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Low-index mesoscopic surface
reconstructions of Au surfaces using
Bayesian force fields

Cameron J. Owen 1,2 , Yu Xie 2, Anders Johansson 2, Lixin Sun2,4 &
Boris Kozinsky2,3

Metal surfaces have long been known to reconstruct, significantly influencing
their structural and catalytic properties. Many key mechanistic aspects of
these subtle transformations remain poorly understood due to limitations of
previous simulation approaches. Using active learning of Bayesian machine-
learned force fields trained from ab initio calculations, we enable large-scale
molecular dynamics simulations to describe the thermodynamics and time
evolution of the low-indexmesoscopic surface reconstructions of Au (e.g., the
Au(111)-‘Herringbone,’ Au(110)-(1 × 2)-‘Missing-Row,’ and Au(100)-‘Quasi-Hex-
agonal’ reconstructions). This capability yields direct atomistic understanding
of the dynamic emergence of these surface states from their initial facets,
providing previously inaccessible information such as nucleation kinetics and
a complete mechanistic interpretation of reconstruction under the effects of
strain and local deviations from the original stoichiometry. We successfully
reproduce previous experimental observations of reconstructions on pristine
surfaces and provide quantitative predictions of the emergence of spinodal
decomposition and localized reconstruction in response to strain at non-ideal
stoichiometries. A unified mechanistic explanation is presented of the kinetic
and thermodynamic factors driving surface reconstruction. Furthermore, we
study surface reconstructions on Au nanoparticles, where characteristic (111)
and (100) reconstructions spontaneously appear on a variety of high-
symmetry particle morphologies.

Accurate description of surfaces and their dynamic evolution is an
important task in materials modeling, as the resulting structures
strongly influence device performance and stability. Examples of these
effects range from interfacial reactions dictating transport and
degradation at electrolyte-electrode interfaces1–4, surface morpholo-
gies affecting tribology of mechanical devices5, to the structure-
performance relationship of heterogeneous catalysts affecting turn-
over rates for chemical conversion processes6. Until explicit con-
sideration of interfacial responses to environmental stimuli (e.g.,

applied strain, temperature, or adsorbates) using experimental or
computational methods is achieved with atomic resolution, inter-
pretation of these phenomena and subsequent material design tasks
will remain largely intractable.

Of these dynamic phenomena, surface reconstructions have
provennominally difficult to captureusing existingmethods, where ab
initio techniques like density functional theory (DFT) cannot simulate
appropriate length- or time-scales, and classical techniques (e.g.,
empirical force-fields (FFs)) do not exhibit the required accuracy7.
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Coupling these limitations to insufficient temporal and spatial reso-
lution of experimental techniques means that the atomistic mechan-
isms and nucleation kinetics of surface reconstruction remain
unknown.

Gold (Au) has garnered particular attention in this regard due to
the propensity of each of its low-index surfaces to reconstruct under
inert conditions. The Au(111)8–10, Au(110)11–13, and Au(100)14,15 surfaces
each exhibit interesting reconstructions16. Specifically, Au surfaces,
and more generally those of other late transition metals used in het-
erogeneous catalysts, have been shown to exhibit different activities
only after reconstruction has occurred, where changes in preferential
adsorption of reactants17,18, as well as alloying behaviors are caused by
the change in morphology of the surface19. In addition to reconstruc-
tions, Au surfaces exhibit a spinodal decomposition, as observed using
experimental STM by Schuster et al.20. Charactersistic labyrinth pat-
terns were seen with an Au adatom gas on the Au(111) surface between
coverages of 0.4 and 0.9 monolayers (ML), with the dominant length-
scales of the agglomerated islands of only a few nanometers. Hence,
reproducing and understanding these reconstruction processes from
atomistic simulations, and the resulting differences in material prop-
erties is important specifically for Au as well as other widely-used host
metals in a variety of applications21.

Such mesoscopic modeling challenges naturally lend them-
selves to be solved using molecular dynamics (MD) simulations or ab
initio methods, where the former can appropriately simulate the
large time- and length-scales necessary for these reconstructions,
while the latter exhibit high accuracy in describing atomic environ-
ments of diverse coordination but are limited by high computational
cost. Corroborating the need for increased accuracy at appropriate
scale is the fact that MD simulations driven by either classical FFs or
ab initio methods have been unable to capture Au surface recon-
structions.While several classical embedded atommethod (EAM) FFs
are readily available for Au, all of which having been trained using
different physical properties, none of them are able to capture the
low-index reconstructions of Au. Instead, explicitly guided MD
simulations have been performed22, wherein the atomic structure of
the reconstructed surface is directly built or the MD simulation is
manually adjusted to prompt reconstruction (e.g., applied shear) and
simulated using these potentials23, yielding no atomistic insight into
the nucleation kinetics or mechanisms of the reconstruction pro-
cesses. The need for guided structure manipulation in MD simula-
tions began with the inability of Frenkel-Kontorova (FK) models to
predict the stability of the Au(111)-‘Herringbone’ reconstruction24,
followed by modifications to same FK models that were able to sta-
bilize the facet but not directly observe the transformation25,
extending to other EAM potentials that also required explicit con-
struction of the target facet26.

Recent advances of machine learning in FF development have
shownpromise for direct simulation of thesemesoscopic phenomena,
as a flexible model can be learned directly from ab initio training data
and enable MD simulations at high computational efficiency on par
with classical potentials. These models demonstrate high accuracy in
both in- and out-of-domain modeling tasks7,27–30. Moreover, ML force
fields (MLFFs) have become easier to train fully autonomously, and
allow production MD simulations to reach experimentally relevant
scale (e.g., 0.5 trillion atoms for H/Pt heterogeneous catalytic
reactions31). MLFF models are trained on ab initio training data, either
using density functional theory (DFT) for periodic systems or
quantum-chemistrymethods formolecules, fromwhich atomic forces,
total energies, and stresses can be employed as ‘ground-truth’ labels.
As a result, MLFFs exhibit accuracy close to that of their ab initio
training data, and when coupled with their flexible forms, they permit
robust calculation of material properties at increasingly appropriate
scales for comparison to experimental observations29,31. With respect
to Au, a DeePMD MLFF was recently used for investigation of the

Au(111) ‘Herringbone’ reconstruction, but instead of exploring its
emergence, explicit guidance was again employed to study the
reconstructed facet by directly building it prior to the simulation,
which limits the predictive analysis of the transformation behavior32.
However, we do find it apparent here to note that the work using the
DeePMD potential took advantage of DFT training labels at the PBE
level, which when used to study the resultant ‘Herringbone’ recon-
struction (e.g., DeePMD using training labels at the PBE-level), agree-
ment was obtained with respect to experimental observations for
various perturbations of the subsurface atomic layers, and strain
induced changes in periodicity. There also exists a wealth of previous
staticDFT investigations,whichwhen taken together conclude that the
choice of exchange-correlation functional, albeit important, does not
influence the stability assessments of the reconstructed facets relative
to the pristine systems when using generalized gradient approxima-
tions like PBE32,33. Issues may arise when using small periodicity
‘approximates’ (supercell representations, as defined in ref. 33) to
predict the surface energy of the mesoscopic reconstructions as
identified in ref. 33 for Pt(100), but this is distinct from the simulation
tasks presented here, since we simulate the entire length-scale
required for the full surface reconstruction of each facet. Moreover,
the work from ref. 33 specifically notes that even the use of small
periodicity approximates for the Au(100) at the GGA level with
something like PBE gives reasonable agreement to experimental
observations.

