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A unifying modelling of multiple land
degradation pathways in Europe

Remus Prăvălie1,2,3 , Pasquale Borrelli 4,5, Panos Panagos 6,
Cristiano Ballabio 6, Emanuele Lugato 6, Adrian Chappell 7,
Gonzalo Miguez-Macho 8, Federico Maggi 9, Jian Peng 10, Mihai Niculiță 11,
Bogdan Roșca12, Cristian Patriche12, Monica Dumitrașcu13, Georgeta Bandoc1,3,
Ion-Andrei Nita 14 & Marius-Victor Birsan 13

Land degradation is a complex socio-environmental threat, which generally
occurs as multiple concurrent pathways that remain largely unexplored in
Europe. Here we present an unprecedented analysis of landmulti-degradation
in 40 continental countries, using twelve dataset-based processes that were
modelled as land degradation convergence and combination pathways in
Europe’s agricultural (and arable) environments. Using a Land Multi-
degradation Index, we find that up to 27%, 35% and 22% of continental agri-
cultural (~2 million km2) and arable (~1.1 million km2) lands are currently
threatened by one, two, and three drivers of degradation, while 10–11% of pan-
European agricultural/arable landscapes are cumulatively affected by four and
at least five concurrent processes. We also explore the complex pattern of
spatially interacting processes, emphasizing the major combinations of land
degradation pathways across continental and national boundaries. Our results
will enable policymakers to develop knowledge-based strategies for land
degradation mitigation and other critical European sustainable develop-
ment goals.

Land, with its defining elements of soils, vegetation, and inland water
resources1,2, is threatened worldwide by numerous degradation pro-
cesses that may drive the decrease or collapse of biological and eco-
nomic productivity, biodiversity, ecological integrity and complexity,
or ecosystem functions that support thedelivery of primaryecosystem
services3,4. There are multiple negative consequences of land degra-
dation (LD), which have profound implications for agricultural

productivity5, food security6, climate stability7, environmental
sustainability8, and economic prosperity1. For the last case alone, it is
estimated that the global economic impact of LD, assessed through
loss of various ecosystem services, could total the astonishing cost of
6.3–10.6 trillion US dollars annually1,9.

The multisectoral impact of this major environmental dis-
turbance is profoundly influenced by the occurrence patterns of LD
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processes. The spatial pattern of various LD pathways was explored
in Europe andworldwide inmany unidimensional studies, focused so
far on the separate analysis of certain distinct processes, like water
erosion10,11, wind erosion12,13, soil salinization14,15, soil compaction16,17

or soil organic carbon loss18,19. These examples and many other stu-
dies generally investigated LD from a unilateral perspective, in which
the individual processeswere examined as isolated anddisconnected
pathways of various existing processes2 that usually interact in the LD
mechanism.

Therefore, international scientific literature has generally ignored
the multidimensional nature of LD, which by its definition involves a
cumulative approach of various land degradative facets. Some well-
known global specialized reports (which include Europe) assessed
several LD processes, but often in an individual manner and focusing
on soil degradation, which is only one of the three key elements that
define the broader concept of land. Such representative scientific
reports include theGlobal Assessment of SoilDegradation20, theWorld
Atlas of Desertification (first, second, and third editions)3,21,22, the
Global Assessment of Land Degradation and Improvement23, the
Assessment Report on Land Degradation and Restoration4 and the
Climate Change and Land Special Report7.

There are however certain previous attempts to examine some
multiple LD processes (land multi-degradation), in a synergistic
approach. Such a rare example is a recent study that investigated the
co-occurrence (simultaneous presence) of five major degradation
processes (water erosion, soil salinization, soil organic carbon loss,
vegetation degradation, and aridity) for detecting land multi-
degradation in global arable landscapes6. The shortcoming of this
previous assessment is however the lack of integration of other key
processes inmodelling landmulti-degradation. Another assessment of
LD in a comprehensive manner is found in the World Atlas of Deser-
tificationReport (third edition),which attempted to assess both causes
and some processes involved in worldwide LD, through a “con-
vergence of evidence” approach3. Recently, the same approach was
applied across the European Union (EU)24.

However, some significant limitations still persist in these ana-
lyses, such as omitting many important specific processes and the
mixture of various biophysical and socio-economic drivers of LD, the
coincidence (or convergence) of which does not concretely (directly)
indicate this disturbance, but rather the fact this environmental issue
may exist3,24. While other studies explored the complex nature of LD
based on certain multicriteria susceptibility models applied at global25

or European26 scales, they too generated results that did not focus on
actual LD processes, but on examining the synergic effects of various
ecological and socio-economic conditions potentially leading to LD.

To address the complex issue of land multi-degradation, a multi-
process modelling approach of LD is essential in Europe. This
approach can be crucial for applying various agricultural (e.g. Com-
mon Agricultural Policy)27, climate (the European Green Deal)28, and
sustainable development (Sustainable Development Goals – SDGs)11

policies on the continent. Consequently, a comprehensive analysis of
LD can define a powerful decision-making support tool for European
and national policies designed to mitigate LD hotspots and support
food security, climate stability, and environmental sustainability
throughout the continent.

In this study, we model, quantify, and map the convergence
pattern of twelve LD processes in Europe using the latest state-of-
the-art datasets. Our entire analysis is focused on continental (pan-
European) agricultural environments, which are critically important
for food production, but generally highly vulnerable to multi-
degradation. Essentially, our research integrates a complex set of
LD processes that are strategically important to continental agri-
cultural productivity, thus trying to provide a solid scientific basis
for a more realistic and efficient implementation of LD-related
policies across Europe.

Results and Discussion
The continental picture of individual land degradation
processes
We used a large set of geospatial data including twelve LD processes
(water erosion, wind erosion, soil organic carbon loss, soil salinization,
soil acidification, soil compaction, soil nutrient imbalances, soil pol-
lution via pesticides, soil pollution via heavy metals, vegetation
degradation, groundwater decline, aridity), which are highly repre-
sentative for agricultural productivity and that were collected from
various sources (n = 6) or developed in this study (n = 6) (see Meth-
ods). An overview of individual drivers of degradation is provided in
Fig. 1, which provides their essential spatial characteristics before
examining the continental status of multiple converging (co-occur-
ring) processes.

