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An artificial visual neuron with multiplexed
rate and time-to-first-spike coding

Fanfan Li1,2,7, Dingwei Li2,7, Chuanqing Wang3,7, Guolei Liu2, Rui Wang4,
Huihui Ren2, Yingjie Tang 2, YanWang 2, YitongChen2, Kun Liang2, Qi Huang5,
Mohamad Sawan3,5,6, Min Qiu 2,5,6, Hong Wang 4 & Bowen Zhu 2,5,6

Human visual neurons rely on event-driven, energy-efficient spikes for com-
munication, while silicon image sensors do not. The energy-budget mismatch
between biological systems and machine vision technology has inspired the
development of artificial visual neurons for use in spiking neural network
(SNN). However, the lack of multiplexed data coding schemes reduces the
ability of artificial visual neurons in SNN to emulate the visual perception
ability of biological systems. Here, we present an artificial visual spiking neu-
ron that enables rate and temporal fusion (RTF) coding of external visual
information. The artificial neuron can code visual information at different
spiking frequencies (rate coding) and enables precise and energy-efficient
time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme
could improve the computing capability and efficacy of artificial visual neu-
rons. A hardware-based SNN with the RTF coding scheme exhibits good con-
sistency with real-world ground truth data and achieves highly accurate
steering and speed predictions for self-driving vehicles in complex conditions.
The multiplexed RTF coding scheme demonstrates the feasibility of devel-
oping highly efficient spike-based neuromorphic hardware.

The human eye can quickly and efficiently perceive visual information
in complex environments, including target feature extraction and
classification1–5. In human visual sensory transduction, sensory neu-
rons encode visual stimulus information into event-driven neural
spikes and transmit this information to the brain for perception. These
neural spikes are encoded with multiplexed spatial-temporal infor-
mation, representing individual visual stimulus variables with rich
features and high efficacy6–9. For example, stronger light stimuli could
lead to both a higher firing frequency (rate coding) and a shorter
latency for the first spike after the stimulus (time-to-first-spike,
TTFS)10,11. Rate coding is a basic neural coding mechanism in which
retinal stimuli are encoded based on the number of spikes that occur

during a certain encoding window; however, rate coding cannot pro-
vide efficient temporal information or sufficient features to fully
represent the stimulus12. On the other hand, TTFS coding (latency
coding) is a fast temporal encoding method with robustness to noise
and the highest efficiency in terms of spike counts, in which the sti-
mulus onset is precisely ‘locked’ to the first spike time4. Thus, TTFS
coding is superior to rate coding andmore reliable in urgent situations,
such as obstacle avoidance and threat or ally recognition13. With
complementary rate and TTFS coding, the natural visual system can
efficiently process complex visual information within 150ms14.

In comparison, complementary metal‒oxide‒semiconductor
(CMOS) image sensors work according to a frame-driven approach
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with high energy budgets15. The large mismatch between natural and
machine visual efficacies has inspired the development of artificial
visual neurons, which can encode visual information into binary spike
trains and be implemented in spiking neural networks (SNN) to pro-
cess visual data with high efficiency and high biological fidelity16–19.
Rate coding is commonly used in SNN to represent the intensity of
external stimuli; however, this approach cannot provide sufficient
temporal information, and the processing speed is limited by the
average firing rate20–23. In contrast, TTFS coding, which resembles
natural vision, can provide important spatiotemporal information for
the implementation of SNN to process dynamic visual data with high
sparsity and high energy efficiency. Hardware-based SNN with TTFS
coding is more efficient than SNN with rate coding, demonstrating
faster speed and reduced energy consumption24–27. Although precise
temporal encoding has been achieved in artificial visual neuron sys-
tems, fusing rate and TTFS coding in a single spike train has not yet
been realised in SNN hardware, compromising the capacity of such
networks to rapidly and accurately process visual data in complex
visual environments28–35.