This argument is similar to another critical component of the
work completed here, in that not only are small approximates
(supercell representations) used to train a MLFF, but the descriptors
used to represent atomic environments in the FLARE code are strictly
local, where information is not propagated beyond the cutoff distance.
Symmetry-breaking phenomena, such as charge density waves, which
arise from delicate interactions among the various orbitals, are gov-
erned by long-range fundamental electronic structure features34,
which may be difficult to capture using strictly local representations.
However, our non-trivial finding is that the emergence of such long-
range patterns of reconstruction, due to strain and electronic effects,
can in fact be described in quantitative agreement with experiment by
a model that is able to sufficiently accurately capture only short-range
quantum interactions.

Here, we accomplish the goal of direct and unbiased observation
of low-index Au surface reconstructions by employing the FLARE
code7,35,36 to construct aMLFF fromab initio training data that is able to
capture, without explicit guidance and guessing of structure, the
dynamic surface reconstructions of each of the low-index facets of Au,
as well as on nanoparticles (NPs). A summary of the workflow is pro-
vided in Fig. 1, wherein a singleMLFFwas trained for Au, validated, and
then deployed in large-scale ML-MD simulations to study surface
reconstruction of slabs and NPs under a variety of boundary condi-
tions. As provided in Fig. 1, small atomic unit-cells of Au bulk, surfaces,
and nanoparticles (1a) are fed into the FLARE framework (1b) to effi-
ciently trained a FLAREMLFF ‘on-the-fly’, fromwhich unbiasedML-MD
simulations can be performed (1c) to uncover atomistic understanding
of surface reconstructions and their nucleation (1d) directly from first
principles. With these simulations, we provide direct and unbiased
insights into a full mechanistic understanding of surface reconstruc-
tion and nucleation kinetics under which Au surface reconstructions
readily occur. These observations are important for improved under-
standing of catalyst synthesis, pretreatment, and to potentially control
reactivity of these systems. By establishing a rigorous protocol by
which surface reconstructions can be studied directly from ab initio
training data using MLFFs, we open the possibility of computational
investigations of the mechanisms, kinetics, and thermodynamics of a
wide rangeof surface reconstructionphenomena and interpretationof
experimental results in surface science. Our work aims to address
fundamental surface science questions. (1) How does the kinetic
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emergence of reconstruction depend on the initial surface structure,
specifically applied strain, concentration of adatoms, and presence of
edges? (2) Are surface reconstructions thermodynamically favored
under a wide range of these factors? (3) Are short-range interatomic
interactions sufficient to capture intricate large-scale reconstruction
patterns observed in experiment? (4) How does the reconstruction
phenomenology on flat surfaces transfer to the evolution of nano-
particle facets? The results presented below provide insight into these
important questions for Au facets, and ultimately yield benchmarks to
be confirmed by experimental surface science techniques in the
coming years, in particular the explicit dependence of strain and sur-
face stoichiometry on Au reconstruction of flat terraces and nano-
particles, as well as the onset of a spinodal decomposition that would
appear following surface cleaning, e.g., sputtering, at low
temperatures.

Results
The procedures for active learning, MLFF training, and validation are
provided in the “Methods” Section, and the results of each are pre-
sented in the Supplementary Information. Briefly, active learning only
resulted in 2965 calls to DFT, across the 7 structures considered over
13.2 ns of total simulation time, all collected within 1775.1 h (≈74) days
of serial wall time. The active learning procedure is represented
schematically in Fig. 1, where atomic structures are input to the initially
empty sparse Gaussian process model, which is trained iteratively via
MD simulations. In practice, by running all active learning trajectories
in parallel, all data was collected only over the span of 1 week of CPU
wall time. Excellent agreement is observed across all validation targets
considered, which established preliminary trust in the MLFF to inter-
polate between each of the relevant Au surfaces and bulk environ-
ments. The MLFF was then employed to study the low-index surfaces
and several Au NPs in large-scale ML-MD simulations, discussed
sequentially below.

Au(111)-‘Herringbone’ reconstruction
Au is the only FCC-metalwhose (111) surface is observed to reconstruct
at room temperature8–10. The resulting ‘Herringbone’ periodicity
(22×

ffiffiffi

3
p

) has been experimentally imaged using scanning tunneling
microscopy (STM), which can be found in refs. 37,38.

To provide insight into the nucleation kinetics and mechanisms
driving reconstruction, we deployed our MLFF in large-scale ML-MD
simulations with various surface stoichiometries, defined by the con-
centration of vacancies or adatoms, introduced in or on the surface
atomic layer, relative to the pristine facet, of the Au(111) surface as

input and evaluated the propensity of each surface to reconstruct. The
simulation procedure is described in detail in the “Methods” Section
and is also represented schematically in Fig. 1, where the trained FLARE
model is used to describe various Au facets and nanoparticles under
stimuli with unbiasedMD to yield atomistic understanding. To account
for various factors that could plausibly influence the onset of recon-
struction, as provided in Fig. 1c, we defined three Simulation Tasks: (1)
the stoichiometric Au(111) facet at 300 K across a range of mechanical
strains, (2) the same facet and applied strains but with adatoms or
vacancies randomly introduced across the entire concentration range
(from 0.05 to 0.95 ML), and (3) heating and subsequent quenching of
the stoichiometric surface.

Simulation Tasks 1 and 2 were considered at 300 K, as this
temperature is appropriate for comparison to most high-vacuum
surface science characterizations of Au(111) single crystals9. At this
temperature, the coupled effects of stoichiometry and mechanical
strain (both anisotropic and isotropic, as explained in the “Methods”
Section) were explicitly probed, since these perturbations have been
shown to influence the periodicity of reconstruction32. However, no
experimental or computational insight is currently available into
their influence on the apparent nucleation kinetics and mechanisms
underlying reconstruction. Lastly, we evaluated the stoichiometric
Au(111) surface under annealing conditions starting from 300 K to
temperatures between 400 and 800 K in increments of 100 K, with a
heating rate of 20 K per ns that was previously used for Au by Zeni
et al.39. The results for these tasks are summarized in Figs. 2 and 3,
respectively, and the complete set of results are provided in
Suppl. Note 2.

