scholar 

  2. Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49, 490–496 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Soltis, D. E., Visger, C. J. & Soltis, P. S. The polyploidy revolution then and now: Stebbins revisited. Am. J. Bot. 101, 1057–1078 (2014).

    Article  PubMed  Google Scholar 

  4. Salse, J. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr. Opin. Plant Biol. 15, 122–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res. 24, 1334–1347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langham, R. J. et al. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166, 935–945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freeling, M., Scanlon, M. J. & Fowler, J. E. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35, 110–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, E. B. Pseudoallelism and gene evolution. Cold Spring Harb. Sym. 16, 159–174 (1951).

    Article  CAS  Google Scholar 

  10. Ohno, S. Evolution by Gene Duplication (Springer, Berlin, 1970).

  11. Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2012).

    Article  Google Scholar 

  13. Chao, D. Y. et al. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341, 658–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wendel, J. F. The wondrous cycles of polyploidy in plants. Am. J. Bot. 102, 1753–1756 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Soltis, P. S., Marchant, D. B., Van de Peer, Y. & Soltis, D. E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 35, 119–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, X., Zhang, C., Ko, D. K. & Chen, Z. J. Genome-wide dosage-dependent and -independent regulation contributes to gene expression and evolutionary novelty in plant polyploids. Mol. Biol. Evol. 32, 2351–2366 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Arsovski, A. A., Pradinuk, J., Guo, X. Q., Wang, S. & Adams, K. L. Evolution of cis-regulatory elements and regulatory networks in duplicated genes of Arabidopsis. Plant Physiol. 169, 2982–2991 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barker, M. S., Husband, B. C. & Pires, J. C. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103, 1139–1145 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Renny-Byfield, S., Rodgers-Melnick, E. & Ross-Ibarra, J. Gene fractionation and function in the ancient subgenomes of maize. Mol. Biol. Evol. 34, 1825–1832 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Schnable, J. C., Springer, N. M. & Freeling, M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc. Natl Acad. Sci. USA 108, 4069–4074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, M. et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49, 579–587 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Kondrashov, F. A. & Kondrashov, A. S. Role of selection in fixation of gene duplications. J. Theor. Biol. 239, 141–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stebbins, G. L. Polyploidy in plants: unsolved problems and prospects. Basic Life Sci. 13, 495–520 (1979).

    CAS  PubMed  Google Scholar 

  27. Mayrose, I. et al. Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis. et al. (2014). New Phytol. 206, 27–35 (2015).

    Article  PubMed  Google Scholar 

  28. Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr. Opin. Plant. Biol. 15, 147–53 (2012).

    Article  PubMed  Google Scholar 

  29. Kellogg, E. A. Has the connection between polyploidy and diversification actually been tested? Curr. Opin. Plant Biol. 30, 25–32 (2016).

    Article  PubMed  Google Scholar 

  30. Lohaus, R. & Van de Peer, Y. Of dups and dinos: evolution at the K/Pg boundary. Curr. Opin. Plant Biol. 30, 62–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Lloyd, A. & Bomblies, K. Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr. Opin. Plant Biol. 30, 116–122 (2016).

    Article  PubMed  Google Scholar 

  32. Freeling, M. The distribution of ancient polyploidies in the plant phylogenetic tree is a spandrel of occasional sex. Plant Cell 29, 202–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptionist programme. P. Roy. Soc. Lond. B Bio. 205, 581–598 (1979).

    Article  CAS  Google Scholar 

  34. Friedman, W. E. The meaning of Darwin’s ‘abominable mystery’. Am. J. Bot. 96, 5–21 (2009).

    Article  PubMed  Google Scholar 

  35. Conant, G. C., Birchler, J. A. & Pires, J. C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19, 91–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl Acad. Sci. USA 110, 2898–903 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duarte, J. M. et al. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol. Biol. 10, 61 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sémon, M. & Wolfe, K. H. Consequences of genome duplication. Curr. Opin. Gen. Dev. 17, 505–512 (2007).

    Article  CAS  Google Scholar 

  40. Panchy, N., Lehti-Shiu, M. & Shiu, S. H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Soltis, D. E., Visger, C. J., Marchant, D. B. & Soltis, P. S. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166 (2016).

    Article  PubMed  Google Scholar 

  42. Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rastogi, S. & Liberles, D. A. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Birchler, J. A. & Veitia, R. A. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19, 395–402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Birchler, J. A. Parallel universes for models of X chromosome dosage compensation in Drosophila: a review. Cytogenet. Genome Res. 148, 52–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Blakeslee, A. F., Belling, J. & Farnham, M. E. Chromosomal duplication and Mendelian phenomena in Datura mutants. Science 52, 388–390 (1920).