The results showed different patterns of LD processes across
Europe, whichwere examined andmapped according to some specific
critical thresholds (classes), documented in the literature for each
driver of degradation (see Methods). Our findings revealed that soil
pollution via pesticides has, surprisingly, the largest spatial footprint at
continental level (52% of the cumulated agricultural area of the 40
investigated countries, or ~1.10 million (M) km2), of all analysed pro-
cesses (Fig. 1h). This process, the vast spatial extent of which is
explained by the very large number of substances (dozens of herbi-
cides, insecticides and fungicides) considered in the modelled data of
pesticide risk29, is followed by soil nutrient imbalances (39% or
~0.82Mkm2) (Fig. 1g), soil pollution via heavy metals (31%,
~0.60Mkm2) (Fig. 1i), and aridity (26%, ~0.54Mkm2) (Fig. 1l). These
four LD processes can be considered the most important in terms of
spatial footprint, keeping in mind that each process affects over a
quarter of European agriculture.

In contrast, soil salinization (1% or ~0.02Mkm2) (Fig. 1d), vegeta-
tion degradation (3%, ~0.07Mkm2) (Fig. 1j), groundwater decline (4%,
~0.08Mkm2) (Fig. 1k) and wind erosion (5%, ~0.10Mkm2) (Fig. 1b)
cover the smallest agricultural areas in Europe. Thus, according to the
percentage data, these 4 processes seem to be the smallest threats to
land productivity, even though their absolute spatial footprint is still
notable. While country-level statistics are far more diverse, some large
countries with vast agricultural areas affected (up to >50% or even
>75% of national agricultural lands) by critical conditions of soil pol-
lution via pesticides (e.g. Poland, Italy or Spain) (Fig. 1h) and heavy
metals (France, Italy or Greece) (Fig. 1i), or of soil nutrient imbalances
(UK or Germany) (Fig. 1g) and aridity (Romania or Spain) (Fig. 1l), is
truly remarkable. Other important LD hotspots (>25% or even >50% of
agricultural lands classified as “Critical”) can be observed sporadically
especially for water erosion (countries from the Mediterranean and
Balkan regions) (Fig. 1a), soil compaction (e.g. Baltic countries) (Fig. 1f),
and soil acidification (Nordic countries) (Fig. 1e).

Land multi-degradation pattern in Europe
By fusing the twelve geospatial databases, we created Land Multi-
degradation Index (LMI) (see Methods), which highlights the number
of interacting processes throughout the continent (Fig. 2). LMI
revealed between one and ten co-occurring processes in Europe,
which were grouped into five degradation classes (the “No degrada-
tion” class was approached separately, as it entails the absence of
degradation conditions) – very low (1 process identified at pixel level),
low (co-occurrence of 2 LD processes), medium (3), high (4) and very
high (≥5) (Fig. 2), considering certain key statistical criteria and the
reasoning of an easy interpretation of LMI results (see Methods). This
classificationwas explored across the entire Europeanagricultural land
area (Fig. 2a), and a special focuswas given to the arable lands (Fig. 2d),
which are highly relevant for ensuring crop production and food
security in Europe.

Considering LMI classes 1–3, it can be noted that large parts of the
two land use categories are exposed to one (up to 27% of the European
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agricultural/arable area), two (up to 35%), and three (22%) drivers of
degradation (Table 1). These first three classes highlight a very low,
low, and medium vulnerability of lands to degradation, and total over
80% of the areas investigated in this study (Table 1). The next two
classes are spatially limited, but significantly more important by
reflecting the highest intensity of LD. For this reason, LMI classes 4 and

5 should be explored more closely throughout the pan-European
agricultural and arable lands.

It was found that about a tenth of European agricultural lands are
affected by high (8% of agricultural area or ~0.16M km2) and very
high (2%, ~0.04M km2) degradation (Table 1), especially in the con-
tinent’s southern, north-western and central south-eastern regions
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(Fig. 2a). While the countrywide picture is more diverse, the most
important hotspots in terms of percentages of concurrent processes
(LMI classes 4 and 5 combined) are Spain (~30% of the national
agricultural area), Greece (26%), Italy (23%), Netherlands (20%) and
Hungary (14%) (Supplementary Table 2, Fig. 2a). Also, Spain
(~0.07M km2), Italy (~0.04M km2), France (~0.02M km2), UK

(~0.01M km2) and Greece (~0.01M km2) are the most remarkable in
terms of absolute areas affected by high and very high degradation
(which can be determined based on percentages and absolute agri-
cultural areas featured in Supplementary Table 2). All seven countries
are among the most threatened by multi-degradation, also con-
sidering the national average of co-occurring processes (Fig. 2c). In

Fig. 1 | The continental spatial pattern of twelve LD processes approached
separately in Europe. aWater erosion.bWinderosion. c Soil organic carbon (SOC)
loss. d Soil salinization. e Soil acidification. f Soil compaction. g Soil nutrient
imbalances. h Soil pollution via pesticides. i Soil pollution via heavy metals.
j Vegetation degradation. k Groundwater decline. l Aridity. The “Critical” class was
delimited for each process as per the details featured in the Methods section.
Horizontal columns represent percentage-based areas of land degradation classes
(“Critical” and “Non-critical”), related to the absolute area of national agricultural

lands (which can be found in the Supplementary Information section). Light grey
highlights non-agricultural lands, while dark grey indicates the countries with no
data available for the specific processes. The numbers inside the maps and dia-
grams are the investigated countries, ordered (from north to south) in descending
order considering the maximum latitude values of their northern limits. The
complete list of the 40 countries is featured in the Supplementary Tables. The
source data for the graphs in this figure are provided as a Source Data file.
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Fig. 2 | Spatial patternof landmulti-degradation in Europe. aSpatial distribution
of LMI values (number of co-occurring processes) in agricultural landscapes.
bHistogramof LMI values for European agricultural lands. cAverage number of co-
occurring processes in agricultural environments of continental countries.
d Spatial distribution of LMI values (number of co-occurring processes) in arable
landscapes. eHistogramof LMI values for European arable lands. fAverage number

of co-occurring processes in arable environments of continental countries. LMI is
the acronym for Land Multi-degradation Index. Light grey highlights non-agri-
cultural/non-arable lands, while dark grey indicates the (masked) countries with
incomplete data (9–10 input layersout of 12) for LMImodelling. The source data for
the graphs in this figure are provided as a Source Data file.

