Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis

Abstract

Acetyl-coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on adenosine triphosphate (ATP)-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants demonstrate the dynamic changes in H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and characterization of a new mutant of ACC1.
Fig. 2: Hyperacetylation of H3K27 is associated with the accumulation of acetyl-CoA in acc1 mutants.
Fig. 3: Genome-wide analysis of H3K27ac in acc1.
Fig. 4: Increased H3K27ac in acc1-5 depends on the activity of ACL.
Fig. 5: Histone acetyltransferase GCN5/HAG1 is required for the increased H3K27ac in acc1-5.
Fig. 6: Transcriptome and metabolome analysis of acc1-5 seedlings.

Similar content being viewed by others

References

  1. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Berr, A., Shafiq, S. & Shen, W. H. Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta 1809, 567–576, (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol. 4, 276–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sack M. N., Finkel T. Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 4, a013102 (2012).

  7. Takahashi, H., McCaffery, J. M., Irizarry, R. A. & Boeke, J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R. & Thompson, C. B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai, L., Sutter, B. M., Li, B. & Tu, B. P. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galdieri, L. & Vancura, A. Acetyl-CoA carboxylase regulates global histone acetylation. J. Biol. Chem. 287, 23865–23876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Madiraju, P., Pande, S. V., Prentki, M. & Madiraju, S. R. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4, 399–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sutendra, G. et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Fatland, B. L. et al. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 130,740–756 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fatland, B. L., Nikolau, B. J. & Wurtele, E. S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 17, 182–203 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliver, D. J., Nikolau, B. J. & Syrkin Wurtele, E. Acetyl-CoA-Life at the metabolic nexus. Plant Sci. 176, 597–601 (2009).

    Article  CAS  Google Scholar 

  17. Jin, H., Song, Z. & Nikolau, B. J. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J. 70, 1015–1032 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Yanai, Y., Kawasaki, T., Shimada, H., Wurtele, E. S., Nikolau, B. J. & Ichikawa, N. Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol. 36, 779–787 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Baud, S. et al. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J. 33, 75–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kajiwara, T., Furutani, M., Hibara, K. & Tasaka, M. The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis. Plant Cell Physiol. 45, 1122–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, X. et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves. Plant Physiol. 147, 1143–1157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, Q. et al. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61, 259–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Tang, X. et al. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. J. Exp. Bot. 63, 1391–1404 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Austin, R. S. et al. Next-generation mapping of Arabidopsis genes. Plant J. 67, 715–725 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Roudier, F. et al. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22, 364–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, S. et al. The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme A carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. Plant Physiol. 157, 1079–1092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zuo, J., Niu, Q. W. & Chua, N. H. Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Charron, J. B., He, H., Elling, A. A. & Deng, X. W. Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21, 3732–3748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pandey, R. et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30,5036–5055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biel, M., Kretsovali, A., Karatzali, E., Papamatheakis, J. & Giannis, A. Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angew Chem. 43, 3974–3976 (2004).

    Article  CAS  Google Scholar 

  31. Malapeira, J., Khaitova, L. C. & Mas, P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA 109, 21540–21545 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Earley, K. W., Shook, M. S., Brower-Toland, B., Hicks, L. & Pikaard, C. S. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 52, 615–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, J. et al. Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. Plant Physiol. 170, 444–451 (2013).

    Article  CAS  Google Scholar 

  34. Bordoli, L., Netsch, M., Luthi, U., Lutz, W. & Eckner, R. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res. 29, 589–597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Long, J. A., Ohno, C., Smith, Z. R. & Meyerowitz, E. M. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 1520–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Berna, G., Robles, P. & Micol, J. L. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152, 729–742 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  PubMed  Google Scholar 

  39. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21,805–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Shen, Y., Wei, W. & Zhou, D.-X. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 20, 614–621 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Chow, J. D. et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol. Metab. 3, 419–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J. M. et al. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 3, 17097 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Benhamed, M., Bertrand, C., Servet, C. & Zhou, D. X. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18, 2893–2903 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McMillan, A., Renaud, J. B., Gloor, G. B., Reid, G. & Sumarah, M. W. Post-acquisition filtering of salt cluster artefacts for LC-MS based human metabolomic studies. J. Cheminform. 8, 44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Servet, C., Conde e Silva, N. & Zhou, D. X. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol. Plant 3, 670–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Henry, R. A., Kuo, Y. M. & Andrews, A. J. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52, 5746–5759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Henry, R. A., Kuo, Y. M., Bhattacharjee, V., Yen, T. J. & Andrews, A. J. Changing the selectivity of p300 by acetyl-CoA modulation of histone acetylation. ACS Chem. Biol. 10, 146–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adachi, S., Nobusawa, T. & Umeda, M. Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev. Biol. 329, 306–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Tsuchiya, Y., Pham, U., Hu, W., Ohnuma, S. & Gout, I. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis. PLoS One 9, e97693 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, C. et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687–693 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. & Salzberg, S. L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gendrel, A. V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Li, C. et al. The Arabidopsis SWI2/SNF2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP. PLoS Genet. 11, e1004944 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucl. Acids Res. 44, W160–165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nicol, J. W., Helt, G. A., Blanchard, S. G. Jr., Raja, A. & Loraine, A. E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K. & Peng, W. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salmon-Divon, M., Dvinge, H., Tammoja, K. & Bertone, P. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11, 415 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zheng, Q. & Wang, X. J. GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res. 36, W358–363 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24,2534–2536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Prince, J. T. & Marcotte, E. M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 78,6140–6152 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Menassa and N. Hüner for helpful discussions, M. Tasaka for the seeds of gk101 (acc1-4), J.L. Micol for the seeds of elo3 (elp3), ABRC for the seeds of T-DNA insertion lines, and A. Molnar for help with preparing the figures. This work was supported by grants from the Natural Science and Engineering Research Council of Canada (R4019A01, to Y.C.), Agriculture and Agri-Food Canada (to Y.C.) and National Natural Science Foundation of China (31371715, to J.L.). C.C. was supported by a graduate fellowship from the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and Y.C. conceived and designed the experiments; C.C., Y.W. and A.H. quantified the level of acetyl-CoA; J.R and C.C performed metabolome profiling; J.R., F. M. and S.K. analysed the metablomic data; G.T., B.S. and R.S.A. conducted mapping of p1045. V.N. and Z.C.Y. performed all the Sanger DNA sequencing; C.C. performed all the rest of the experiments; C.C., C.L., Z.C.Y., J.L., K.Y., S.E.K., S.H. and K.W. analysed ChIP-seq and RNA-seq data; C.C., C.L. and Y.C. wrote the paper.

Corresponding author

Correspondence to Yuhai Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1-18, Supplementary Tables 1-3

Life Sciences Reporting Summary

Supplementary Dataset 1 H3K27ac targets identified by ChIP-seq in WT and acc1-5

Supplementary Dataset 2 List of genes with increased and decreased H3K27ac in acc1-5

41477_2017_23_MOESM5_ESM.xlsx

Supplementary Dataset 3 List of genes with increased and decreased acetylations (at lysine residues other than H3K27) in acc1-5

41477_2017_23_MOESM6_ESM.xlsx

Supplementary Dataset 4 Transcripts significantly changed in acc1-5 identified from RNA-seq and lists of genes in 7 functional categories

Supplementary Dataset 5 List of detected and identified metabolite features from both +ve and –ve mode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, C., Wang, Y. et al. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis . Nature Plants 3, 814–824 (2017). https://doi.org/10.1038/s41477-017-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0023-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing