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Temporal shifts in 24 notifiable infectious
diseases in China before and during the
COVID-19 pandemic

Kangguo Li 1,5, Jia Rui1,5, Wentao Song1,5, Li Luo2,5, Yunkang Zhao1, Huimin Qu1,
Hong Liu 1, Hongjie Wei 1, Ruixin Zhang 1, Buasiyamu Abudunaibi1,
Yao Wang1, Zecheng Zhou1, Tianxin Xiang3,4 & Tianmu Chen 1

The coronavirus disease 2019 (COVID-19) pandemic, along with the imple-
mentation of public health and social measures (PHSMs), have markedly
reshaped infectious disease transmission dynamics.We analysed the impact of
PHSMs on 24 notifiable infectious diseases (NIDs) in the Chinese mainland,
using time series models to forecast transmission trends without PHSMs or
pandemic. Our findings revealed distinct seasonal patterns in NID incidence,
with respiratory diseases showing the greatest response to PHSMs, while
bloodborne and sexually transmitted diseases responded more moderately. 8
NIDswere identified as susceptible to PHSMs, including hand, foot, andmouth
disease, dengue fever, rubella, scarlet fever, pertussis, mumps, malaria, and
Japanese encephalitis. The termination of PHSMs did not cause NIDs resur-
gence immediately, except for pertussis, which experienced its highest peak in
December 2023 since January 2008. Our findings highlight the varied impact
of PHSMs on different NIDs and the importance of sustainable, long-term
strategies, like vaccine development.

During the coronavirus disease 2019 (COVID-19) pandemic, the
emergence of various severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) variants has reshaped the transmission dynamics of
other infectious diseases. Notably, influenza activity in the United
States experienced a significant 98% reduction beforeMay 20201. This
decline is largely attributed to the widespread implementation of
public health and social measures (PHSMs) to combat COVID-19. For
instance, the widespread use of face masks and enforcement of phy-
sical distancing have effectively reduced the transmission of respira-
tory infectious diseases (RIDs) by limiting the spread of respiratory
droplets2,3. Additionally, travel restrictions have successfully con-
trolled the spread of bloodborne and sexually transmitted diseases

(BSTDs), and zoonotic infectious diseases (ZIDs)4–6. Furthermore,
improved hand hygiene has indirectly contributed to a 31% decrease in
the transmission of intestinal infectious diseases (IIDs)7,8.

Although many published studies9–13 have analyzed the impact of
PHSMs on notifiable infectious diseases (NIDs), there remains a sig-
nificant gap in our understanding of this relationship. Most of these
studies9,10 have focused primarily on the impact of PHSMs in their early
stages and have tended to overlook the potential impact of PHSMs of
varying durations. Additionally, most published studies have pre-
dominantly concentrated on the impact of PHSMs on common RIDs
and IIDs, with limited quantitative analysis on BSTDs and ZIDs11,12. After
the Chinese government ended its “dynamic zero-COVID” policy in
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October 202314, an epidemic of Omicron BA.2 variant emerged. How-
ever, there has been limited research analyzing the patterns of other
infectious diseases throughout this period.

In this study, based on the NIDs data provided by the Chinese
Center for Disease Control and Prevention (CDC) from 2008 to 2019,
we employed multiple time series models, such as the neural network
model, Bayesian structural time series model, prophet model, expo-
nential smoothing (ETS) model, seasonal autoregressive integrated
moving average (SARIMA) model, and hybrid model that combine
SARIMA, ETS, STL (seasonal and trenddecompositionusing loess), and
neural network components, to analyze the transmission trends of 24
NIDs. The objective was to forecast the transmission trends of 24 NIDs
without PHSMs and SARS-CoV-2 transmission from 2020 to 2023,
followedby a comparisonwith real-world data to analyze the impact of
NIDs during different periods. Additionally, we conducted a cluster

analysis to identify NIDs susceptible to PHSMs, and a cross-correlation
analysis to decipher the relationship between PHSMs stringency index
and the impact on NIDs.

Results
From January 2008 to December 2023, 105,647,377 cases of 24 NIDs
were reported in Chinese mainland. IIDs were the most prevalent
(45.24%), followed by BSTDs (31.10%) and RIDs (22.45%). The least
reportedwere ZIDs (1.21%). HFMD, hepatitis B, infectious diarrhea, and
tuberculosis were the most common diseases, accounting for 76.87%
of cases (Fig. 1A).

Long-term NID trends before the COVID-19 pandemic
During the pre-epidemic period, the seasonality of IIDs mainly
increases during summer and fall, but this pattern is not universal for

Fig. 1 | Temporal trends and cumulative incidence of four categories of noti-
fiable infectiousdiseases (NIDs) in China fromJanuary2008 toDecember2023.
A Cumulative incidence of 24 NIDs categorized by their respective modes of
transmission, over the period from January 2008 to December 2023. The size and
color of each block represent the cumulative cases and disease group, respectively.
AIDS (acquired immune deficiency syndrome), not including human immunodefi-
ciency virus infections. Dysentery includes bacterial dysentery and ameba dysen-
tery. Enteric fever is also known as typhoid fever and paratyphoid fever. HFRS

hemorrhagic feverwith renal syndrome; JE Japanese encephalitis; HFMDhand, foot
and mouth disease; AHC acute hemorrhagic conjunctivitis. B Epidemic curves for
the four categories of NIDs were segmented into 5 distinct periods: pre-epidemic
period (January 2008 to December 2019), PHSMs period I (January 2020 to March
2020), PHSMs period II (April 2020 to October 2022), epidemic period (November
2022 to January 2023), and post-epidemic period (February 2023 to December
2023). C Percentage of monthly incidences for the four groups of NIDs.
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all IIDs (Fig. 2A, B). Specific diseases such as hepatitis E, dysentery, and
enteric fever each exhibited distinct seasonal fluctuations. Hepatitis E
peaked from January toMay (Supplementary Fig. 5),while enteric fever
and dysentery peaked fromMay to November (Supplementary Fig. 31,
Supplementary Fig. 27). HFMD was notable for its biannual peaks and
the remarkable alternating pattern it exhibited across odd and even
years. Due to the greater incidence of HFMD than other IIDs, this
biennial alteration heavily influenced the aggregate trend observed in

IIDs (Fig. 2B). There was a notable disparity in HFMD incidence
between the northern and southern regions of China, with southern
provinces reporting considerably more cases than their northern
counterparts (Supplementary Fig. 1). Additionally, hepatitis A
demonstrated more pronounced seasonality before 2012, which sub-
sequently diminished, accompanied by a steady decline in monthly
incidence after 2012 (Supplementary Fig. 30). A particularly severe
outbreak from September to October 2010 led to 273,924 reported