Table 1 | Spatial extent (in km2 and %) of LMI classes in agricultural/arable environments of Europe

No. LMI classes (number of co-occurring
processes)

Agricultural lands Arable lands

km2 % km2 %

1 No degradation (0)a 120,963 ( ± 29,031) 6.16 ( ± 1.48) 66,410 ( ± 15,938) 6.07 ( ± 1.46)

2 Very low degradation (1) 523,824 ( ± 167,624) 26.70 ( ± 8.54) 287,879 ( ± 92,121) 26.33 ( ± 8.43)

3 Low degradation (2) 678,224 ( ± 149,485) 34.57 ( ± 7.62) 372,937 ( ± 82,198) 34.11 ( ± 7.52)

4 Medium degradation (3) 440,473 ( ± 66,655) 22.45 ( ± 3.40) 244,081 ( ± 36,936) 22.32 ( ± 3.38)

5 High degradation (4) 155,265 ( ± 25,020) 7.91 ( ± 1.28) 94,654 ( ± 15,253) 8.66 ( ± 1.39)

6 Very high degradation (≥5)b 43,352 ( ± 8,919) 2.21 ( ± 0.45) 27,460 ( ± 5,650) 2.51 ( ± 0.52)
aagricultural/arable lands unaffected by degradation processes. bmost frequently five concurrent processes, according to the LMI histograms for agricultural/arable areas (Fig. 2b, e). % – the
percentage-based area of the number of convergent processes (0, 1, 2, 3, 4, ≥5), related to the absolute area of continental agricultural (1,962,101 km2)/arable (1,093,421 km2) lands. The values in
parentheses (±) are error rangesobtained by applying a RandomForest classificationmodel (seeMethods). All theseEuropean statisticswere extracted after excluding the countrieswith incomplete
data for LMI modelling (Fig. 2).
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contrast, Germany is the least affected (alongside several other Eur-
opean states), as it holds extensive lands (>0.03M km2) with high
agro-ecological potential (the “No degradation” class), which are not
under the incidence of even a single LD process (Supplementary
Table 2, Fig. 2a,c).

Also, large portions of Europe’s arable lands are under the
pressure of themost critical conditions, framed in LMI classes 4 (9%,
~0.09M km2) and 5 (3%, ~0.03M km2) (Table 1, Fig. 2d). Spain (36%),
Italy (32%), Greece (27%), Hungary (14%) and Netherlands (14%)
remainmajor hotspots of LMI classes 4 and 5 (combined) in terms of
percentages, while the top 5 countries affected in terms of absolute
areas consists of Spain (~0.05M km2), Italy (~0.03M km2), France
(~0.01M km2), UK (~0.01M km2) and Romania (~0.01M km2) (Sup-
plementary Table 3, Fig. 2d). These states are also the most vul-
nerable in terms of the mean number of concurrent processes in
national arable lands (Fig. 2f). At the opposite pole, Germany
(~0.02M km2) and Sweden (~0.01M km2) hold the most extensive
lands unaffected by one or more LD processes (Supplementary
Table 3, Fig. 2d,f).

In order to statistically consolidate all these LMI results, we
explored the potential uncertainties of our modelling, which may
primarily result from defining the critical thresholds of multiple LD
processes (see Methods). Thus, the possible uncertainties associated
to the threshold-driven LMI values were quantified andmapped across
Europe, using a Random Forest classification model (see Methods).

The results emphasized an overall prediction error of 17.6% (out-
of-bag error) throughout the continent. Essentially, the uncertainties
were defined as the probability that eachmodelled pixel falls in one of
the LMI classes, according to Supplementary Fig. 1. The findings on the
uncertainty (and sensitivity) analysis allowed us to define the geo-
graphical variability (Supplementary Fig. 1) of the LMI classes (asso-
ciated to thresholds different from those that were defined according
to scientific and policy related literature, as detailed in Methods), but
also to estimate the prediction error associated to each LMI class area
resulted in this study (Table 1).

Acknowledging some degree of uncertainty (Table 1, Supple-
mentary Fig. 1), ourmulti-degradation approachbecomes a better tool
that can be highly useful for various EU policies (see Policy

Fig. 3 | Spatial pattern of interacting convergent processes in agricultural
environments of Europe. Spatial distribution of the dominant (most frequent) co-
occurring process types (combinations) in LMI agricultural classes 1 (a), 2 (b), 3 (c),
4 (d) and 5 (e). Absolute and percentage-based (% of the total continental agri-
cultural lands) spatial footprint of the dominant co-occurring process types in LMI
agricultural classes 1 (f), 2 (g), 3 (h), 4 (i), and 5 (j). LMI is the acronym for Land
Multi-degradation Index. In order to simplify themapping of process combinations
(which are very numerous for each LMI class, except for class 1), in this figure the
twelve most important types of co-occurring processes in Europe were selected,

which, in terms of area, cumulatively account for at least 50% of all LMI class
combinations. Tobetterhighlight themappedprocess combinations, pixel sizewas
increased to 5 km × 5 km, but the quantification of process combination areas (in
km2 and %) was done using the original data resolution of 500m × 500m. The
countries in dark grey weremasked as they contained incomplete data (9–10 input
layers out of 12) for LMI modelling. The European statistics (f–j) were extracted
after excluding the countries with incomplete data for LMI computation. The
source data for the graphs in this figure are provided as a Source Data file.
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implications). Scientifically, the uncertainty modelling framework
helpsmoving closer towards robust, repeatable, andopendata science
to communicate with adjacent disciplines and better deal with com-
plex LD challenges.

Types of spatially interacting processes across the continent
In addition to the number of convergent processes, emphasized by
LMI, the combination of concurrent processes is also relevant at the
continental/national scale. Following the twelve dominant (most fre-
quent) process combinations for each LMI class, we detected a com-
plex pattern of interacting LD pathways, which are dominant in
Europe’s agricultural (Fig. 3) and arable (Fig. 4) landscapes.

The first three classes are marked by large-scale combinations of
LD processes (LMI class 1 indicates, in fact, a single driver of degra-
dation, with no other concurrent processes), which affects extensive
agricultural areas continentally (Fig. 3a–c, f–h) and nationally (see
detailed statistics in Supplementary Tables 4–6). Smaller, yet still
remarkable areas can also be noticed for combinations of LMI classes
1–3 for continental (Fig. 4a–c, f–h) and national (Supplementary

Tables 9–11) arable lands. While the last two classes are significantly
smaller, they are the most important due to the complex spatial
interaction of four and five drivers of degradation.