Stoichiometric Au(111)
Beginning with Task 1, we observe that reconstruction is strongly
dependent on applied strain, as shown in Fig. 2a, b, where only iso-
tropic tensile strain above 1.5% along both ½1� 10� and ½�1� 12� is able
to nucleate the transition within the simulation time of 10 ns at 300 K.
A snapshot of the final reconstructed facet after 10 ns of ML-MD is
shown in Fig. 2a for the case where 2.0% isotropic tensile strain is
applied, which leads to nucleation within 200 ps of simulation time.
This time-scale is different than for application of 1.5% isotropic tensile
strain, which takes ≈ 1.2 ns to nucleate. These results are discussed in
more detail below. The pristine Au(111) simulation cell consists of
39,600 atoms, and obtained an average performance of 55 ns per day
using 4 A100 GPUs.

In order to monitor the presence of reconstruction over the
course of each simulation, the polyhedral template matching (PTM)

Fig. 1 | Schematic of the data generation and simulation workflow. a DFT-sized
input geometries for active learning in FLARE. b Active learning in FLARE, as
described in more detail in refs. 7 and36; adapted with permission (CC BY 4.0).
c ML-MD simulations performed in LAMMPS for various facets with defects,

mechanical strains, and temperatures applied. d Nucleation kinetics and mechan-
ismsunderlying the transition towards the reconstructedphases aremade available
to determine the stoichiometric and mechanical regimes wherein each surface is
reconstructed, and what is the resulting surface geometry.
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method40 was employed usingOvito41, where atomic environments are
distinguishedby the distributionof angles of neighboring atoms. From
these results we can conclude that the stoichiometric Au(111) surface is
resistant to reconstruction, with only high amounts of isotropic tensile
strain prompting nucleation. However, we do point the reader to
Table 1, which provides the relative energies of the reconstructed and
pristine facets as a function of isotropic strain, as calculated by the
MLFF. These results are in excellent agreement with those previously
reported in the literature42, where the striped Au(111)-‘Herringbone’
reconstructed facet is more stable than the pristine facet at 0.0%
strain, which is reproduced by our MLFF.

From these results, the reconstructed facet is still the enthalpic
minimum unless significant isotropic compression is applied. This is
consistent with the trend shown by Fig. 2b, but also indicates that
strain affects both the kinetic barriers to reconstruction and the
thermodynamic driving force. However, we use caution in making
strong conclusions from this small set of static calculations, but
reiterate that the trends in energy for the non-strained facet reflect
those previously observed in ref. 42, and serve as a sourceof additional
validation for the MLFF.

Defective Au(111)
We then considered the inclusion of adatoms and vacancies on Au(111)
to yield a range of ‘defective’ surfaces to understand the effect of
surface stoichiometry on the mechanisms and nucleation kinetics of
reconstruction. These results are provided in Fig. 2a–d. As opposed to

the simulations presented in Task 1, reconstruction is observed
regardless of strain, unless 2.0% isotropic compression is applied. This
is explained in terms of the high effective barrier for adatom incor-
poration into the compressed surface atomic layer with the enthalpic
minimum at 2.0% isotropic compression being the (111) facet, as is
supported by the enthalpic information in Table 1. For context, the
‘Herringbone’ reconstruction requires that an additional two atoms be
included in each (22×

ffiffiffi

3
p

) unit cell of the surface, changing the total
number of surface atoms from 44 to 46 with this periodicity. More
interesting is that a change inperiodicpattern is observed as a function
of anisotropic strain, as shown in Fig. 2c, d. This is corroborated by the
resulting direction of the reconstruction being rotated by 90∘ when
comparing compression or tension between the two lattice vectors. If
anisotropic mechanical strain is applied along an individual lattice
vector but is varied from compression to tension, however, the
reconstruction also rotates by 90∘. This suggests that the direction of
strain is critical in determining the resulting periodic patterning of the
reconstructed domains.

These findings of the dependence of the periodic boundary con-
ditions on the ‘Herringbone’ reconstruction are consistent with
experiments conducted by Schaff et al.43, and corroborate the results
provided byourmodel. The energetic preference for ‘striped’domains
was also observed via applied strain to the ‘Herringbone’ construction
considered using the DeePMD potential32, but they did not consider
evolution towards this lowest energy structure directly from the per-
fect facet, neglecting the nucleation kinetics presented here.

Fig. 2 | Appearance of Au(111) reconstructions under strain and changes in
surface stoichiometry. a Final snapshot of the Au(111) surface after 10 ns of
simulation time under 2% isotropic tensile strain. Atoms are colored using the
Polyhedral Template Matching (PTM)40 method in Ovito41, where green denotes
FCC, red denotes HCP, blue denotes BCC, and white denotes lack of symmetry of a
given atomic environment. b The kinetic regimes in which facile reconstruction
occurs as a function of strain and surface stoichiometry are observed. Values on the
top x-axis correspond to the surface monolayer (ML) coverage of adatoms and the
y-axis provides strain directions and relative amounts in percent. The values

represent the number of HCP atomic environments present at the end of each
simulation, obtained fromPTM. The blue-white-red heatmap is included toprovide
a guide to the eye for when reconstruction fully occurs (blue) or does not nucleate
(red) within the allotted simulation time. c, d Snapshots from four separateML-MD
simulationswith opposite directions of applied strain, asdefined inSimulationTask
2, demonstrating the effect of mechanical stimulus on the periodicity of recon-
struction and how the applied strain results in periodicities of reconstruction that
are orthogonally related.
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To generalize our investigation of the defective Au(111) surface,
we also considered the entire stoichiometric range from 0.05 ML to
0.95 ML of adatoms, which effectively covers both adatom- and
vacancy-rich domains. We observed a clear effect on the periodic
length scale of the reconstructed HCP domains across the range of
surface concentrations. Specifically, reconstructed domains exhibit
the largest periodicity when the adatom concentration is low, yielding
domains closest to those observed experimentally (e.g., 22×

ffiffiffi

3
p

),
whereas increasing the concentration of adatoms to 0.5ML and higher
results in the reconstructed domains being much shorter in length-
scale. The complete set of simulation snapshots as a function of sur-
face stoichimetry is provided in Suppl. Figs. 5–15, where thesedifferent

periodicities and patterns can be directly observed. We explain these
observations in more detail below.