Fig. 2 | Temporal variation in the monthly incidence of notifiable infectious
diseases (NIDs) in China from January 2008 to December 2023. A, B Intestinal
infectious diseases. C, D Bloodborne and sexually transmitted diseases.
E, F Respiratory infectious diseases. G, H Zoonotic infectious diseases.
A, C, E, G Epidemic curves in the study period were segmented into 5 distinct
periods: pre-epidemic period (January 2008 to December 2019), PHSMs period I
(January 2020 to March 2020), PHSMs period II (April 2020 to October 2022),

epidemic period (November 2022 to January 2023), and post-epidemic period
(February 2023 to December 2023). B, D, F, H The normalized monthly incidence
for each NIDs, with color intensity indicating the magnitude of the normalized
monthly incidence. Normalization is calculated as the difference between the
monthly NID incidence and themonthly average incidence, dividedby the standard
deviation of the incidence. Values outside the −5 to 10 range are denoted by a black
box, with those exceeding 10 marked by *.
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acute hemorrhagic conjunctivitis (AHC) infections across China (Sup-
plementary Fig. 28). All regions except for Tibet experienced a sore in
AHC, and peaks in the remaining 30 provinces lasted 1–2 months
(Supplementary Fig. 4). Guangxi and Guangdong provinces had most
cases, which are 79,977 and 69,839 cases, respectively, during this
period. For detailed information, see Supplementary Data 1.

BSTDs demonstrated a recurrent annual trough in February, yet
the epidemiological data did not reveal distinct seasonal peaks. The
monthly incidence of these diseases ranged between 10,000 and
20,000 cases from 2008 to 2016. A notable inflection point occurred
in 2017 when more than 2.1 million cases were reported, and a sus-
tained increase in incidence was documented (Figs. 1B and 2D). Spe-
cifically, the annual reported cases of syphilis and hepatitis C increased
for 11 consecutive years during pre-epidemic periods, averaging yearly
increases of 7.22% and 7.46%, respectively. Furthermore, the incidence
of AIDS increased rapidly, increasing from 12,409 cases in 2008 to
72,630 cases in 2019, with an average annual increase of 17.43% (Sup-
plementary Fig. 36). Regional disparities in AIDS reporting were evi-
dent, initially prominent inHenan andGuangxi provinces, and a shift in
the following years as Sichuan province surpassed Guangxi after 2014,
peaking at 17,869 cases in 2019 (Supplementary Fig. 12). Hepatitis B,
the most reported BSTD, primarily concentrated in Henan and
Guangdong provinces, experienced brief declines reported cases
between 2013 and 2016. However, by 2019, the incidence approached
2011 levels 2019 (1,247,092 vs. 1,252,236) (Supplementary Fig. 8).
Moreover, fluctuating pattern observed in BSTDswasmainly driven by
hepatitis B, which had peak seasons inMarch each year since 2012 and
continued until 2020. Notably, hepatitis B, syphilis, hepatitis C,
gonorrhea, and AIDS collectively experienced a cyclic trough every
February from 2010 to 2019, which was concentrated in 31 provinces
(Fig. 2D, Supplementary Figs. 8–12).

Conversely, RIDs maintained a maximal seasonal variation, with
monthly incidences varying from 100,000 to 250,000 cases (Fig. 2E,F).
Rubella was a significant component of RIDs before 2013. However, its
incidence and seasonality have gradually decreased. A rubella out-
break from March to June 2019 resulted in 25,736 reported cases
nationwide (Supplementary Fig. 16). All provinces, excluding Zhejiang,
Tibet, Tianjin, and Qinghai, saw an increase in cases, with Chongqing
(4334 cases) and Hunan (3733 cases) reporting the most cases.
Tuberculosis also exhibited a noteworthy seasonal pattern, with the
fewest cases reported annually in January or February (Supplementary
Fig. 13). However, at the onset date level, the lowest incidence was
typically recorded in November and December each year. Mumps and
scarlet fever both showed two peaks each year, from April to July and
November to January, with notable regional differences. Mumps was
mainly concentrated in Guangdong, with a sharp increase in Henan
and Hunan from 2017 to 2019 (Supplementary Fig. 14). Scarlet fever,
primarily in Shandong, grew steadily from 28,507 cases in 2008 to
83,028 cases in 2019 (Supplementary Fig. 15). Notably, pertussis cases
surged fromunder 5000 annually during 2008-2014 to 30,727 in 2019,
particularly in Shandong and Guangdong (Supplementary Fig. 17). For
more detailed information, please refer to Supplementary Table 1.

The seasonal patterns of ZIDs from 2008 to 2020 were similar to
those of IIDs but with less pronounced peaks. Four out of the seven ZIDs
(excluding dengue fever and echinococcosis) displayed clear seasonality
(Fig. 2G, H). Typhuswas prevalent year-round, peaking in autumnbefore
2014, mainly in Yunan province (Supplementary Fig. 23). In malaria, the
gradual success of eradication efforts has been reflected in a decreasing
incidence trend, particularly after 2011 (Supplementary Fig. 21). The
peak seasons of ZIDs shifted, with brucellosis, hemorrhagic fever with
renal syndrome (HFRS), and Japanese encephalitis (JE) becoming pre-
dominant. These diseases had similar numbers of reported cases
(Fig. 1A) but peak seasons spanning March to July, October to January,
and June to September, respectively (Supplementary Figs. 18, 19 and 24).
Which led to a more homogenized seasonality curve, lacking the

traditional peaks associated with ZIDs. Notably, an outlier of ZIDs in
2014 primarily attributed to a dengue fever outbreak in Guangdong
province (Figs. 1B, 2G, Supplementary Fig. 20). Reported cases in Sep-
tember and October 2014 surged to 14,759 and 28,796 respectively, a
significant increase from the 1289 and 1473 cases in the samemonths of
2013 (Supplementary Fig. 44, Supplementary Data 1). For more detailed
information, please refer to Supplementary Table 1.

Short-term NID trends during the COVID-19 pandemic
Before 2020, BSTDs and RIDs showed an increase in the proportion of
cases during winter and spring, accounting formore than 50% of NIDs.
This fell to less than 50% in summer and autumndue to the prevalence
of IIDs. However, reported IID cases significantly decreased during the
PHSMs period I (from January 2020 toMarch 2020) and PHSMs period
II (from April 2020 to October 2022), while reported BSTD/RID cases
quickly resurged after an initial decline, exceeding 50% of reported
cases during the PHSMs periods (Fig. 1C).