For agricultural lands, we found the most common four con-
current processes (LMI class 4) represented by water erosion (WaE),
soil pollution via pesticides (SPP), soil pollution via heavy metals
(SPHM) and aridity (A) (the abbreviated combination WaE + SPP +
SPHM+A), and water erosion, soil nutrient imbalances (SNI), soil
pollution via pesticides and via heavymetals (WaE + SNI + SPP + SPHM)
(Fig. 3d). Each combination exceeds 0.01Mkm2 (or >10,000 km2)
(Fig. 3i) and affects Italy themost (Fig. 3d), with >10% of its agricultural
lands marked by the two combinations of interacting processes
(Supplementary Table 7). Considering all twelve major types of com-
binations, Spain is another epicentre of land multi-degradation
(Fig. 3d), with ~13% of its agricultural lands affected by various asso-
ciations of four LD processes (Supplementary Table 7).

We also detected twelve main associations of five concurrent
processes (LMI class 5) (Fig. 3e), which inmost cases exceed 1000 km2

(Fig. 3j). Themost extensive association totals almost 4000 km2 (water
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Fig. 4 | Spatial pattern of interacting convergent processes in arable environ-
ments of Europe. Spatial distribution of the dominant (most frequent) co-
occurring process types (combinations) in LMI arable classes 1 (a), 2 (b), 3 (c), 4 (d)
and 5 (e). Absolute and percentage-based (% of the total continental arable lands)
spatial footprint of the dominant co-occurring process types in LMI classes 1 (f), 2
(g), 3 (h), 4 (i) and 5 (j). LMI is the acronym for Land Multi-degradation Index. In
order to simplify the mapping of process combinations (which are very numerous
for each LMI class, except for class 1), in this figure the twelvemost important types
of co-occurring processes in Europe were selected, which, in terms of area,

cumulatively account for at least 50% of all LMI class combinations. To better
highlight the mapped process combinations, pixel size was increased to 5 km ×
5 km, but the quantification of process combination areas (in km2 and %) was done
using the original data resolution of 500m × 500m. The countries in dark grey
were masked as they contain incomplete data (9–10 input layers out of 12) for LMI
modelling. The European statistics (f–j) were extracted after excluding the coun-
tries with incomplete data for LMI computation. The source data for the graphs in
this figure are provided as a Source Data file.
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erosion, soil pollution via pesticides, via heavy metals, groundwater
decline (GD) and aridity, or WaE + SPP + SPHM+GD+A) (Fig. 3j),
mainly affecting north-eastern Spain (Fig. 3e). Generally, Spain, Italy
and Greece are the main hotspots of the twelve types of combinations
belonging to LMI class 5 (Fig. 3e, Supplementary Table 8).

A similar spatial pattern can also be observed for arable lands
(Fig. 4d, e), with some differences in the area hierarchy of combined
processes (Fig. 4i,j). We found two prominent cases (>10,000 km2)
with four concurrent processes (LMI class 4) consisting of water ero-
sion, soil nutrient imbalances, soil pollution via pesticides and via
heavy metals (WaE + SNI + SPP + SPHM), and water erosion, soil pol-
lution via pesticides, via heavy metals and aridity (WaE + SPP +
SPHM+A), respectively (Fig. 4d,i). Once more, Italy is the epicentre of
the two major combinations (which affect 16% of its arable lands)
(Supplementary Table 12), while Spain remains a four-process combi-
nationdiversity hotspot (Fig. 4d). Also,while there are combinations of
five convergent processes (LMI class 5) mainly in Mediterranean
countries, they cover significantly smaller portions of arable lands
(Fig. 4e,j, Supplementary Table 13).

Policy implications
The United Nations (UN) General Assembly resolution A/RES/73/284
proclaimed 2021–2030 the UN Decade on Ecosystem Restoration,
which has the aim to “prevent, halt and reverse the degradation of
ecosystems worldwide”. The SDGs as part of the 2030 UN agenda
provide a roadmap for a sustainable world including 17 goals that are
addressed with subsequent targets. ‘Land Degradation Neutrality’ (tar-
get 15.3) aims to achieve LD neutrality by 2030. Accordingly, the lack of
information about the possible co-occurrence of different degradation
processes at a global (or European) scale can represent a concreate
limitation for the achievement of multiple targets of the UN agenda.

In Europe, in 2018 the European Court of Auditors, one of the
seven institutions of the EU, assessed LD and desertification on a large
continental scale. In a special report, the Court of Auditors recom-
mended to the European Commission to better address LD and
desertification in the EU, emphasizing the need to enhance the EU legal
framework for soil and propose actions towards delivering the com-
mitment made by the EU and the Member States to achieve LD neu-
trality in the EU by 2030. According to the recent report of theMission
‘A Soil Deal for Europe’, it was estimated that 60–70% of all soils in the
EU are unhealthy due to current management practices, pollution,
urbanisation and the effects of climate change. The EU has placed the
need for healthy soils at the coreof the EuropeanGreenDeal to achieve
climate neutrality, zero pollution, sustainable food provision, and a
resilient environment.

In this context, the European Commission has proposed the Soil
Strategy for 2030 with specific actions in relation to climate change
mitigation, circular economy, biodiversity, desertification, soil
restoration, soil monitoring, and citizen engagement to enable the
transition to healthy soils. The recently established EU Soil Observa-
tory supports the implementation of the EU Soil Strategy 2030 and
other relevant EUpolicies, such as theCommonAgricultural Policy, the
Zero Pollution Action Plan and the Farm to Fork Strategy. A more
legally binding framework is also plannedwith the Soil Health Law that
will contribute to the achievement of the Soil Strategy 2030 objectives
and grant soils the same level of protection as water and air. However,
the lack of knowledge related to the co-occurrence of different LD
processes is a limitation to the EU targerts. In a broader context, this
limitation remains an important obstacle to achieving the global LD
targets of the UN agenda.