At the lowest concentration considered (0.05ML), this directly
corresponds to the ‘Herringbone’ stoichiometry, which explains the
agreement in the periodicity of reconstruction. Exceeding 0.5 ML of
adatoms into the ‘vacancy-rich’ domain, we observe a continued
reductionof the spatial extent of the reconstructeddomains, until 0.95
ML adatoms are introduced (or equivalently 0.05 ML of vacancies).
Ultimately, reconstruction is only observed on the 0.95 ML surface
when tensile strain of 1.0% or higher is employed, along either lattice
direction, or isotropically. This result differs slightly from the pristine
Au(111) surface in Task 1 without defects, where reconstruction only
occurred under isotropic tensile strain of 1.5% and 2.0%, so the inclu-
sion of vacancies allows for reconstruction to appear under a broader
range of boundary conditions. In effect, the presence of defects lowers
the nucleation free energy barrier for reconstruction, as evidenced by
the extent of reconstruction provided here.

Theseobservations hold immediate experimental relevance, since
pretreatment of Au single crystals typically include a ‘cleaning’ pro-
cedure, e.g., where Ar gas is used to sputter the surface, ultimately
creating vacancies, or an ion beam is used to deposit Au atoms onto
the sample as prepared. Hence, our MLFF allows for atomistic under-
standing of the effects of surface stoichiometry and mechanical sti-
mulus on the resulting mesoscopic reconstruction, which can help
inform and explain the effects of these experimental surface science
procedures and underlay the sensitivity of surface reconstruction
kinetics and thermodynamics to the surface conditions.

Influence of temperature on stoichiometric Au(111)
Experimental studies of Au single crystals typically follow cleaning
procedures with annealing and quenching protocols to allow the sys-
tem to minimize its energy. Hence, we also consider the effect of
temperature applied to the perfectAu(111) surface, the results ofwhich
are provided in Fig. 3. The ‘Herringbone’ reconstruction was only
observed after 500K was reached during annealing, a snapshot of
which is shown in Fig. 3a. Reconstruction is observed at all tempera-
tures above 500Kuntil surfacepre-melting,whichweobservewithour
potential at 800K. Surface pre-melting and loss of order at a lower
temperature than experiment (≈950K44) can be explained by the
underestimation of the Au force constant and lattice parameter via
employment of the PBE exchange correlation functional to generate
the ab initio training set, as has also been observed for NP melting
point determinations made by Zeni et al.39. We leave a systematic
investigation of stability and kinetics of reconstruction as a function of
temperature to a future work.

Nucleation and kinetics of reconstruction
An advantage of our ML-MD approach is that it can be used to directly
probe the nucleation time-scales of reconstruction across the wide set
of stimuli. An exampleof this is shown in Fig. 3b for the twosimulations
which exhibited reconstruction in Task 1. Hence, we can determine the
time-scale of reconstruction, as well as the influence of applied tensile
strain. Here, the fully reconstructed facet appears within 400 ps for
2.0% strain, and within 1.5 ns for 1.5% strain. Visualization of the atomic

Table 1 | Energy comparison of the striped Au(111)-‘Herring-
bone’ reconstructed facet versus pristine Au(111) at different
values of isotropic strain

Striped Au(111)-‘Herringbone’ Au(111)

Isotropic strain E per atom (eV) γ (eVnm−2) E per atom (eV) γ (eVnm−2)

−2.0 −3.1895 5.0375 -3.1830 4.7713

0.0 −3.1932 4.1937 -3.1850 4.3182

+2.0 −3.1859 5.2549 -3.1761 5.2923

Fig. 3 | Appearance of Au(111) reconstructions under temperature and
nucleation kinetics. a Final snapshot of the 500 K simulation in Task 3 following
the 20Kns−1 quench back down to 300 K. b Number of HCP atomic environments
as a function of simulation time in Task 1, from which the total time-scale of
reconstruction can be determined. c–e Snapshots of the nucleation center(s) pre-
dicted by the MLFF for reconstruction of the stoichiometric Au(111) surface under
2.0% isotropic tensile strain.
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environments at the nucleation point is also provided for the simula-
tion employing isotropic tensile strain of 2.0%, where growth of the
reconstructed phase occurs over the course of ≈200ps, the snapshots
of which are included in Fig. 3c. From these snapshots, clusters of
atoms differing from the original FCC symmetry can be identified,
which then begin to grow over a period of ≈ 20 ps. Only once the
growth has reached a critical surface area, do HCP domains begin to
appear. We do not permit an extended focus on the study of nuclea-
tion phenomena here, but note that this method can be used to make
such determinations, which may be the subject of future investiga-
tions. As for Simulation Tasks 2 and 3, nucleation snapshots are not
provided, since nucleation was observed to happen immediately (i.e.,
during structural optimization) across almost all simulations, indicat-
ing a negligible nucleation barrier. Hence, our MLFF is able to provide
direct atomic insights into the nucleation phenomena that ultimately
result in these mesoscopic reconstructions, which have not been
previously possible to obtain.

Surface phase stability and kinetic regimes
An important take-away from this work is that BayesianMLFFs are key
enablers to survey surface reconstructions without bias, including
kinetic and thermodynamic aspects. Importantly, one can now use

direct ML-MD to determine surface phase stability with respect to
several variables. An important observation from these simulations,
corroborating this statement, is the appearance of spinodal decom-
position patterns on the Au(111) surface at a range of concentrations
of adatoms. In addition to the full ‘Herringbone’ reconstruction,
which was captured at the scale of ≈330,000 atoms in Fig. 4a,
whereas Fig. 4b, c provide simulation snapshots at varying adatom
coverages and applied strains. In Fig. 4b, spinodal decomposition is
observed, with the adatoms shown in blue, and the other surface and
subsurface atoms colored by PTM in OVITO. These simulations were
both initialized by randomly placing adatoms, which then quickly
diffuse and agglomerate into nanoscale interdigitated networks of
islands within 1 ns that remain stationary throughout the entire
subsequent simulation. A more complete set of these results for
spinodal decomposition is provided in Suppl. Fig. 4, specifically for
the Au(111) surface across 0.1–0.9 ML of adatoms, without applied
mechanical strain. The structure and nanometer length scale of spi-
nodal decomposition structures shown in Fig. 4c agree remarkably
well with experimental STM work by Schuster et al.20. Our simula-
tions not only quantitatively capture experimentally observed pat-
terns but also provide mechanistic and time scale details of their
formation and response to strain.