Here, we report a biomimetic artificial spiking visual neuron that
can encode analogue visual stimuli into relevant spike trains with both
rate andTTFS coding. The artificial neuron integrates an In2O3 synaptic
phototransistor and an NbOx Mott memristor, which resemble biolo-
gical photoreceptors and retinal ganglion neurons, respectively. With
the integration of rate and TTFS coding, the biologically plausible
artificial neuron can emulate natural vision. Stronger light intensity
leads to incrementalfiring rates (from0.35 to 1.85MHz) and shortened
first-spike arrival times (or spike latency, from 13.00 to 1.04μs), out-
performing biological counterparts in terms of spiking frequencies
(0–100Hz) and first spike latencies ( ≥ 10ms). High-frequency event
spikes can convey more information in a shorter time, allowing the
system to quickly make decisions and execute responses. Moreover,
with energy-efficient TTFS coding, the artificial visual neuron can
rapidly and precisely detect and encode temporal changes in external
stimuli, which is useful in applications requiring high temporal reso-
lution. Furthermore, the artificial neuron is small (the Mott memristor
has an active area of 7 × 7μm2), durable (1010 operating cycles), and
consumes a low energy of less than 1.06 nJ per spike to accomplish
complementary rate and TTFS coding without the need for auxiliary
reset circuits. Finally, we implement complementary rate and TTFS
coding in a trained SNN, which provides more channels for informa-
tion to be transferred and further improves SNN efficiency. The SNN
can predict the speed and steering angle of autonomous vehicles in
complex environments with a low loss function of < 0.5. Our results
prove that SNN with the proposed rate-temporal fusion (RTF) encod-
ing scheme can enhance the efficacy of artificial vision with a biologi-
cally plausible approach.

Results
Biomimetic signal encodingwith artificial spiking visual neurons
An overview of the artificial spiking visual neuron capable of both rate
and TTFS coding is shown in Fig. 1. Figure 1a shows a schematic of a
retina composed of photoreceptors, synapses, and neurons. In natural
visual transduction, photoreceptors detect external optical signals and
transform them into graded potentials. These potentials influence
synaptic plasticity and thus play critical roles in learning and memory.
Subsequently, retinal ganglion cells, acting as neurons, encode the
processed graded potentials from synapses as electrical spikes, which
are action potentials that convey information to the brain for further
processing. As shown in Fig. 1b, in rate coding, stronger stimuli lead to
higher firing frequencies in an encoding window and vice versa.
Moreover, stronger light stimuli lead to shorter latencies for the first
neuron spikes and vice versa (TTFS coding). Furthermore, increasing
the input synaptic weights can increase the membrane potential,
allowing neurons to rapidly reach or exceed the threshold for spike

firing. Thus, neurons fire at higher frequencies and emit their first
spikes more quickly.

To emulate the visual phototransduction process, our artificial
spiking visual neuron device is composed of an In2O3 optoelectronic
synaptic transistor and an NbOx Mott spiking neuron (Fig. 1c). As
shown in the schematic (Fig. 1d), the In2O3 synaptic transistor enables
optoelectronic synaptic plasticity, and the NbOxMott neuron encodes
the received optoelectronic signals as stimuli-related electrical spikes
via multiplexed RTF coding. The spiking visual neuron is activated
when the excitatory postsynaptic potential reaches a threshold. With
the RTF encoding scheme, the artificial neuron can rapidly and effi-
ciently represent rich stimulus characteristics.

Electrical characteristics of artificial neurons andoptoelectronic
synapses
Threshold switching (TS) NbOx Mott memristors based on insulator-
to-metal transitions (IMTs) can emulate the high-order neural
dynamics of biological neurons36–39. The fabricated NbOx memristor
had a crossbar structurewith an active area of 7 × 7μm2 (see “Methods”
for the details of the fabrication processes). A cross-sectional trans-
mission electronmicroscopy (TEM) image of the device is presented in
Fig. 2a. The stacked layer-by-layer Pt/Ti/NbOx/Pt/Ti films were con-
firmed. Notably, a nanoscale crystalline region is observed in the high-
resolution TEM (HRTEM) image after the initial formation process,
corresponding to the NbO2 tetragonal structure (Supplementary
Fig. 1). The NbOx layer in the pristine film is amorphous, and its stoi-
chiometrywasdeterminedbyX-rayphotoelectron spectroscopy (XPS)
(Supplementary Fig. 2). The formed NbOx memristors exhibit volatile
TS characteristics (Supplementary Fig. 3).