During PHSMs period I, the government implemented numerous
PHSMs, and all NIDs entered a low-prevalence phase (Fig. 2). Distin-
guishing whether the observed incidence decreases were due to the
diseases’ inherent characteristics or the impact of PHSMs was chal-
lenging. To address this, separate time series models were developed,
with the optimal model selected based on the greatest composite
standardized index. This index integrated root mean square error
(RMSE),meanabsolute percentage error (MAPE), and symmetricmean
absolute percentage error (SMAPE). In the test dataset, neural network
models were optimal for enteric fever and HFRS (Fig. 3G, S). ETS and
SARIMA models excelled for three NIDs (Fig. 3C, F, P) and eight NIDs
(Fig. 3B, J, K, L, O, Q, T,W), respectively. The hybridmodel also applied
to eight NIDs, including HFMD, AHC, hepatitis E, syphilis, mumps,
brucellosis, malaria, and JE (Fig. 3A, D, E, I, N, R, U, X). Additionally, the
Bayesian structuralmodelwaseffective for diseases includinghepatitis
B, tuberculosis, and echinococcosis (Fig. 3H, M, V). However, the
Prophetmodel, despite its capabilities, was not selected as the optimal
model for any of the 24 NIDs (Fig. 3).

By comparing the forecasted result with the real-world data dur-
ing PHSMs period I, except for hepatitis A, which increased by 522
cases (14.70%) (Fig. 4F), the other 23 NIDs saw case reductions ranging
from 21.01% to 70.46%. HFMD, dengue fever, rubella, and scarlet fever
experienced the most significant decreases (Fig. 4A, T, P, O), with
drops of 82,279 (−70.46%), 245 (−70.19%), 3466 (−67.07%) and 11,460
(−60.84%) cases, respectively (Fig. 5). RIDs were the most affected,
with wide heterogeneity in the adjusted incidence relative ratio (IRR),
ranging from 0.16 to 0.74. Among them, the impact on tuberculosis
was lowest, with a median adjusted IRR of 0.74 (interquartile range
[IQR]: 0.69–0.81) (Fig. 4M, Supplementary Table 2). In contrast, the
impact on the BSTDs was relatively stable, with the median adjusted
IRRs ranging from 0.50 to 0.74 (Fig. 5F, Supplementary Table 2).

Since April 2020, with the adoption of the “dynamic zero-COVID”
policy and the relaxation of intercity travel restrictions by the Chinese
government, the epidemiological patterns of diseases have entered a
new phase, PHSMs period II14. This period is characterized by distinct
trends in disease incidence, which can be broadly categorized into 4
types. The most common type includes diseases such as infectious
diarrhea (Fig. 4B), dysentery (Fig. 4C), AHC (Fig. 4D), hepatitis A
(Fig. 4F), enteric fever (Fig. 4G), syphilis (Fig. 4I), hepatitis C (Fig. 4J),
AIDS (Fig. 4L), tuberculosis (Fig. 4M), mumps (Fig. 4N), scarlet fever
(Fig. 4O) and JE (Fig. 4X). These diseases demonstrated seasonal or
irregularpatternswith anoverall decreasing trend in cases.The second
type is commonly observed among ZIDs and BSTDs which either
maintained their seasonal or irregular patterns with a minor overall
change (<10%) or experienced an increase in reported cases. This type
includes hepatitis B (Fig. 4H), gonorrhea (Fig. 4K), brucellosis (Fig. 4R),
HFRS (Fig. 4S), echinococcosis (Fig. 4V) and typhus (Fig. 4W). The third
type includes NIDs like HFMD (Fig. 4A), hepatitis E (Fig. 4E), pertussis
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Fig. 4 | Forecasted and actual incidence of 24 notifiable infectious diseases
(NIDs) in China. A–G Intestinal infectious diseases. H–L Bloodborne and sexually
transmitted diseases. M–Q Respiratory infectious diseases. R–X Zoonotic infec-
tious diseases. AIDS (acquired immune deficiency syndrome), not including human
immunodeficiency virus infections. Dysentery includes bacterial dysentery and
ameba dysentery. Enteric fever is also known as typhoid fever and paratyphoid

fever. HFRS hemorrhagic fever with renal syndrome, JE Japanese encephalitis,
HFMD hand, foot and mouth disease, AHC acute hemorrhagic conjunctivitis. Each
panel is divided into five periods: pre-epidemic period (January 2008 to December
2019), PHSMs period I (January 2020 to March 2020), PHSMs period II (April 2020
to October 2022), epidemic period (November 2022 to January 2023), and post-
epidemic period (February 2023 to December 2023).
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Fig. 3 | Comparative performance analysis of various time seriesmodels on the
monthly incidence data for 24 notifiable infectious diseases (NIDs) in the test
dataset. A–G Intestinal infectious diseases. H–L Bloodborne and sexually trans-
mitted diseases. M–Q Respiratory infectious diseases. R–X Zoonotic infectious
diseases. The comparative standardized index was developed by integrating the
root mean square error (RMSE), mean absolute percentage error (MAPE), and
symmetricmean absolute percentage error (SMAPE), where a higher value signifies
the optimal model for a specific disease. ETS exponential smoothing; SARIMA

seasonal autoregressive integrated moving average; Hybrid: combined SARIMA,
ETS, STL (seasonal and trend decomposition using loess), and neural network
models; AIDS (acquired immune deficiency syndrome) not including human
immunodeficiency virus infections. Dysentery includes bacterial dysentery and
ameba dysentery. Enteric fever is also known as typhoid fever and paratyphoid
fever. HFRS hemorrhagic fever with renal syndrome, JE Japanese encephalitis,
HFMD hand, foot and mouth disease, AHC acute hemorrhagic conjunctivitis.
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(Fig. 4Q), and malaria (Fig. 4U), which initially showed a decrease in
prevalence but subsequently exhibited a gradual return to their nor-
mal trends. Distinct from other NIDs, rubella, and dengue fever pre-
sented a unique trend during PHSMs period II, with reported cases
nearing zero (Fig. 4P, T). The rubella dataset used for testing in the first
stage and retraining in the second stage excluded the 2019 data due to
the significant impact of the 2019 rubella outbreak on the models
(Supplementary Fig. 50). However, even with this exclusion, the dif-
ference between observed data and forecasted outcomes revealed a
significant impact on rubella during this period (Fig. 4P).

In December 2022, the Chinese government stopped the
“dynamic zero-COVID” policy14. Similar to trends during PHSMs period
I, 23 NIDs except for JE saw a sharp initial decline in incidence (Fig. 2).
Even brucellosis, which had consistently high growth during PHSMs
period II, saw its adjusted IRR drop to 0.58 in December 2022 (Fig. 6H).
The incidence of HFMD during the epidemic period was greater than
during PHSMs period I (80,864 vs. 34,487) (Fig. 4A), while for other
IIDs, it was lower (Fig. 4B-G, Supplementary Table 2). Among RIDs,
pertussis was a special disease with a higher incidence than in PHSMs
period I (4,336 vs. 2,753) (Fig. 6Q, Supplementary Table 2). However,
following the SARS-CoV-2 variant epidemic in the Chinese mainland,
some NIDs reverted to pre-epidemic patterns. HFMD (Fig. 5A), AHC
(Fig. 5A), and hepatitis B (Fig. 5B) showed signs of resurgence, notably
with a substantial AHC outbreak in September 2023, resulting in
125,264 cases. This outbreak, second only to the September 2010
outbreak, predominantly affected the southern provinces, with
Guangdong being the epicenter. (Supplementary Fig. 4). Additionally,
pertussis reached its highest incidence registered since 2008, with
9,126 cases from October to December 2023, also concentrated in
Guangdong (Supplementary Fig. 17).

In summary, the incidence of NIDs notably declined during the
PHSMs and epidemic periods. Among BSTDs, AIDS experienced the
most significant reduction, with a median adjusted IRR of 0.73 (IQR:

0.59–0.80, p < 0.01) during PHSMs and epidemic periods, which
further decreased to 0.64 (IQR: 0.59–0.66, p = 0.001) in the post-
epidemic period (Fig. 6C). RIDs also experienced substantial
declines, with tuberculosis showing the smallest reduction (0.88,
IQR: 0.84–0.92, p < 0.001), while other RIDs displayed notable and
sustained decreases even in the post-epidemic period (Fig. 6E).
Rubella and dengue fever cases plummeted, with the former showing
adjusted IRRs as low as 0.05 (IQR: 0.02–0.08, p < 0.001) during
previous periods and 0.03 (IQR: 0.02–0.06, p = 0.001) in the epi-
demic period; the adjusted IRR for dengue fever was 0.01 (IQR:
0–0.03, p < 0.001) during previous periods and 0.10 (IQR: 0.03–0.16,
p = 0.001) thereafter. Conversely, the adjusted IRR of ZIDs such as
brucellosis, malaria, echinococcosis, typhus, and JE reported
increased (Fig. 6G-H). All IIDs had adjusted IRR lower than 1, except
for hepatitis E, which initially had a median adjusted IRR of 0.91 (IQR:
0.77–0.99, p < 0.001) during PHSMs and epidemic periods, but in the
post-epidemic period, the median adjusted IRR increased to 1.17
(IQR: 1.04–1.28, p = 0.05), indicating a rebound in the inci-
dence (Fig. 6A).

Relationship between PHSMs strength and IRR
Clustering analysis of monthly incidence during pre-epidemic period
categorized hepatitis B, tuberculosis, infectious diarrhea, and HFMD
into ahigh-incidence group, a stark contrast to the 20NIDs classified as
low-incidence group (Figs. 7A and 1A). Refined clustering based on
adjusted IRRs identified 4 discrete clusters, with dengue fever and
rubella as individual clusters due to their distinct epidemiological
patterns (Fig. 7B), while scarlet fever, pertussis, HFMD, mumps,
malaria, and JE formed a cluster suggestive of shared PHSMs sus-
ceptibility. The other 16 NIDs appeared to be less affected by PHSMs
(Fig. 7C). Clusters 1, 3, and 4, predominantly comprising RIDs andZIDs,
were significantly responsive to PHSMs, with no representation from
the BSTD category, mirroring the general trend (Fig. 7B).

Fig. 5 | Differencesbetween the forecasted and actual incidence of 24 notifiable
infectious diseases (NIDs) in China. A Intestinal infectious diseases.BBloodborne
and sexually transmitted diseases. C Respiratory infectious diseases.D, E Zoonotic
infectious diseases. AIDS (acquired immune deficiency syndrome), not including

human immunodeficiency virus infections. Dysentery includes bacterial dysentery
and ameba dysentery. Enteric fever is also known as typhoid fever and paratyphoid
fever. HFRS hemorrhagic fever with renal syndrome, JE Japanese encephalitis,
HFMD hand, foot and mouth disease, AHC acute hemorrhagic conjunctivitis.
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Focusing on HFMD, a notable cumulative decrease of 2,652,880
cases (48.86%) was observed during PHSMs periods, indicating a high
incidence coupled with substantial PHSMs susceptibility (Supplemen-
tary Table 2). Seven other NIDs displayed both low incidence and high
PHSMs sensitivity, including dengue fever, rubella, scarlet fever, per-
tussis, mumps, malaria, and JE. Cross-correlation analysis indicated that
the correlation between PHSMs stringency and the incidence differ-
ences for dengue fever (Fig. 7D), scarlet fever (Fig. 7F), HFMD (Fig. 7H),
mumps (Fig. 7I), malaria (Fig. 7J), and JE (Fig. 7K) occurred in the same
month. Nevertheless, only malaria showed a moderate correlation
coefficient of 0.42 without lag time, suggesting a direct temporal rela-
tionship with PHSMs stringency (Fig. 7J). The correlation between PHSM
stringency and incidence for rubella peaked, with a correlation coeffi-
cient of 0.14, after a 3-month lag, decreasing to 0.10 without delay
(Fig. 7E). Notably, pertussis exhibited amaximum correlation coefficient
of 0.08 at a one-month lag, decreasing further to 0.06 with no lag, both
of which are indicative of a minimal association (Fig. 7G).

Discussion
In this study,we conducted amodeling study on 24NIDs, and analyzed
transmission characteristics across 5 periods: pre-pandemic period,

PHSMs period I, PHSMs period II, epidemic period, and post-epidemic
period. Furthermore, cluster and cross-correlation analysis were used
to evaluate the impact of PHSMs on NIDs dynamics. Our findings
revealed distinct seasonal patterns in different NID, varying across the
studied periods. 24 NIDs except for hepatitis A experienced significant
reductions during PHSMsperiod I and the epidemic period. During the
PHSMs period II, only hepatitis B, gonorrhea and certain ZIDs like
brucellosis, HFRS, echinococcosis, and typhus showed limited
declines, other NIDs experienced more than 10% decreases.

Furthermore, a comparative analysis of forecasted and observed
data revealed 8 NIDs susceptible to PHSMs, including dengue fever,
rubella, scarlet fever, pertussis, HFMD, mumps, malaria, and JE
(Fig. 7D–K). However, only HFMD, mumps, malaria, and JE exhibited
moderate or weak correlation, while the other 4 NIDs showed no
association with the PHSMs stringency index with an absolute corre-
lation coefficient less than 0.2. Dengue fever and rubella (Fig. 7D, E)
were consistently classified as distinct categories, whether they were
observed in PHSMs period II where they are categorized as NIDs with
reported cases nearing zero, or in cluster analysis. This is mainly
because both the actual incidence and adjusted IRR are close to zero,
regardless of how the PHSMs stringency index varied (Fig. 6E, G).
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Furthermore, scarlet fever and pertussis showed low correlation
coefficients due to the pronounced seasonality in the disparity
between observed and forecasted incidence. Specifically, they dis-
played significant variations during May to June and July to August in
the PHSMs period, respectively, contrasting with minor differences in
other months (Fig. 5C, Supplementary Fig. 49). Such seasonality
undermines the correlation between the PHSMs stringency index and
the incidence difference. To elucidate the impact of rubella, we fore-
casted the incidence from2019 to 2023basedon the ETS, SARIMA, and
hybridmodels, which performedwell on the test dataset with a similar
composite standardized index (1.92 vs. 1.73 vs. 1.63) (Fig. 3R). Findings
from these models consistently demonstrated a significant decline in
the prevalence of rubella, as evidenced by the median of the adjusted
IRR falling below 0.2 during the PHSMs and epidemic periods (Sup-
plementary Fig. 49).

Among the NIDs that were susceptible to PHSMs, HFMD was the
only disease with a high incidence and susceptible to PHSMs, showing
substantial declines throughout most periods, except for unexpected
seasonal peaks fromOctober to November 2020 and June to July 2023

(Fig. 5A). These irregular patterns in HFMD suggest altered epide-
miological trends not only during PHSMs periods but also in the post-
epidemic period. The anomalies observed need to be validated with
data from 2024 to determine whether these anomalies are amplified
minor peaks or shifts in the occurrence of major peaks typically
expected in even-numbered years from June to July. Notably, only
malaria exhibited a moderate correlation coefficient of 0.42 without a
lag time (Fig. 7J). The decrease in malaria cases was mainly attributed
to strict travel restrictions. Malaria is a mosquito-borne disease that
has been eliminated in China and is primarily spread by international
travelers who are infected in other countries9.

Cross-correlation analysis revealed that the highest relative cor-
relation coefficients for JE, HFMD, mumps, and malaria occurred
within the same month, suggesting that these diseases were immedi-
ately impacted following the implementation of PHSMs. This impact
can be attributed to the immediate effectiveness of PHSMs in con-
trolling the spread of these diseases, which are primarily transmitted
through direct contact and respiratory droplets. The rapid response of
these diseases to PHSMs may also be related to their relatively short
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incubation periods, which allows changes in transmission dynamics
following the implementation of PHSMs to be quickly reflected.
However, JE, mumps, scarlet fever, and rubella demonstrated sus-
ceptibility to PHSMs, and no resurgence exceeding the forecasted or
epidemic trends during the pre-epidemic period. This decline cannot
be solely attributed to PHSMs or the influence of the National Notifi-
able Diseases Surveillance System (NNDSS). The increased vaccination
coverage of meningococcal polysaccharide vaccine (MPV) and
measles,mumps, and rubella (MMR) vaccines likely explains the trends
observed in JE, mumps and rubella cases15,16. Moreover, the incidence
of scarlet fever not only has been gradually increasing in China
(Fig. 4O), but has also increased in multiple European countries
between September and November 202217. This emphasizes the need
for continued surveillance and research on its transmission dynamics.

Theobserved seasonal variations inNIDsobservedduring thepre-
epidemic period are primarily due to the interplay between transmis-
sion models and behavioral patterns18. RIDs such as mumps show a
higher prevalenceduring thewinter19,20, a trend attributed to increased
frequency of indoor gatherings in enclosed spaces without physical
distancing, which facilitates virus transmission21. Additionally, the low
humidity and cooler temperature in winter increase vulnerability to
RIDs of the upper respiratory tract22. Third, seasonal variations may
also impact immune responses, potentially increasing susceptibility to
infections at certain times of the year23,24. NIDs experience substantial
decrease during PHSMs period I (Fig. 1B), which can be attributed to a
confluence of factors. The advent of the COVID-19 pandemic sig-
nificantly heightened public awareness and vigilance towards infec-
tious diseases, prompting the widespread adoption of handwashing
and mask-wearing8, which may have directly reduced exposure to
pathogens. Although residents have maintained good hygiene habits
since April 2020, the decline in some NIDs such as HFMD and infec-
tious diarrhea is starting to shrink (Fig. 5). This observationmay be due
to the relaxation of PHSMs, leading to increased social interactions,
population migration and potential for NID transmission9,11,25. Similar
to PHSMs period I, a reduction in NIDs also observed during the epi-
demic period, which may attributed to the decreased mobility of
Omicron BA.2 variant infections25, coupled with an increased pro-
pensity towearmasks. Additionally, compliancewith PHSMs extended
even to susceptible individuals, even in the absence of government
enforcement. This collective adherence significantly contributed to
the observed decrease in the transmission of respiratory viruses26,
underscoring the effectiveness of PHSMs in the containment of
infectious diseases.

Acknowledging the impacts on NID incidence during the COVID-
19 pandemic is essential. The observed changes in NIDs cannot be
solely attributed to actual shifts in incidence but are also likely affected
by factors leading to increased underreporting. These factors include
disruptions in the NNDSS and shifts in healthcare-seeking behaviors.
Specifically, the high-intensity and redirection work of grassroots
health personnel to COVID-19 prevention and control tasks may have
resulted in missed reports of other diseases. Additionally, the severity
of the pandemic altered healthcare-seeking behavior, with some indi-
viduals reducing their frequency of medical consultations. A study in
China reported a 26.17% decrease in outpatient visits during
February–June 202026.

The impact of PHSMs varied across diseases with different modes
of transmission. RIDs, notably HFMD and mumps, displayed a pro-
nounced susceptibility to PHSMs27. Conversely, the impact of PHSMs
on BSTDs was more limited, consistent with previous research
findings9,10,26. For most RIDs, the implementation of PHSMs sig-
nificantly curtailed their transmission (Fig. 5E), reaffirming previous
studies on the efficacy of PHSMs in controlling these diseases9,26. This
reduction can be attributed to the primary transmission route of these
diseases, i.e., respiratory droplets, which can be effectively managed
bymeasures such asmask-wearing, physical distancing, and improved

ventilation. In contrast, BSTDs, which are primarily transmitted
through direct contact with infected bodily fluids, may not be as
effectively mitigated by these measures26. It is important to note,
however, that while the median adjusted IRRs for AIDS, syphilis,
hepatitis C, and hepatitis B were generally less than 1 during PHSMs
and epidemic periods (Fig. 6C), indicating a reduced impact, this does
not imply that these diseases were entirely unaffected. Interestingly,
the gonorrhea incidence increased during 2021 (Fig. 4K), potentially
due to its short incubation period28, which resulted in quick responses
to PHSMs. In contrast, for diseases such as AIDS, syphilis, hepatitis C,
and hepatitis B, which typically exhibit longer incubation periods (over
a month)29, a substantial delay between symptom onset and reporting
may occur.

Travel restrictions significantly affect the transmissionof ZIDs like
dengue fever and malaria, which are mosquito-borne and sensitive to
imported cases25,30. In the winter, the inhospitable condition for mos-
quitos help suppress these diseases acrossmost of China31. During the
PHSMs periods, stringent international travel restrictions, combined
with the synchronization between the isolation period and the incu-
bation period for imported cases of dengue fever and malaria, fre-
quently facilitated the detection of these cases during quarantine6,9.
Consequently, local outbreaks of these diseases markedly decreased
during PHSMs periods. However, brucellosis (Fig. 4R), another ZID,
significantly increased during PHSMs period II, particularly in northern
provinces such as Xinjiang, Gansu (Supplementary Fig. 18), and Inner
Mongolia32. This rise is primarily due to inadequate animal vaccination
and a meat shortage that spurred the expansion of sheep herds,
practitioners, and home poultry farming, thereby increasing human-
animal contact and the risk of brucellosis32,33. Another area requiring
attention is typhus which is a disease transmitted by parasites. Since
2017, typhus incidence has shown a steadily increasing trend (Fig. 4W).
This rise could be attributed to factors such as changes in human
behavior that increase exposure to vectors, urbanization, or climate
change34. Further investigation into the specific causes of this increase
is necessary to develop effective control strategies.

The significant resurgence of AHC and pertussis in the post-
pandemic period is noteworthy. Previously exhibiting a relatively low
incidence, both diseases experienced unexpected large-scale
rebounds after the epidemic. AHC, primarily caused by enter-
oviruses, instigated an outbreak in southern China in September 2023.
Notably, AHC outbreaks also occurred in Pakistan and India due to
Coxsackievirus A24 in September and July, respectively35,36. This
unexpected escalation of AHC and pertussis may be attributed to
several factors, including relaxed PHSMs, increased susceptibility due
to COVID-19, or even potential viral mutations. Pertussis reached its
highest incidence since 2008 in December 2023 in China and is
experiencing a global resurgence37. Alongside the aforementioned
factors, decreasedpopulation immunity due to under-vaccinationmay
also contribute to the resurgence of pertussis37.

Our study has several limitations. First, we focused on 24 NIDs
insteadof all infectiousdiseases, leaving aparticular gap in the studyof
respiratory diseases. Since influenza was excluded due to its reliance
on sentinel surveillance38, this does not undermine the overall con-
clusion of the study. RIDs continue to exhibit high incidence and are
notably susceptible to PHSMs. The selection of 24 high-incidenceNIDs
for this study is indicative of the broader trends observed across all
NIDs. Additionally, our analysis relies on monthly NIDs reports, which
are updated frequently but potentially introduce reporting delays,
particularly for diseases such as tuberculosis. To address this, we
incorporated data from slower-updating sources (Supplementary
Figs. 25–48), finding no significant seasonality variations in onset and
reporting dates for the other 23 NIDs. However, discrepancies in
reported cases were observed for some diseases (e.g., hepatitis B,
hepatitis C, tuberculosis) (Supplementary Figs. 8, 10, 13), potentially
due to data collection errors, statistical differences, or other factors.
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These discrepancies have not been previously reported, and further
attention is warranted. Further investigation and official clarification
are crucial for reconciling these discrepancies and ensuring data
accuracy. However, our analyses were mainly based on reports, with
disease onset data analysis primarily supplemented through geo-
graphical distribution analysis, mitigating the impact of these dis-
crepancies on our main conclusions. We also developed a website
application to facilitate reader analysis based on customized data
(https://kanggle.shinyapps.io/auto-tsmodel/). Third, the inherent lim-
itations of time-series models must be acknowledged. These limita-
tions include the inability to capture sudden, unexpected events and
the direct impact of intervention measures on disease transmission.
These models also rely on assumptions about data being stationary
and following certain trends. Therefore, when comparing our results
with those from other studies, it is essential to consider these limita-
tions with due diligence.

Our research revealed that the implementation of PHSMs in
response to various SARS-CoV-2 variants can significantly impact the
transmission dynamics of most NIDs. Intriguingly, despite the relaxa-
tion of all PHSMs by the Chinese government, there was no immediate
significant resurgence in NIDs during the epidemic period. This fund-
ing suggests that widespread self-isolation practices after the Omicron
BA.2 epidemic had a temporary restraining effect on the transmission
of other infectious diseases. However, this period of restricted trans-
mission was followed by increased reported cases of diseases such as
HFMD, AHC and pertussis. Other studies have also reported a
74.8–140.1% increase in influenza infections during the
2022–2023 season39. This phenomenon, referred to as the “immune
gap,” highlights the “broad-spectrum” effectiveness of PHSMs. While
they mitigated SARS-CoV-2 transmission, PHSMs also reduced expo-
sure to various pathogens. This reduced exposure may have led to
insufficient immune system stimulation, potentially weakening popu-
lation immunity compared to pre-epidemic levels. Our findings
emphasize that while PHSMs offer an effective short-term solution for
controlling the spread of infectious diseases, their long-term use has
the unintended consequence of potentially decreasing population
immunity, which could create conditions for future large-scale out-
breaks. A more sustainable, long-term approach prioritizes the devel-
opment and widespread implementation of effective vaccines, similar
to the successful model of the MPV and MMR vaccine15,16.

Methods
Disease selection criteria
Thedisease selection criteriawere determinedbased ondata collected
by China’s NNDSS, which includes information from 31 provinces,
excluding the Hong Kong Special Administrative Region (SAR), Macau
SAR, and Taiwan province. The NNDSS was created in 2004 and has
been significantly improved to monitor multiple NIDs9. As of Decem-
ber 2023, data from 41 NIDs were included, but only 30 NIDs hadmore
than 20,000 cases reported during the study period (from January
2008 to December 2023). COVID-19 and 5 other NIDs were excluded
due to data deficiencies. Specifically, influenza was excluded from the
analysis because its detection depends on specialized sentinel sur-
veillance systems38. Influenza A(H1N1) was virtually eliminated, and it
was removed from monthly reports after November 2013 (Supple-
mentary Data 1). “Other hepatitis” encompassing cases clinically
diagnosed but not confirmed as hepatitis types A, B, C, D, or E, were
also excluded from our analysis. Because the incidence of “other
hepatitis” has been significantly influenced by the evolution of
laboratory and hospital testing capabilities40, technological advance-
ments have led to a progressive decline of ‘other hepatitis’ cases
(Supplementary Data 1). Moreover, diseases such as schistosomiasis
and measles, which are nearing elimination in China and have been
recently characterized by a relatively low prevalence41, were also not
considered in the analysis.