Fig. 4 | Full mechanistic understanding of Au(111) reconstructions. a Snapshot
of the Au(111)-‘Herringbone’ reconstruction from a simulation containing ≈ 330,
000 atoms, where the atoms are colored using the PTM method in Ovito. Again,
red denotes HCP and green denotes FCC packing of the surface atoms, and the
orthogonal surface vectors are provided. An experimental STM image is provided
as an inset; adapted with permission from ref. 38 (Copyright 2023 American Che-
mical Society). b Spinodal decomposition for 0.5 ML adatoms on the Au(111) sur-
face under compressive and c tensile strain. Adatoms are colored blue, and PTM is
employed to distinguish if and where reconstruction occurs, using the same color
scheme as in a. d Snapshots for 0.5 ML, e 0.7 ML, and f 0.8 ML adatoms on Au(111)
with no applied mechanical strain from both ML-MD and scanning tunneling
microscopy (STM) images, adapted with permission from ref. 20 (Copyright 2003

American Physical Society). g–k Qualitative schematic detailing the energy land-
scape accessible to adatoms as in i at the onset of these simulations, where they can
incorporate into the surface as in g and h, prompting reconstruction, the barrier of
which and thermodynamic preference of which are both influenced by applied
mechanical strain. On the other hand, the adatoms can diffuse with essentially no
barrier to quickly form islands by spinodal decomposition as in j, where the edge
atoms can then incorporate into the subsurface to prompt reconstruction as in
k, the barriers and thermodynamic minima of which are again both influenced by
applied mechanical strain. The rightmost image is cut to show the subsurface
composition of atomic environments, primarily FCC, but HCP in the immediate
subsurface atomic layer, denoting the presence of reconstruction near the Au-
adatom island.
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By visualizing these simulations with PTM, we can make conclu-
sions about the appearance of reconstruction in accordance with the
spinodal decomposition patterns that appear. The ‘Herringbone’
reconstruction primarily occurs in the exposed terrace, as shown by
the red patches in Fig. 4c, where small patches of HCP envrionments
also appear underneath the islands. Conceivably, the atoms at the
edges of the agglomerated islands are responsible for nucleating the
reconstruction, and the number of these environments and their
ability to drive such processes depends on the total adatom coverage,
as does the fraction of the exposed surface that is able to reconstruct.

These mesoscale considerations also explain the previously dis-
cussed results in Fig. 2b, mainly with respect to the reduction of
reconstruction amounts at increasing adatom coverage. We use Fig. 4d
to illustrate these details in the context of the role of adatoms. As
illustrated in the center of this schematic, randomly placed adatoms are
used to initialize our simulations, which can either incorporate into the
surface layer, or diffuse along the surface and agglomerate to form
small islands via spinodal decomposition. The preference to go towards
incorporation or agglomeration is influenced by the local stoichiometry
of the surface, as well as the applied strain. If tension is applied and
there is a dilute coverage of adatoms, the barrier for incorporation into
the subsurface is reduced, allowing for the system to quickly approach
the ‘Herringbone’ stoichiometry, and reduce the high energy of the
adatom from its initially low-coordination environment. On the other
hand, if adatom coverage is high, wherein island on the surface are not
at the right stoichiometry and have limited responses to tension, or
compressive strain in applied, there is a higher preference for the
adatoms to agglomerate, which also reduces the high energy of the
adatom from its initially low-coordination environment.

Hence, we have demonstrated the ability of our MLFF and its use
in large-scale ML-MD simulations to study the previously inaccessible
coupled effects of mechanical strain and surface adatom/vacancy
concentration on the emergence of surface reconstruction. From
these simulations, both nucleation kinetics and fully atomistic
mechanisms were uncovered, allowing for improved design of mate-
rials important for catalysis and other applications.

Au(100)-‘quasi-hexagonal’ reconstruction
Additionally, we considered the Au(100) facet which, likewise to
Au(111), has been shown to reconstruct under inert experimental
conditions45,46. Hence, a similar approach was employed, where the
effect of strain was first investigated for reconstruction of the stoi-
chiometric facet, the results of which are summarized in Fig. 5. We
make an explicit note here that the color scheme used for the analysis
of each surface is unique, so the color assignments should not be used
across facets of different symmetry. For example, the HCP environ-
ments which are denoted using the color red and the atoms in Fig. 5
should not be interpreted in the same fashion, and these differences
are made explicit in the caption of each figure.

Reconstruction of stoichiometric Au(100) surface is observed in
Fig. 5a, and occurs almost immediately following equilibration during
ML-MD at 300 K. Stripes appear, denoting appearance of the ‘quasi-
hexagonal’ reconstruction, with (N × 5) periodicity as inferred by the
atomic heights of the surface layer. This explicit periodicity is not
immediately obvious via visualization of Fig. 5a, but is clear in Fig. 5f
when isotropic compression of 1.5% is applied to the cell. Here, a single
reconstructed domain can be observed after 10 ns of ML-MD that
exhibits a periodicity of (5 × 20), as has been determined experimen-
tally, and is shown in 5b from ref. 47. For nearly all of the simulations
that fully reconstruct, orthogonal stripes of these close-packed
reconstructed domains appear along the ½01� 1� and [011] lattice
directions, which are qualitatively consistent with the high-resolution
STM results presented in48.

An important observation is also made with respect to this
reconstruction being localized to the surface atomic layer, as shown in

Fig. 5c, where only the surface atoms are shownwith low-coordination
change from their simple cubic termination to ‘quasi-hexagonal’. This
snapshot is taken from the same simulation frame as in Fig. 5a, and is
on the same color-scale, but the surface atomic-layer has been
removed to directly visualize the subsurface atoms. Atoms directly
underneath the surface layer from Fig. 5a retain their simple-cubic
packing, while atoms that become exposed due to the appearance of
‘vacancy-pits’ reconstruct in the same ‘quasi-hexagonal’ fashion as the
removed surface layer. Hence, the coordination number of atoms on
the Au(100) surface is a vital factor that controls the appearance of
reconstruction, without the need for inclusion of adatoms, vacancies,
strain, or temperature, pointing to the absence of a nucleation barrier,
unlike the pristine Au(111) surface.

Likewise to the Au(111) surface, however, high values of com-
pressive strain kinetically hinder reconstruction. Tensile strain, on the
other hand, results in a drastic change of the surface morphology,
leading to the appearance of ‘vacancy-pits’ on the surface, denoted by
blue splotches (i.e., removal of surface layer density, since the recon-
structed domains have higher packing density). These are observed in
both tensile and compressive simulations, with both anisotropic and
isotropic directions of strain, however their surface area increases
drastically when the simulation cell undergoes tensile deformation.
The effect of strain on this reconstruction has not been as rigorously
investigated for the Au(111) surface, so these results need to be vali-
dated by future experimental queries.