Our approach provides solid results relevant for the Soil Mission
assessment and develops a comprehensive pan-European baseline for
assessing land multi-degradation in Europe. Acknowledging some
potential methodological limitations and uncertainties (see Methods),
we contend that the set of evidences reported here serves as a basis for

informing targeted LD mitigation strategies under the EU policies.
Under these circumstances, we call on the European Commission to
consider our complex findings on co-occurring and interacting LD
processes in Europe, in order tomore effectively stabilize andmitigate
land multi-degradation, and ultimately to achieve a land degradation-
neutral continent in the coming years.

Also, through the consistent and unprecedented examination of
multiple drivers of degradation across 40 countries, our work presents
broad perspectives beyond European policies. Scientifically, our mod-
elling framework can represent a viable instrument to communicate
with adjacent disciplines and move toward further integrated assess-
ments among the soil-land-water nexus. Therefore,we consider the LMI
proposed here can be a valuable interdisciplinary tool for the complex
scientific assessment of LD, which is applicable in other regions of the
planet if multiple and optimal environmental data are available.

Methods
Study area
This European analysis includes 40 continental states, 27 of which are
member states of the EU. The study area comprises almost all Eur-
opean countries, except for seven (Vatican, Iceland, Belarus, Ukraine,
Republic of Moldova, and transcontinental states Russia and Turkey)
that were not included in the study, due to small size (Vatican, without
agricultural areas) or lack of geospatial data for most of the analysed
land degradation processes (in the remaining six countries). The 40
countries total an area of ~5 million (M) km2 (approximately half of the
European continent) and hold a combined agricultural area of
~2.10Mkm2 (~42% of the total area), over half of which (~1.14Mkm2)
consists of arable areas.

Data selection
In order to investigate land multi-degradation in Europe, we selected
twelve processes that are highly representative for agricultural envir-
onments (Table 2). The twelve processes are the most relevant for
highlighting the agricultural landscapes’ degradation in Europe (and
worldwide)2, considering certain bio-physical mechanisms, general or
particular, that trigger various negative effects in land productivity
(Table 2). Several suggestive examples of such disruptive effects,
which lead to the decrease or loss of land agro-ecological productivity,
were documented for each degradation process, based on specialised
literature (Table 2).

Data acquisition/preparation
For the selected processes, we acquired/processed twelve geospatial
databases. Essentially, we collected databases that were already avail-
able in their final form for six LD processes, the detailed processing
information of which can be found directly in data sources – water
erosion11, soil organic carbon loss19, soil salinization30, soil
acidification31, soil compaction32 and soil pollution via pesticides29

(Table 3). For the other layers, we used various pre-existent data from
other data sources, in order to refine (wind erosion) or model/obtain
(soil nutrient imbalances, soil pollution via heavy metals, vegetation
degradation, groundwater decline and aridity) the final data for the
remaining six processes (Table 3).

Wind erosion was predicted by physically-based modelling of the
aeolian sediment transport (Q) for a given particle size. The Q is con-
trolled mainly by two key properties: the momentum of the wind and
the wind friction, influenced mainly by vegetation, which reduces the
momentum reaching the unsheltered soil surface. The soil surface
characteristics limit the entrainment of dry, loose, and available sedi-
ment, resulting in a specific threshold. That threshold is increased by
soil moisture, which inhibits entrainment and for which a function is
available. The availibility of sediment is limited by biogeochemical soil
crusts/seals, but no parameterisations are currently available. Conse-
quently, sediment is assumed tohave an infinite supply andQ is limited
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only by the ability of wind friction to exceed the entrainment thresh-
old. Finally, for a given pixel we converted the one-dimensional Q (g
m–1 s–1) to an areal wind erosion (g m–2 s–1, subsequently converted to t
ha–1 yr–1) by dividing by the length scale of the pixel. Details about theQ
modelling and the data layers used canbe found inChappell et al.13. For
this study, we reprocessed the data of that original study so that we
could export high-resolution (500m) data for use in the subsequent
analyses with other degradation processes (Table 3).

Soil nutrient imbalances were obtained based on geospatial data
on nitrogen (N, in kg/ha) and phosphorus (P, in mg/kg) soil content
and flows, which allowed to identify N and P surplus (that can indicate,
for instance, the risk of pollution through overfertilization) and deficit
(a likely decrease in land productivity) conditions (Table 3). For N, the
first step involved the identification of an operative safe space as illu-
strated byQuemada et al.33, beyondwhich environmental impactsmay
arise from both 1) excessive N surplus (that is N input – crop export),

Table 3 | Characteristics of land degradation data used for modelling the agricultural land multi-degradation in Europe

No. Land degradation data Original
resolutiona

Time period Metric/Unit of
measure

Critical threshold/classb Data sourcec

1 Water erosion 250 × 250m 2012 t ha–1 yr–1 > 2 t ha–1 yr–1 11

2 Wind erosion 500 × 500m 2001–2021 t ha–1 yr–1 > 2 t ha–1 yr–1 13

3 Soil organic carbon loss 1 × 1 km 2001–2015 t C km2 yr–1 <−0.1 t C km2 yr–1d 19

4 Soil salinization 1 × 1 km 2008 % > 50 %e 30

5 Soil acidification 500 × 500m 2019 pH units < 5.5 31

6 Soil compaction 1 × 1 km 2008 Susceptibility H and VH SC 32

7 Soil nutrient imbalances 1 × 1 kmf

100 ×100mg
2010–2019 kg/ha (N) mg/kg (P) > 50kg/ha/NUE >0.9h

> 50mg/kg/< 25mg/kgi
31,33–35,89

8 Soil pollution via
pesticides

10 × 10 km 2015 Risk score H and VH RSCj 29

9 Soil pollution via heavy
metals

1 × 1 kmk

500 × 500ml

250 × 250mm

2009 mg/kg >5 (As), > 1 (Cd), > 100 (Cr), > 20 (Co), > 60 (Pb), > 2 (Sb),
> 50 (Ni), > 100 (Cu), > 0.5 (Hg)n