    Article  CAS  PubMed  Google Scholar 

  47. Bridges, C. B. Haploidy in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 11, 706–710 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, W.-k, Liu, Y.-l, Xia, E.-h & Gao, L.-z Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol. 161, 1844–1861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, E. C., Morin, A., Chauchat, J. H. & Sankoff, D. Statistical analysis of fractionation resistance by functional category and expression level. BMC Genom. 18, 366 (2017).

    Article  Google Scholar 

  50. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Teufel, A. I., Liu, L. & Liberles, D. A. Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization. BMC Evol. Biol. 16, 1–8 (2016).

    Article  CAS  Google Scholar 

  52. Lehti-Shiu, M., Panchy, N., Wang, P., Uygun, S. & Shiu, S. H. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochim. Biophys. Acta 1860, 3–20 (2016).

    Article  PubMed  CAS  Google Scholar 

  53. Rody, H. V. S., Baute, G. J., Rieseberg, L. H. & Oliveira, L. O. Both mechanism and age of duplications contribute to biased gene retention patterns in plants. BMC Genom. 18, 46 (2017).

    Article  CAS  Google Scholar 

  54. Freeling, M. & Thomas, B. C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Gout, J. F. & Lynch, M. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol. Biol. Evol. 32, 2141–2148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dickinson, H., Costa, L. & Gutierrez-Marcos, J. Epigenetic neofunctionalisation and regulatory gene evolution in grasses. Trends Plant Sci. 17, 389 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, X., Wang, L., Yuan, Y., Tian, D. & Yang, S. Rapid copy number expansion and recent recruitment of domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. FEBS J. 278, 4323–4337 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7, e36442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Hittinger, C. T. & Carroll, S. B. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449, 677–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Baker, C. R., Hanson-Smith, V. & Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104–108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno’s dilemma: evolution of new genes under continuous selection. Proc. Natl Acad. Sci. USA 104, 17004–17009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Francino, M. P. An adaptive radiation model for the origin of new gene functions. Nat. Genet. 37, 573–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Penn, D. J., Damjanovich, K. & Potts, W. K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl Acad. Sci. USA 99, 11260–11264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van den Bergh, E., Hofberger, J. A. & Schranz, M. E. Flower power and the mustard bomb: comparative analysis of gene and genome duplications in glucosinolate biosynthetic pathway evolution in Cleomaceae and Brassicaceae. Am. J. Bot. 103, 1212–1222 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Hughes, T. E., Langdale, J. A. & Kelly, S. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 24, 1348–1355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muller, H. J. Further studies on the nature and causes of gene mutations. In Proc. 6th Int. Cong. Genet. (Ed. Jones, D. F.) 213–225 (Brooklyn Botanic Garden, Menasha, WI, 1932).

  68. Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20, 544–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Lercher, M. J., Blumenthal, T. & Hurst, L. D. Coexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res. 13, 238–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eichenlaub, M. P. & Ettwiller, L. De novo genesis of enhancers in vertebrates. PLoS Biol. 9, e1001188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Emera, D., Yin, J., Reilly, S. K., Gockley, J. & Noonan, J. P. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc. Natl Acad. Sci. USA 113, 2617–2626 (2016).

    Article  CAS  Google Scholar 

  72. Haldane, J. B. S. The part played by recurrent mutation in evolution. Am. Nat. 67, 5–19 (1933).

    Article  Google Scholar 

  73. Li, L. et al. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genom. 17, 875 (2016).

    Article  CAS  Google Scholar 

  74. Renny-Byfield, S., Gong, L., Gallagher, J. P. & Wendel, J. F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 1063–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang, J. et al. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc. Natl Acad. Sci. 112, 7022–7029 (2015).

    Article  CAS  Google Scholar 

  77. Sattler, M., Carvalho, C. & Clarindo, W. The polyploidy and its key role in plant breeding. Planta 243, 281–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Yant, L. & Bomblies, K. Genome management and mismanagement: cell-level opportunities and challenges of whole-genome duplication. Genes Dev. 29, 2405–2419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spofford, J. B. Heterosis and the evolution of duplications. Am. Nat. 103, 407–432 (1969).

    Article  Google Scholar 

  80. Proulx, S. R. & Phillips, P. C. Allelic divergence precedes and promotes gene duplication. Evolution 60, 881–892 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Birchler, J. A., Yao, H., Chudalayandi, S., Vaiman, D. & Veitia, R. A. Heterosis. Plant Cell 22, 2105–2112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Herbst, R. H. et al. Heterosis as a consequence of regulatory incompatibility. BMC Biol. 15, 38 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Steige, K. A. & Slotte, T. Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. Curr. Opin. Plant Biol. 30, 88–93 (2016).