Au(110)-‘Missing-Row’ reconstruction
To round off the set of Au low-index surfaces, we also considered
Au(110), which has also been shown to reconstruct at room tempera-
ture under inert conditions to yield the (1 × 2) ‘Missing-Row’
reconstruction11–13. Other periodicities have also been observed,
namely the (1 × 3)49, and (1 × 4)50 reconstructions. With this context in
mind, this surface was studied in a similar fashion to Au(111), where the
coupled effects of strain and stoichiometry were considered. The
influence of defects was deemed necessary to initialize the ML-MD
simulations for this system since the stoichiometric Au(110) surface
requires a substantial rearrangement of the atoms to provide the
correct atomic ordering of the reconstructed phase. This is due to the
high kinetic barriers to form the ‘Missing-Row’ Au(110) surface from
the pristine facet, confirmed by long time-scale simulations at 300 K
that did not exhibit reconstruction on the order of 10 ns. These results
are provided in Fig. 6.

Ultimately, the ‘Missing-Row’ reconstruction was observed, as
shown in Fig. 6a, b, denoted by bright red streaks coupled with bright
blue streaks and a periodicity of (1 × 2). This simulation was initialized
via random removal of 0.5 ML of surface atoms, and then allowed to
evolve at 300K. We also considered the entire concentration range of
0.1–0.9 ML of adatoms, snapshots of which are provided in Fig. 6c.
Likewise to the Au(100) system, the atoms are colored by their heights
in the surface-normal direction. Briefly, the ‘ridge’ features at greater
heights (in bright red) of the reconstruction for the stoichiometric
facet (0.5ML) aremore easily observedwhen tensile strain is applied to
the system, whereas compression leads to less obvious patterns. An
assessment of nucleation and timescales is not considered for this
surface, given the enormous number of ‘defect’ environments. Hence,
defining a time-scale for nucleation is thus not straightforward and left
for a future investigation.

Surface reconstruction on nanoparticles
Lastly, we used the same MLFF model to study reconstructions on a
variety of surface structures present on NPs. These systems include
multiple facets, combined with edges, vertices, and non-FCC bulk
environments (e.g., HCP or icosahedral). Notably, surface reconstruc-
tions of NPs provide a more difficult simulation task than the pre-
ceding extended terraces due to the variety of environments and the
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large number of atoms needed to represent the NP structures. To limit
the breadth of structural motifs to consider in this regard, three high-
symmetry NP shapes were chosen: an icosahedron, cuboctahedron,
and ino-truncated decahedron, each of which exhibits (111), (100), or a
combination of these surface facets. All particles considered here are
free-standing and all NP simulations were kept at 300 K to allow for
comparison with the low-index flat surfaces. Figure 7 provides snap-
shots of the initial particle shapes following structural minimization
within LAMMPS, and the final structures of 104,223-atom NPs after 10
ns of ML-MD simulation, the conclusions from which are discussed
below. This is another demonstration of the capabilities of Bayesian
MLFF simulations, compared to earlier studies, which were limited by
the aforementioned inabilities of previous interatomic potentials in
correctly describing nanoparticle structures and their surface
dynamics simultaneously.

Exclusive (111) faceting on an icoshedra
Starting with the icosahedron, as shown in Fig. 7a–c, all exposed facets
are (111), separated by edges and internal bulk domains of HCP-pack-
ing, the latter seen as red atoms in Fig. 7b,c. Following 10 ns ofML-MD,
as shown in Fig. 7b, c, however, each facet contains streaks of HCP

domains, indicative of ‘Herringbone’-like surface reconstructions. This
suggests that even in the absence of explicitly created ‘defective’
atomic environments, like those observed for the flat periodic Au(111)
surfaces, the (111) surfaces of the NP are able to reconstruct readily at
300 K, since the appearance of the HCP domains in the subsurface of
each (111) facet of the particle denotes reconstruction of the surface
layer of atoms. Upon closer inspection of the ML-MD trajectories that
connect the left and right snapshots of Fig. 7a–c, we can conclude that
this is due to the presence of edge and vertex atomic environment of
the NP, which exhibit small displacements and rounding during
simulation, indicative of atoms being incorporated into the surface
planes of each (111) facet to induce reconstruction. This is an important
observation, as these domains would likely influence the adsorption
motifs of reactive species in catalytic settings. This hypothesis will be
tested in a follow-up investigation via augmentation of the MLFF
training set to also include adsorbates.

Cuboctahedra with (111) and (100) faceting
We then shift our attention to the cuboctahedral particle displayed in
Fig. 7d–f. Here, we make observations in line with the (111) facets on
extended terraces and the preceding icosahedron, which are shown to

Fig. 5 | Au(100)-‘quasi-hexagonal’ reconstruction. a Final snapshot of the
Au(100) surface following 10 ns ML-MD at 300K with no strain applied. Atoms are
colored by their height in the surface-normal direction, where blue denotes atoms
in the subsurface atomic layer, and red denotes atoms in the surface atomic layer.
b Experimental STM image of the reconstructed Au(100) surface, adapted with

permission from ref. 64 (CC BY 4.0). c Snapshot of the same surface in a, but the
surface layer is removed to view the subsurface atoms and their registry with the
bulk (i.e., they retain simple-cubic packing). d–f Final snapshots of the strained
Au(100) surface simulations along ½01� 1� and [011] lattice directions starting with
the stoichiometric surface.
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reconstruct in a similar manner. Interestingly, the (111) facet of the
cuboctahedron exhibits reconstructed domains immediately after
geometric relaxation of the NP. This observation partially confirms our
edge-atom nucleation hypothesis from the case for the icosahedron,
where edge atoms incorporated into the bordering (111) surface planes
to promote reconstruction. This can be directly observed in the left
snapshotof Fig. 7f, whereHCPdomains emanate fromeachedgeof the
facet, and slight distortions of the atomic positions of the edge
environments can be seen. Thesepartially reconstructeddomains then
aggregate once the system evolves during ML-MD, to yield one large
HCP domain and a small artifact near one of the edges, as observed in
the final snapshot of the system.

Dissimilar from the icosahedron, the cuboctahedron also exhibits
(100) facets that border the (111) facets on each edge. Unlike the (111)
facets, which reconstruct immediately, the (100) surfaces reconstruct
only after the system evolves during production ML-MD at 300 K.
Similar observations are made with respect to the Au(100) extended
terrace discussed previously, where streaks of hexagonal, close-
packed atoms appear, shown in Fig. 7e. The ‘quasi-hexagonal’ recon-
struction is again confirmed to be limited to only the surface atoms, as
the subsurface atomic layer remains in registry with the FCC-stacking
of the bulk.