38–40

10 Vegetation degradation 500 × 500m 2000–2015 NDVI units <−0.001 units yr–1o 43

11 Groundwater decline 1 × 1 km 2004–2013 GTD (m yr–1) <−0.001myr–1p 49

12 Aridity 1 × 1 km 1981–2018 AI (mm/mm) < 0.65mm/mm 51,52

mmeter, km kilometer, ha hectare, t ton,C carbon,H high, VH very high, SC susceptibility classes,N nitrogen, P phosphorous,NUENitrogen Use Efficiency, RSC risk score classes,NDVINormalized
Difference Vegetation Index,GTDGroundwater Table Depth,AIAridity Index. aspatial resolution of the originally collected data, whichwere processed in this study at a common resolution of 500 ×
500m. bcritical thresholds over/under which each land degradation process triggers the reduction or loss of agricultural land productivity. These thresholds used for modelling agricultural land
multi-degradation were documented and set for each process based on scientific literature: water and wind erosion10,61,90, soil organic carbon loss2,6, soil salinization30, soil acidification4,72, soil
compaction32, soil nutrient imbalances33,36,37,89, soil pollution via pesticides29, soil pollution via heavy metals38,42 and aridity2,53. As no concrete thresholds were found in the literature for vegetation
degradation and groundwater decline, in these two cases some critical thresholds/classes were set in accordance with the reasoning explained in o and p. csource for databases that were already
available and directly collected (processes with no. 1, 3, 4, 5, 6 and 8) or for pre-existing data used for refining/modelling/obtaining the other processes in this study (2, 7, 9, 10, 11 and 12). dnegative
statistically significant trends of soil organic carbon stock, detected during 2001–2015 using the MK test and Sen’s slope estimator. epercentage of areas affected by saline and sodic soils (mainly
Solonchaks and Solonetz). ffor N data. gfor P data. hfor highlighting the N excess (>50kg/ha) and deficit (NUE >0.9) in soil. ifor highlighting the P excess (>50mg/kg) and deficit (<25mg/kg) in soil.
jhigh (3 < RS ≤4) and very high (RS > 4) risk of soil pollution (with dozens of pesticides in Europe), according to the data source. kfor Arsenic (As), Cadmium (Cd), Chrome (Cr), Cobalt (Co), Lead (Pb),

Antimony (Sb), andNickel (Ni) data. lfor Copper (Cu)data.m – forMercury (Hg)data. nconcentrations of nine heavymetals, above the standardguideline of safe limits. onegative statistically significant
trends of NDVI, detected during 2000–2015 using the MK test and Sen’s slope estimator. pnegative statistically significant trends of GTD, detected during 2004–2013 using the MK test and Sen’s
slope estimator. For trend-baseddata of soil organiccarbon loss, vegetationdegradationandgroundwaterdecline, the confidence level of theMK (two-tailed) testwas set to ap-value threshold≤0.1,
which includes both highly statistically significant trends (for p-values ≤0.05) and trends with lower statistical significance (p-values between 0.05 and 0.1).

Table 2 | Various degradation processes (pathways) considered for modelling the agricultural land multi-degradation
in Europe

No. Land degradation processes/pathways Examples of negative effects on agricultural land productivity

1 Water erosion Degrading soil structure, reducing soil depth, or decreasing/losing the soil nutrient content64–66

2 Wind erosion Accelerating dust emission, damaging crops by abrasion or reducing the organic matter content8,12,13

3 Soil organic carbon loss Disrupting structural stability and water holding capacity of soils or decreasing soil fertility19,67,68

4 Soil salinization Limiting plant growth due to phytotoxicity, water uptake difficulty, or soil organic carbon losses69–71

5 Soil acidification Threatening soil bacterial diversity, increasing toxicity for plants, or limiting soil nutrient availability72–74

6 Soil compaction Reducing soil porosity, shrinking oxygen and water supply to plants, or restricting root penetration75–77

7 Soil nutrient imbalances Amplifying acidity andmicronutrient deficiencies in soils, due toNor P excess, or limiting plant growth, due toNor P
deficit78–80

8 Soil pollution via pesticides Exerting stress on soil health via toxicity and decline in microbial community or earthworm activity29,81,82

9 Soil pollution via heavy metals Poisoning the soil, injuring plants via chlorosis and necrosis, or hindering root growth and crop yields38,39,83

10 Vegetation degradation Decreasing soil organic carbon via lower input to soil or through increased land exposure to water and wind
erosion2,84,85

11 Groundwater decline Depleting groundwater resources, inducing soil water stress, or inhibiting plant development86–88

12 Aridity Generating surface low water availability and constant soil water deficit or triggering desertification2,6,53

In this approach, the “land” concept includes soils, vegetation, and inland water resources, which is why the selected processes address the degradation of the three constituent components/
systems of lands. The first nine degradation processes (1–9) mainly affect the soil component, while the last three affect the vegetation (10) and water resources (11, 12).
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leading to detrimental losses to air and water, and 2) very high N use
efficiency (NUE, that is the ratio between crop export and N inputs)
that can mine soil fertility and reduce the productivity. According to
Quemada et al.33. and expert opinions, we defined an operative N safe
space having NUE <0.9 and <50kg/ha, applying these thresholds to
the dataset derived from DayCent continental simulations34,35 exten-
ded at 1 km gridded level. Therefore, N imbalance was defined in this
research as having surplus (>50kg/ha) or NUE ( > 0.9) deficit (Table 3).

For the P data, we combined both the soil available P and budget
(P input – export by crops) to define P imbalance conditions, since
sorption/desorption processes vary widely in different soils, making
the available P only an approximate indicator of P status (due to also
legacy effects and its low reactivity in soil). Basically, we defined two P
conditions that can threaten the agricultural land productivity, namely
1) a surplus level, when P available in soil is >50mg/kg and there is a
positive budget, and 2) a deficit condition, when P is <25mg/kg and
there is negative budget36,37 (Table 3). After separately classifyingN and
P raster data, the four resulting classes were merged as a single raster
with soil nutrient imbalances, which is itself can be considered an
important facet of LD.

Soil pollution via heavy metals was processed using separate
raster data of nine toxic substances (As, Cd, Cr, Co, Pb, Sb, Ni, Cu, and
Hg, with values in mg/kg) that were spatially predicted in Europe38–40.
The nine rasters, generated in several data sources based on LandUse/
Land Cover Area Frame Survey (LUCAS) topsoil database41 and other
auxiliary data38–40, were first classified using some critical thresholds
proposed for each harmful substance (Table 3). Subsequently, heavy
metal soil pollution was processed as a single layer by joining/inter-
secting the individual rasters with delimited critical concentrations in
topsoils. Selecting European areas with high concentrations of heavy
metals, above the standard guideline thresholds of toxic elements38,42

(Table 3), was essential for highlighting soil contamination, which is a
threat to soil-based ecosystem services.