This study adopts a modeling methodology to examine the pat-
terns of 24 NIDs including HFMD, infectious diarrhea, dysentery, AHC,
hepatitis E, hepatitis A, enteric fever, hepatitis B, syphilis, hepatitis C,
gonorrhea, AIDS, tuberculosis,mumps, scarlet fever, rubella, pertussis,
brucellosis, HFRS, dengue fever, malaria, echinococcosis, typhus and
JE. These diseases were categorized into 4 categories based on their
primary modes of transmission: IIDs, BSTDs, RIDs, and ZIDs. Specifi-
cally, IIDs includeHFMD, infectious diarrhea, dysentery, AHC, hepatitis
E, hepatitis A and enteric fever. BSTDs include hepatitis B, syphilis,
hepatitis C, gonorrhea and AIDS. RIDs include tuberculosis, mumps,
scarlet fever, rubella and pertussis. Finally, ZIDs encompass bru-
cellosis, HFRS, dengue fever, malaria, echinococcosis, typhus and
JE (Fig. 1A).

Data collection
National data for this study were systematically collected from the
monthly NIDs reports published by theNational Health Commission of
China. These reports, aggregating data from the NNDSS based on
reported date, have been available since January 2004. However, due
to the instability of the NNDSS data sources in its early years, our
analysis did not include reports prior to January 2008. The study
period spans from January 2008 to December 2023. Notably,
for specific NIDs, such as HFMD, AHC, infectious diarrhea, mumps,
rubella, echinococcosis and typhus, data were collected by the
NNDSS from January 2008 to February 2009 but were not reflected
in the monthly NIDs Reports. For these diseases, we relied on
data provided by the Chinese Public Health Science Data Center
(CPHSDC), maintained by the Chinese CDC, which also aggregates
data from the NNDSS based on onset date and includes early NID
data. However, it is notable that the monthly NID reports are fre-
quently updated the following month to reflect the reported date of
cases, while data provided by the CPHSDC is typically updated at a
slower pace, sometimes taking ~3–4 years. Considering the relatively
short incubation period of these 7 NIDs and no significant incidence
difference from 2010 to 2021 (Supplementary Figs. 1, 2, 4, 14, 16, 22
and 23), it is evident that the influence of these data on the research
findings is minimal.

Additionally, the CPHSDC provided provincial-level NIDs data
until December 2020. For provincial data beyond this date, we
extracted information from the monthly NIDs reports published by
provincial CDCs or health commissions. Due to discrepancies in data
availability and presentation across provinces, only 11 provinces pub-
licly provided complete data tables or figures from January 2021
onwards: Anhui, Chongqing, Gansu, Guangdong, Henan, Jiangsu,
Shandong, Shanghai, Sichuan, Xinjiang, and Zhejiang. Analysis of the
remaining 20 provinces did not yield complete data records due to
various factors, including the absence of detailed NID tables (n = 17) or
restricted public access (n = 3).

The study period was divided into distinct periods to align with
the different phases of the SARS-CoV-2 epidemic in China. The period
spanning from January 2008 to December 2019 is designated the pre-
epidemic period, reflecting the epidemiological landscape before the
emergence of SARS-CoV-2. The advent of the epidemic and the sub-
sequent PHSMs response were segmented into several phases. The
period from January 2020 to March 2020 marks PHSMs period I,
reflecting the early response to the outbreak9. This period is followed
by the period from April 2020 to October 2022, termed PHSMs period
II, characterized by sustained measures aimed at controlling the
spread of the virus. The distinction between PHSMs period I and
PHSMs period II is primarily based on the cessation of lockdowns in
Wuhan, marking a significant shift in control strategies9. The transition
to the epidemic period, spanning November 2022 to January 2023,
corresponds to the Chinese government’s shift away from the
“dynamic COVID-zero” strategy14. The final phase, from February 2023
to December 2023, is recognized as the post-epidemic period,
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demarcated by a notable decrease in the positive rate of COVID-19
tests, indicating a reduction in viral transmission42.

Considering the varying intensities of PHSMs across these different
periods, we utilized the stringency index to measure the national
intensity of PHSMs. This composite index is based on 13 policy response
indicators, including school closures, workplace closures, travel bans,
testing policies, contact tracing, face coverings, and vaccine policies.
The index is normalized to a scale ranging from 0 to 100, providing a
robust measure of PHSM intensity over time43. Detailed information
about the sources of NID data and the website links for monthly NID
reports can be found in Supplementary Data 1. To guarantee data
accuracy and reliability in this analysis, all NID datasets underwent a
randomized, double-blind verification process by multiple authors.

Model building
A single time series model alone is insufficient for capturing the epi-
demic patterns of all 24 diseases due to the diverse epidemiological
characteristics and temporal distributions of different infectious dis-
eases. Therefore, the ensemble forecasts include the neural network
model, Bayesian structural time series model, Prophet model, ETS
model, SARIMAmodel, and hybrid model (combine SARIMA, ETS, STL
and neural network components). Each model has advantages
depending on the specific epidemic characteristics of different dis-
eases. The neural network model excels in capturing nonlinear trends
and complex relationships. The Prophet model automatically handles
long-term trends, seasonality, and holiday effects. Bayesian structural
time series models address uncertainty and randomness; the ETS
model is suitable for smoothing data and short-term forecasting; and
the SARIMA model considers trends, seasonality, and autoregressive
terms simultaneously. By combining the weighted averages of the
neural network, STL, ETS, and SARIMA models, a hybrid model can
better capture the epidemic trends of different infectious diseases.

Neural network model. We utilized a feed-forward neural network
with lagged inputs and a single hidden layer, containing half as many
neurons as the input layer. Multiple networks were trained with dis-
tinct initial random weights, and their forecasts were averaged. The
network was calibrated for single-step predictions, while multistep
projections were derived recursively44.

ETSmodel. The three parametersof the ETSmodelwere automatically
determined using a log-likelihood optimization criterion, guided by
the corrected Akaike information criterion (AICc)44.

SARIMA model. The SARIMA model parameters (p, d, q) × (P, D, Q)s
were systematically selected using a stepwise algorithm informed by
the AICc, facilitated by the “auto.arima” function of the “forecast”
package in R (version 4.3.2, R Core Team, Vienna, Austria)44.

Hybridmodel. Our hybrid approach synthesizes the predictive power of
the SARIMA, ETS, STL, and neural network models. By assigning weights
to the forecast of each base model according to its out-of-sample error
rate and normalizing them to sum to unity, we recalibrate these weights
annually to better align with the evolving disease patterns45.