Ino-truncated decahedra with (111) and (100) faceting
Lastly, we consider the ino-truncated decahedral NP, which exhibits
both (111) and (100) facets like the cuboctrahedron, but with edge
environments that are different than the cuboctahedron due to par-
ticle symmetry. In the cuboctahedron, the (111) facets are only sur-
rounded by (100) edges, whereas (111) facets on the ino-decahedron

share edges with both (111) and (100) facets. Similarly, however, bright
red reconstructeddomains are immediately observedonall (111) facets
on the particle following structural minimization. Again, this is
explained as originating from the edge atomic environments along the
(100) facet, which relax into the (111) surface. This observation corro-
borates what was seen for the cuboctahedral particle, where these
(111)-(100) edge environments immediately nucleate the ‘Herring-
bone’-like reconstruction on the (111) facet. These reconstructions also
retain the symmetry of the particle, being five-fold along the high-
symmetry axis, and do not evolve away from this state during pro-
ductionML-MDas shown in Fig. 7i. Likewise to the cuboctahedron, the
(100) facets remain largely unaffected following minimization, exhi-
biting their initial simple-cubic packing, but once the systemevolves in
production ML-MD, each reconstructs to yield ‘quasi-hexagonal’
domains of (N × 5).

Discussion
An interesting and nontrivial finding from this work is that the
observed mesoscopic reconstructions are several tens of nanometers
in length, but can be predicted by our ML-MD simulations based on
MLFF which employs a descriptor cutoff of 6Å. To illustrate further
why this finding is important, consider the fact that the Au(111)-‘Her-
ringbone’ reconstruction has a periodicity of (22 ×

ffiffiffi

3
p

), which has a
length-scale of ≈65Å, meaning that the atomic descriptors that are
trained from ab initio data cannot observe the full periodicity of this
reconstruction but are able to simulate it regardless of this spatial
limitation. This is also corroborated by the fact that the ab initio
training set does not contain the reconstructed surface. This then
implies that the observed mesoscopic reconstructions result from

Fig. 6 | Au(110)-‘missing-row’ reconstruction. a Final snapshot of the Au(110)
surface following 10 ns of productionML-MD using a randomdeletion of 0.5 ML of
the surface atoms. Atoms are colored by height using the Ovito software41, where
red denotes a greater z-coordinate and blue denotes a lower value. Local domains
present on the surface have reconstructed to yield the `Missing-Row'-like

reconstructions, denoted by bright red streaks along the ½11̂0� lattice vector of the
cell. b Zoomed-in snapshot of the (1 × 2) reconstructed domain in a. c Final snap-
shots of the simulations underdifferent surface stoichiometries ranging from0.1 to
0.9 ML coverage of adatoms via random inclusion.
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short-range, local interactions resulting in relaxations of the atomic
structure. This result is partially corroborated by previous results by
Frenkel-Kontorova24, where they developed a ball-and-spring force
field for the treatmentof surface reconstructions. That effort sought to
explain (111) surface reconstructions using a series of one-dimensional
spring interactions between the surface atoms and the underlying
subsurface and bulk atoms. Ultimately, this local potential was able to
explain the instability of (111) reconstructions of FCC-metals platinum,
iridium, and aluminum, but ultimately failed in its predictions for gold,
due to its limited accuracy in capturing small energy differences
determining surface behavior.

This study provides a determination of quantitative time-scales
and mechanistic insight into nucleation of each of the surface recon-
structions of Au(111), Au(100), Au(110) surfaces and nanoparticles
under the coupled effects of stoichiometry, temperature, and strain.
Ultimately, defects in the surface environments are found to sensi-
tively affect surface reconstruction in a non-trivial fashion, where
adatoms, by their incorporation into the surface, promote recon-
struction regardless of strain, while vacancies allow for slight devia-
tions from the observed behavior of the pristine facets. In partially
covered surfaces, we observe systematic formation of spinodal
decomposition leading to the formation of nanoscale island networks.
We are able to quantitatively explain previous observations from
experimental microscopy in this regime and further predict that
reconstruction is primarily spatially localized in the base surface
between the islands. For the pristine surfaces, however, tensile strain
was found to be largely influential in allowing for facile reconstruction.
Moreover, we demonstrate the presence of a nucleation barrier for
reconstruction of the unstrained pristine Au(111) surface, which is not
the case for Au(100) and Au(110) or NPs. With respect to the latter,
edge environments along bordering facets of different symmetry in
nanoparticles were found to nucleate reconstruction, as was observed
for the cuboctrahedral and ino-truncated decahedral particles.
Enabling this analysis is the development of a Bayesian force field from
ab initio data that is able to reveal the atomisticmechanisms of surface

reconstructions using large-scalemolecular dynamics simulations. We
find that only short-range many-body interactions are sufficient to
accurately produce a wide array of even long-range reconstruction
patterns. Hence, this work establishes the ability and utility ofmachine
learning driven dynamics simulations for directly capturing large
length-scale and time-scale dynamics of metal surface reconstructions
with minimal human input, thus providing direct insight into subtle
interactions and surface restructuring mechanisms. This work enables
future investigations of scientifically and technologically important
effects of temperature, strain, defects and molecular adsorbents on
surface structure evolution, opening possibilities of rational design of
heterogeneous catalytic and nano-scale devices.

Methods
Active Learning with FLARE
The Bayesian active learning module within the Fast Learning of Ato-
mistic Rare Events (FLARE) code is described in detail in refs. 7,51.
FLARE is open-source and available at the following repository: https://
github.com/mir-group/flare. Briefly, atomic environments are descri-
bed using the atomic cluster expansion from Drautz (ACE)52 Sparse
Gaussian process kernel regression is employed to compare atomic
descriptors, providing an inherent mechanism to quantify uncertain-
ties of these environments, which are used during the active learning
simulation to select ab initio training data ‘on-the-fly.’ Thus, atomic
environments are only added to the sparse set of the Gaussian process
if their relative uncertainties are higher than a predefined threshold,
which is set by the user, allowing for fast sampling and collection of
high-fidelity DFT frames. Reference 36 contains a schematic of the
FLARE active learning framework employed here, where each simula-
tion is initialized using a given structure and computing atomic
properties using the Sparse GP model.