The vegetation degradation raster was obtained based on Nor-
malized Difference Vegetation Index (NDVI) data, extracted and con-
verted as annual values from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra MOD13A1 product43. This process
was examined using the Mann-Kendall (MK) test44,45 and Sen’s slope
estimator46,47 in the analysis of annual NDVI trends, at pixel level
(Table 2). Vegetation degradation was detected based on negative
NDVI trends (which can define the areas with agricultural vegetation
affectedbydevitalization, decreases indensity/consistencyor biomass
decline), identified as statistically significant at the p-value ≤0.1 (a
threshold that includes strong significant trends, for p-values < 0.05,
but also the trends with lower statistical confidence, for p-values
between 0.05 to 0.1)48 (Table 3).

The groundwater decline modelling was based on groundwater
table depth (GTD, inm) simulated using a global hydrologymodel49, at
~1-km grid size and 1-hour time steps over 10 years (Table 2), driven by
observed vegetation biomass (Leaf Area Index from MODIS) and Eur-
opean Centre for Medium Range Weather Forecast (ECMWF) ERA5
reanalysis atmosphere50. The model simulates soil water infiltration
solving the 1DRichards’ equation in columns discretizedwith 40 layers
that get thicker with depth, down to 1 km deep. It includes ground-
water dynamics, with the water table being the lower boundary con-
dition of the soil columns. Vertically integrated groundwater lateral
flows are calculated based on Darcy’s law, driven by water table hor-
izontal gradients. The model represents the 2-way exchange between
groundwater and rivers or wetlands, river flow and inundation, and
dynamic plant root uptake49. The model has been validated with flux
tower observations of evapotranspiration and gage observations of
stream flow. The model output was saved at monthly GTD values, but
averaged here into annual values for detecting trends over a decade,
using the MK test44,45 and Sen’s slope estimator46,47 (Table 3). The two
statistical procedures were applied for detecting negative GTD pixel

trends (which can suggest depleting or decreasing groundwater
resources, with negative consequences for agricultural plant growth),
statistically significant at the p-value ≤0.1 confidence level (Table 3).

The last raster layer, of aridity, was processed by computing an
Aridity Index (AI, in mm/mm) (Table 3) based on mean multiannual
precipitation (P, inmm)andpotential evapotranspiration (PET, inmm)
data, extracted from CHELSA (Climatologies at high resolution for the
earth’s land surface areas) database51,52. The Aridity Index, calculated as
a ratio between the two climatic parameters (AI = P/PET), defines four
types of drylands (lands affected by aridity) below the 0.65mm/mm
threshold – dry sub-humid (AI values between 0.65 and 0.5mm/mm),
semi-arid (0.5–0.2mm/mm), arid (0.2–0.03mm/mm) and hyper-arid
(<0.03mm/mm) lands2,53. In Europe, the aridity layer was produced
based on dry sub-humid, semi-arid, and arid climate conditions, the
presence of which on the continent can limit agricultural productivity
through constant dryness or climate-induced desertification.

Final data modelling
All 12 collected/processed spatial databases were finally processed at
500m (an approximately intermediate spatial resolution in the variety
of the original data resolution) (Table 3) andwere structured/prepared
into 2 general classes, named “Non-critical” and “Critical” (Fig. 1). The
“Critical” class of each examined process was mapped using critical
thresholds documented in literature, over/under which each LD pro-
cess triggers the reduction/loss of agricultural land productivity
(Table 3). In addition to the rigorous documentation from scientific
literature, the critical thresholds were defined according to environ-
mental criteria for healthy/unhealthy soil conditions (most notably for
soil erosion, soil salinization, loss of soil organic carbon, and soil
compaction), reported in the draft of the Soil Monitoring Law pro-
posed by the European Commission (on July 5th, 2023) and currently
under discussion in the European Parliament54.

The “Critical” class, which highlights high/severe degradative
conditions in agricultural landscapes (Table 3), was included in the
final spatial data modelling, in order to obtain a relevant indicator for
the continental assessment of multiple and convergent LD pathways.
More specifically, by superimposing/intersecting the 12 datasets, we
obtained the Land Multi-degradation Index (LMI), which indicates the
simultaneous presence (co-occurrence) of degradative processes, at
the pixel level. LMI (500mpixel size) was processed strictly at the level
of the agricultural boundaries in Europe, which were extracted from
the CORINE Land Cover (CLC) database, 2018 edition (the most up-to-
date)55. The CLC dataset used here includes four general agricultural
classes, namely arable land (2.1.1, 2.1.2, and 2.1.3 codes in the CLC
nomenclature), permanent crops (2.2.1, 2.2.2, 2.2.3), pastures (2.3.1)
and heterogeneous agricultural areas (2.4.1, 2.4.2, 2.4.3, 2.4.4)55.

LMI has been investigated at the level of all agricultural classes,
but also strictly within arable lands, to emphasize the co‐occurrence
pattern of processes in the most important agricultural environments
for European food security. Also, this index was processed in all 40
countries, despite the fact that for 3 processes (soil acidification, soil
compaction, and soil pollution via heavy metals) there was no geos-
patial data for Norway, Switzerland, Balkan countries, Cyprus, and
Malta (Fig. 1) (for these countries, in the Supplementary Information
section, LMI was obtained based on the 9 remaining processes with
available data).

Finally, LMI was investigated and interpreted based on five gen-
eral classes, which emphasized very low (a single process present at
pixel level), low (co-occurrence of 2 LD processes), medium (3), high
(4) and very high (≥5) degradative conditions in agricultural/arable
lands (Fig. 2). We set these classes considering the LMI histogram (in
which a data distribution of >90% condensed in the interval 1 to
5 synergistic processes was observed) (Fig. 2b,e), the natural breaks
classification method56 – which revealed roughly similar classes, but
also the LMI value arithmetic mean, which showed just over 2
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co-occurring processes in Europe (close to an intermediate value in the
1–5 interval used to set LMI classes). In addition to the 3 statistical
criteria considered simultaneously, we set the 5 classes also with the
aim toobtain an easy/fast interpretation of the LMI.All data processing
and graphic analyses of this study were performed using various
software, like R-package57, ArcGIS58, or Inkscape59.