    Article  PubMed  Google Scholar 

  84. Schnable, J. C. & Freeling, M. Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS ONE 6, e17855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murat, F. et al. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol. Evol. 6, 12–33 (2013).

    Article  PubMed Central  Google Scholar 

  86. Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31, 448–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Gill, N. et al. Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol. 151, 1167–1174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun, H. et al. Karyotype stability and unbiased fractionation in the paleo-allotetraploid cucurbita genomes. Mol. Plant 10, 1293–1306 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, F. et al. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa. New Phytol. 211, 288–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 3930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mei, W. et al. A comprehensive analysis of alternative splicing in paleopolyploid maize. Front. Plant Sci. 10, 694 (2017).

    Article  Google Scholar 

  92. Springer, N. M., Lisch, D. & Li, Q. Creating order from chaos: epigenome dynamics in plants with complex genomes. Plant Cell 28, 314–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Woodhouse, M. R. et al. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc. Natl Acad. Sci. USA 111, 5283–5288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pophaly, S. D. & Tellier, A. Population level purifying selection and gene expression shape subgenome evolution in maize. Mol. Biol. Evol. 32, 3226–3235 (2015).

    CAS  PubMed  Google Scholar 

  96. Wendel, J. F., Lisch, D., Hu, G. & Mason, A. S. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49, 1–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Talbert, P. B. & Henikoff, S. Spreading of silent chromatin: inaction at a distance. Nat. Rev. Genet. 7, 793–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Eichten, S. R. et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 8, e1003127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buggs, R. J. et al. Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol. 186, 175–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Li, A. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26, 1878–1900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vallejo-Marin, M. et al. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. Am. J. Bot. 103, 1272–1288 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Yoo, M. J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110, 171–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Freeling, M. et al. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol. 15, 131–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Darwin, C. The effects of cross and self-fertilization in the vegetable kingdom (John Murray, London, 1876).

    Book  Google Scholar 

  105. Davenport, C. B. Degeneration, albinism and inbreeding. Science 28, 454–455 (1908).

    Article  CAS  PubMed  Google Scholar 

  106. Groszmann, M. et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl Acad. Sci. USA 108, 2617–2622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawanabe, T. et al. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 113, 6704–6711 (2016).

    Article  CAS  Google Scholar 

  108. Zhang, Q. et al. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proc. Natl Acad. Sci. USA 113, 4248–4256 (2016).

    Article  CAS  Google Scholar 

  109. Rowley, M. J., Rothi, M. H., Bohmdorfer, G., Kucinski, J. & Wierzbicki, A. T. Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genet. 13, e1006749 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rosa, S. et al. Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev. 27, 1845–1850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grob, S. & Grossniklaus, U. Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. Curr. Opin. Plant Biol. 36, 149–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, J. et al. A and D genomes spatial separation at somatic metaphase in tetraploid cotton: evidence for genomic disposition in a polyploid plant. Plant J. 84, 1167–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Macosko, E. Z. et al. Highly Parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Coate, J. E., Song, M. J., Bombarely, A. & Doyle, J. J. Expression‐level support for gene dosage sensitivity in three glycine subgenus glycine polyploids and their diploid progenitors. New Phytol. 212, 1083–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737–5742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ruprecht, C. et al. Revisiting ancestral polyploidy in plants. Sci. Adv. 3, e1603195 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Joint Genome Institute. Phytozome. US Department of Energy; https://phytozome.jgi.doe.gov/pz/portal.html#

  126. CoGepedia (Comparative Genomics, 2015); https://genomevolution.org/wiki/index.php/Plant_paleopolyploidy.

  127. Li, Y., Varala, K., Moose, S. P. & Hudson, M. E. The inheritance pattern of 24 nt siRNA clusters in Arabidopsis hybrids is influenced by proximity to transposable elements. PLoS ONE 7, e47043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Chinese authors are supported by the National Program on Key Research Project (2016YFD0100307), the National Natural Science Foundation of China (NSFC grants 31630068 and 31722048), the Prospect of Shandong Seed Project (Shandong Government, 2015, reference no. 212), the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R. China. MF’s support is from the National Science Foundation, USA, Plant Genome Research Program grant IOS-1546825 to R. Mosher and team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Freeling or Xiaowu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Wu, J., Cai, X. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants 4, 258–268 (2018). https://doi.org/10.1038/s41477-018-0136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0136-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research