Since the sparse set of the GP is initially empty, all atomic envir-
onments are determined to be high-uncertainty at the start of each
active learning trajectory, and DFT is called. The threshold for calling
DFT was set to 0.01 in most cases. This value for the threshold

Fig. 7 | Snapshots of the initial (0ns) andfinal (10ns) geometries of threeAu-NP
shapes. a Au104223 icoshedron, where all surfaces exhibit (111) faceting. b, c Atoms
are colored by their environment using the PTM method provided in the Ovito
software41, where red denotes HCP- and green denotes FCC-packing. d–f Au104223
cuboctahedron, where the surface area is divided between (100) and (111) facets.

e Atoms are colored by their height using Ovito or using the PTM scheme in f.
g–i Au104223 ino-truncated decahedron, which also exhibits both (100) and (111)
surfaces like the cuboctahedron. h, i employ the same coloring schemes as the
cuboctahedron.
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represents the uncertainty of a given atom relative to the mean
uncertainty of all atoms in the system. Consequently, a call was made
to the Vienna ab initio Simulation Package (VASP, v5.4.4)53–56, where
DFT training labels were generated for the structure. The DFT para-
meters employed for each system are provided in the next section. A
separate threshold was employed to determine how many atoms
should be added into the sparse-set following each DFT call, and was
set to be ≈20% of the DFT threshold. The magnitudes of these
thresholds are important parameters that can be tuned by the user, as
a smaller sparse-set threshold will add more atomic environments for
each DFT call, which could result in the SGP being dominated by non-
unique environments. Conversely, setting this value too high (with the
limit being a 1:1 match with the DFT threshold) will result in only a few,
or even just a single atombeing added to the sparse set for every call to
DFT. When the thresholds are chosen correctly, this method is much
more efficient than ab initioMD, where a DFT calculation is required at
every time-step (Δt = 5 fs in this case). The atomicpositions in the initial
frame of each simulation were randomly perturbed by 0.01 Å.

Once high-uncertainty atomic environments were selected from
the DFT frame and added to the sparse-set, the SGP was then re-
mapped onto a lower-dimensional surrogate model and the system
was allowed to continue in the ML-MD simulation. Atom positions
were then updated with respect to forces using the LAMMPS Nosé-
Hoover NVT ensemble until another atomic environment was deemed
as high uncertainty by the SGP. The FLARE hyperparameters (signal
variance σ, energy noise (σE), force noise (σF), and stress noise (σS))
wereoptimizedduring eachactive learning training simulationupuntil
the 20th DFT call. Each optimization step was allowed to run for a total
of 200 gradient descent steps, which was sufficient for hyperpara-
meter convergence. The priors assigned to each hyperparameter were
set to empirical values observed previously for bulk Au FLARE B2
models30, specifically: 3.0, 0.001Natoms (eV), 0.1 (eV Å−1), and 0.001 (eV
Å−3), respectively. The exact values of these priors are not crucial in the
FLARE framework, since hyperparameter optimization is performed
and they then become dominated by training data once a sufficient
number of DFT calls and subsequent optimization steps have been
made. Each of the low-index Au-surfaces were considered during
parallel active learning simulations, aswell as bulk Auwith andwithout
tensile and compressive strains and nanoparticles of various sizes. A
summary of these systems and their active learning results are pro-
vided in Suppl. Note 1.

Following completion of the set of parallel active learning trajec-
tories, all of the DFT frameswere collected, fromwhich the final FLARE
MLFF was trained. MLFF training followed the same selection proce-
dure for atomic environments as described above, where atomic
environments were selected based on their relative uncertainties,
without performing any molecular dynamics, referred to as ‘offline-
learning.’ Subsequently, we also rescaled the energy noise hyper-
parameter of the resulting MLFF to account for multiple systems of
different sizes and structures being included in the training set. This
hyperparameter describes the noise level of the energy labels of the
training dataset, and can get trapped in the local minima during the
optimizationwhich affects themodel accuracy. Therefore, we rescaled
noise hyperparameter of energy labels to 1 meV per atom, which did
not influence the force or stress hyperparameters.

For each of the parallel active learning trajectories, as well as the
final offline-training, the B2 ACE descriptor was employed, main-
taining consistency in notation with Drautz52. By taking the atomic
descriptor to the second power, this accounts for ‘effective’ 5-body
interactions within each descriptor, which are sufficiently complex
for describing Au with high-accuracy30. To explore the effect of static
model parameters, 5 frames from a Au(111) active learning trajectory
were used as a training set, the remaining frames as the test set, to
perform a grid-search. Ultimately, a radial basis (nmax) of 8, angular
basis (‘max) of 3, and a cutoff radius (rcut) of 6.0 Å were found to

increase the log-marginal likelihood to a maximum value while
reducing the energy, force, and stress errors to their respective
minima. These results are also consistent with those determined
previously for Au from the TM23 dataset30. Parity and the associated
errors between the final MLFF and DFT on energy, force, and stress
predictions are provided in Suppl. Fig. 3, along with several other
validation protocols.

Density functional theory
The Vienna ab initio Simulation Package (VASP, v5.4.453–56) was
employed for all DFT calculations performed within the FLARE active
learning framework and subsequent validation steps. All calculations
used the generalized gradient approximation (GGA) exchange-
correlation functional of Perdew-Burke-Ernzerhof (PBE)57 and
projector-augmented wave (PAW) pseudopotentials. Semi-core cor-
rections of the pseudopotential and spin-polarization were not inclu-
ded for Au. A cutoff energy of 450eV was employed, with an artificial
Methfessel-Paxton temperature58 of the electrons set at 0.2 eV for
smearing near the Fermi-energy. Brillouin-zone sampling was done on
a system-to-system basis, using k-point densities of 0.15Å−1 for peri-
odic systems and Γ-point sampling for the NP systems.

Production ML-MD simulations
ML-MD simulations were performed using a custom LAMMPS59

pairstyle compiled for FLARE31. GPU accelerationwas achievedwith the
Kokkos performance portability library60, the performance of which
for FLARE has been detailed elsewhere31. All simulations employed the
Nosé-Hoover NVT ensemble with a timestep of 5 fs, which is appro-
priate for the mass of Au39. Velocities were randomly initialized for all
simulations to a Gaussian distribution centered at 300K. Each slabwas
built using the minimized lattice constant of Au, as predicted by the
FLARE MLFF (4.16Å) in the Atomic Simulation Environment61. To
ensure that subsurface atoms were in registry with the bulk crystal
structure, the bottom two layers of each slab were frozen, using the
LAMMPS ‘set_force’ command to constrain the forces on these atoms
to zero throughout the course of each simulation. Once each system
was equilibrated over the course of 100 ps, dynamics were then
observed at 300 K for a total of 10 ns, and thermodynamic and posi-
tional information was dumped every 1 ps. This dumping frequency
was chosen specifically to allow for mechanistic study of each trajec-
tory. All simulations at higher temperatures were initialized for 100ps
at 300K, then the temperature was increased linearly at 20 K per ns
until the desired temperature.

To explore the conditions that nucleate reconstruction, several
modifications to each surface slab were also introduced. Point defects
were included via random deletion of atoms in the top-most surface
layer. Compressive and tensile strains were also introduced to both
perfect and defective Au slabs using the LAMMPS ‘change_box’ com-
mand. All production ML-MD trajectories were analyzed with the
OVITO software41.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available via the
Materials Cloud Archive62,63 and from the corresponding authors upon
request.

Code availability
An open-source implementation of the FLARE code is available at
https://github.com/mir-group/flare and the snapshot release for the
code used in this work is provided at https://github.com/mir-group/
flare/releases/tag/1.3.0.
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