Data quality and limitations
The quality of this study’s data can be evaluated via three key
aspects. Firstly, the reliability of the 6 datasets directly acquired is
supported by the published studies referenced in this paper (data
source indicated for processes no. 1, 3, 4, 5, 6, and 8, in Table 3),
where uncertainties and errors were generally addressed. Secondly,
we considered the quality of the data for the other 6 processes
modelled here, by using reliable pre-existent data (input data of
processes no. 2, 7, 9, 10, 11, and 12, which were also checked in the
sources featured in Table 3, in terms of uncertainties and errors) in
obtaining the final geospatial layers. Thirdly, for the 2 layers created
in this study (no. 10 and 11 in Table 3), we exclusively selected sta-
tistically significant trends, which limits uncertainties/errors in
these particular cases.

Some potential limitations may exist in our methodological
approach. These may emerge from the different spatial/temporal
resolution (1) andmetrics (2) of the geospatial data, from the choice in
thresholds that define “Critical” classes of the twelve processes (3),
from assigning equal contributions to all layers in computing LMI (4),
or from integratingonly 75–83%of all input layers forLMIcomputation
(Supplementary Information), in the case of some European countries
(5). In the first case (1), it would have been ideal to use datasets with
similar/identical spatial and temporal resolutions, which was however
impossible, given the high number of data layers used, with different
technical (pixel size and time periods) characteristics available in the
literature (Table 3).

In the second instance (2), it would have been better if soil com-
paction and soil pollution via pesticides had a quantitative nature
(similarly to all the other 10 databases), instead of a qualitative (adi-
mensional) measurement unit (Table 3), but in the case of the two
processes we were constrained by the unavailability of other (quanti-
tative) data in literature. Also, another (apparent) shortcoming on this
second point could be linked to the geospatial layers that were
obtained based on some multi-temporal data, but which were inter-
preted based on different metrics. More precisely, vegetation degra-
dation and groundwater decline were assessed as LD pathways based
on negative annual trends (as per the reasoning presented in the sec-
tion dedicated to data acquisition/preparation), while the aridity layer
was examined through a mean multiannual ratio (of climate data)
(Table 3). However, we argue this choice is more appropriate, as the
mere presence of aridity conditions (and not necessarily the intensi-
fication of this process, which could have been detected based on
geostatistical trends) is sufficient to trigger some major drivers of
degradation, like desertification3.

In the third case (3), the critical thresholds of some factorsmay be
debated – e.g. severe erosion rates60 are considered as those exceed-
ing the threshold of 10 t ha–1 yr–1, while in other studies8,61, the unsus-
tainable level of this process (examined in the long term in relation to
soil formation rates) is adjusted to >2 t ha–1 yr–1, the threshold selected
in this research (Table 3). Since our applied methodology required
choosing a unique critical threshold for each layer of degradation, we
eventually set “Critical” classesbyconsulting ahigh number of relevant
papers and scientific reports (only a few of which were exemplified in
this study), which supported the thresholds selected for this approach
(Table 3).

In the fourth case (4), we attributed equal importance to all dri-
vers of degradation, although in reality, some processes (e.g. soil sal-
inization) could trigger more severe effects in the decrease of

agricultural productivity, compared to other degradative factors (e.g.
vegetation degradation). However, we avoided a weighting of the
factors in modelling LMI, considering that, in principle, each process
can lead to multiple negative effects for land productivity (Table 2),
especially since it is almost impossible to determine the exact impact
of each process in the land multi-degradation mechanism.

Finally (5), due to the unavailability of geospatial data, we omitted
up to 25% (three LD processes – soil acidification, soil compaction, soil
pollution via heavy metals) of all input layers used to model LMI
results, which were presented in detail (for all 40 countries) in the
Supplementary Information section. Nevertheless, these missing data
affected (potentially underestimated) LMI results in the case of a lim-
ited number of European countries (Supplementary Figs. 2–4 and
SupplementaryTables 1–13), i.e. theBalkan states, Switzerland,Norway
(with all three processes not integrated in the LMI, but still with three-
quarters of all databases available to obtain the final results of land
multi-degradation) and, partially, Cyprus and Malta (only two pro-
cesses missing – soil acidification and soil pollution via heavy
metals) (Fig. 1).

Data uncertainty and sensitivity
To assess the effect of varying thresholds on the binary classifica-
tion adopted to obtain the LMI map (which was a crucial metho-
dological phase of our approach), an uncertainty and sensitivity
analysis was performed. More specifically, through an operation of
layer stacking, the multiple data used to derive the twelve LD binary
layers (maps) were combined in a single matrix of original inputs.
For each of one the input maps, random simulations (n = 20,000)
were adopted by varying the threshold initially set and using values
drawn from a normal distribution, with the numerical value of the
threshold as the mean and a value of one-tenth of the threshold as
standard deviation. The matrix was then reclassified into binary
classes according to the thresholds randomly defined. Subse-
quently, the row values were summed up to obtain the LMI values
under different thresholds. Given the reclassification step, the LMI
still varied from 0 to 10, but in some of the rows, its values (under
the same initial conditions) might have varied due to the different
classification.

Finally, the LMI values derived were used as a dependent variable
in a Random Forest (RF) classification model (1000 decision trees and
20 repetitions)62 that was applied in a R statistics enviroment63, using
the initial input maps as covariates. The RF model was used for its
ability to produce classification probabilities (so predicting with which
probability a pixel falls within a given class), thus providing an estimate
of howmuch varying threshold results in a different final classification
(Supplementary Fig. 1). Moreover, the RF results obtained (Supple-
mentary Fig. 1) can be leveraged to assess howmuch each of the initial
variables influences the classification, consequently offering a valuable
sensitivity analysis for our LMI findings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this research are available in the
article and its Supplementary Informationfile. Also, the sourcedata for
the graphs of the figures are provided as a SourceData file. At the same
time, the raster data (GeoTIFF format) of land degradation processes
and land multi-degradation in Europe will be freely available through
the European Soil Data Centre (ESDAC), the institutional soil data
platformof the EuropeanCommission’s Joint ResearchCentre (https://
esdac.jrc.ec.europa.eu/). Additional data can be provided by the cor-
responding author upon request. Source data are provided with
this paper.
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