Bayesian structural time series model. These models were executed
using the “bsts” package in R (version 4.3.2, R Core Team, Vienna,
Austria), incorporating structural components for trend, seasonality,
and regression effects. Priors were selected via the empirical Bayes
method, and we conducted 500 MCMC simulations to ensure
convergence46.

Prophet model. Prophet employs an additive model to fit nonlinear
trends with components for yearly, weekly, and daily seasonality, as
well as holidays. The Prophet model, available in R, excels with data

exhibiting strong seasonal patterns and copes well with missing data,
trend shifts, and atypical values47.

To estimate the baseline epidemic trend of the 24 NIDs from Jan-
uary 2020 to December 2023 (without PHSMs and SARS-CoV-2 trans-
mission), this study used a two-phase modeling approach using
historical NID incidence data. The monthly NID incidence from January
2008 toDecember 2017 constituted the training dataset for the baseline
models. The subsequent period, from January 2018 to December 2019,
was utilized as the test dataset to evaluate the predictive performance
of these models. Laplace smoothing was applied in two-phase model-
ing, involving the addition of 0.1 cases to the incidence data for each
month, to address zero-reported cases in certain months. This adjust-
ment not only resolved the zero-incidence issue but also improved
model stability by ensuring no null input data points. Upon model
construction, the forecasted outcome will decrease by 0.1.

To evaluate the performance of time series models on the test
datasets, we employed three evaluation metrics: RMSE, MAPE and
SMAPE. RMSE is valuable for its ability to highlight significant errors,
indicating the seriousness of substantial deviations in predictions.
However, the RMSE lacks directional sensitivity and may exaggerate
the impact of large outliers. The scale-invariance and measurement of
errors in percentages of MAPE aid in interpretability, although its
accuracydiminisheswhen the actual values approachzero, leading to a
potential distortion of errors. The SMAPE addresses this issue by
equally penalizing overpredictions and underpredictions but is still
sensitive to outliers and may face challenges in situations where both
actual values and forecasts are zero. In this study, we aggregated these
metrics into a single composite index of equal weight. Additionally,
these indicators, each with unique range sensitivities, underwent a
transformation process to standardize their values for comparative
analysis using z-normalization. The comprehensive standardized index
was delineated by following formula:

Zm,d = �
X

i

xm,i,d � μi,d

σi,d
ð1Þ

Here, Zm,d represents the standardized index formodelm in disease d,
and xm,i,d indicates the value of index i (RMSE, MAPE or SAMPE) for
model m in disease d. μi,d and σi,d denote the mean and standard
deviation of index i in disease d, respectively. This normalization
process ensures that the performance of each model across different
diseases and indices is comparable. The model with the highest stan-
dardized index for a given disease across 6models was considered the
optimal model for that disease within this analysis. Additionally, to
enhance the reliability of our analysis across various models for dif-
ferent NIDs, we employed cross-validation techniques. This involved
dividing the training data into subsets formodel fitting and evaluation.
Training datasets spanned 6 to 10 years, with the test datasets being
established 2 years after the training dataset (Supplementary Table 3).

Statistical analysis
After establishing the optimal model, we retrained the model using
data from 2008 to 2019. The model was then applied to forecast the
incidence of various infectious diseases since January 2020. By com-
paring the forecasted results with the real-world incidence, we calcu-
lated the IRRs of PHSMs for different NIDs. The formula for calculating
the IRR is the ratio of the incidence during PHSMs to the incidence
without PHSMs:

IRR=
Ia
Im

ð2Þ

In this study, the time series model employed occasionally pro-
ducednegative values,mainlywhen the incidencewas low.All negative
values in the analysis were adjusted to 0 to address this issue. To
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further refine our approach and mitigate the issue of zero incidence
values, we applied Laplace smoothing to adjust the IRR calculations:

IRRadj =
Ia +0:1
Im +0:1

ð3Þ

The adjusted IRR determines the impact of PHSMs on the risk of
disease incidence. An adjusted IRR less than 1 indicates that PHSMs can
reduce the risk, while an adjusted IRR greater than 1 indicates that
PHSMs can increase the risk. The significance of the difference between
the adjusted IRR and 1 was assessed using two-sample Wilcoxon tests
with a significance level of 0.05. Furthermore, to categorize NIDs into
distinct groups based on their incidence in the pre-epidemic period and
adjusted IRR in PHSMs periods, cluster analysis was applied. This ana-
lysis used hierarchical k-means clustering based on Euclidean distance
and Ward.D2 method, which was first utilized to split the hierarchical
tree into k clusters. Subsequently, the centroids of each cluster were
calculated and served as the initial cluster center for the k-means clus-
tering algorithmbased on Euclidean distance48. Based on incidence data
from 2008 to 2019, NIDs were divided into high and low incidence
categories through this cluster analysis. Additionally, through the clus-
tering analysis of logarithmically adjusted IRRs, diseases were roughly
classified into two categories: NIDs that are less susceptible to PHSMs,
and those that are more susceptible to PHSMs.

To comprehensively understand the impact of PHSMs on the
incidence of NIDs, cross-correlation analysis was conducted to assess
the relation between the stringency of PHSMs and the logarithms of
adjusted IRRs. Considering the variations in the incubation periods of
different infectious diseases and the potential lag effects of PHSMs, we
utilized a cross-correlation analysis to analyze the combined effects of
the monthly stringency index, both without and with a lag of 1 to
6 months, on adjusted IRR49. The aim of this comprehensive approach
was to dissect the temporal associations and causative relationships
between PHSM stringency levels and NID incidence fluctuations,
employing a systematic categorization of correlation coefficients to
delineate the magnitude of associations: unrelated (below 0.2), weak
(0.2 to 0.4), moderate (0.4 to 0.6), and strong (above 0.6)50.

Ethical approval was not required for the data used in this study.
All the data of NIDs are publicly available on the websites of Health
Commission, CDC, and CPHSDC. The PHSMs stringency index is also
publicly available in Our world in data (https://ourworldindata.org/
covid-stringency-index). All the statistical analyses were conducted
using R (version 4.3.2; R Core Team, Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The monthly incidence data of 24 NIDs used in this study is accessible
through the GitHub repository (https://github.com/xmusphlkg/code_
PHSM), and Supplementary Data 1. National notifiable infectious dis-
ease incidence data in China also available at figshare (https://doi.org/
10.6084/m9.figshare.24589608). Source data are provided in
this paper.

Code availability
The R code used for statistical analysis and figure generation is also
available at the GitHub repository (https://github.com/xmusphlkg/
code_PHSM) and Zenodo51.
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