Figure 2b shows the typical current-voltage (I-V) curves of the
NbOxmemristor with TS characteristics (Fig. 2b). The device exhibits a
transition from a high resistance state (HRS) to low resistance state
(LRS) when the applied voltage surpasses a threshold voltage (Vth) of
~1.37 V. Conversely, the device returns to its HRS when the applied
voltage is less than the holding voltage (Vhold) of ~1.17 V. In addition,
RLRS is 293.3Ω, and RHRS is 5349.5Ω. Current compliance (ICC) of 4mA
was applied to prevent permanent breakdown. The volatile resistive
switching of NbO2 occurs due to the IMT Mott transition. Corre-
spondingly, an “S”-shaped negative differential resistance (NDR)
behaviour is observed when sourcing with a current sweep (Supple-
mentary Fig. 4), which occurs due to the thermally induced changes in
conductivity36. The Mott device exhibited the best endurance perfor-
mance among various volatile TS nanodevices, and the device could
operate for more than 1010 cycles driven by consecutive electrical
pulses (Fig. 2c). Pulse operation with the endurance characteristics of
theNbOxMottmemristors is further illustrated (Supplementary Fig. 5).
In addition, the Mott transition enables the device to have a fast-
switching speed, needing < 40ns to switch from the off state to the on
state and < 50 ns to return to the off state (Supplementary Fig. 6). The
extracted coefficient of variation (Cv) values of different parameters
(Vth, Vhold, and Vforming) of 100 NbOx Mott memristors are 0.0349,
0.0303, and 0.0233, respectively, demonstrating low device-to-device
variability (Supplementary Fig. 7).

The optoelectronic synaptic transistors have a bottom gate, top
contact (BGTC) configurations with solution-processed In2O3 as the
active channel40. A cross-sectional HRTEM image reveals the presence
of an ~5-nm-thick amorphous In2O3 channel layer (Fig. 2d). The cor-
responding device-to-device variation in mobility (μsat), threshold
voltage (Vth), subthreshold swing (SS), and current on/off ratio (Ion/off)
of 100 In2O3 phototransistors with values of 0.19, 0.36, 0.21, and 0.52,
respectively demonstrate a low variability (Supplementary Fig. 7). The
In2O3 film exhibits strong ultraviolet light absorption (< 400nm), as
shown in the ultraviolet‒visible (UV‒vis) absorbance spectrum (Sup-
plementary Fig. 8). Figure 2e depicts the transfer curves of the In2O3

phototransistor under UV radiation with a wavelength of 365 nm at
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varying power densities ranging from 1.57 to 3.72mW/cm2, illustrating
significantly increased channel conductance due to the distinct UV
photoresponse of the oxide semiconductor. With these intrinsic
optoelectronic properties, the In2O3 transistor can feasibly be applied
as an optoelectronic synapse. As shown in Fig. 2f, the device was illu-
minated under UV light (365 nm, 1.71mW/cm2, 5ms, 50 cycles), and a

voltage bias (VDS = 3 V) was applied to read the change in the drain
current, which corresponds to the excitatory postsynaptic current
(EPSC). The EPSC decreased slowly over time when UV light input
ceased due to the persistent photoconductivity (PPC) phenomenon41.
With increased input UV pulses, the synaptic phototransistor showed
typical long-term plasticity (LTP) behaviour. In addition, paired-pulse
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Fig. 1 | Biomimetic signal encoding with an artificial spiking visual neuron.
a Schematic illustration of the retina, which is composed of photoreceptors,
synapses, and neurons. Photoreceptors can respond to external optical signals and
convert them into graded potentials. In synapses, synaptic plasticity is responsible
for learning and storing memories. Neurons (retinal ganglion cells) can encode
synapse-processed graded potentials as action potentials (electrical spikes) to be
processed by the brain. b Encoding of different input stimuli and synaptic weights
by time-to-first-spike (TTFS) coding and rate coding schemes in a biological spiking
visual neuron. The frequency (F) of rate coding depends on the number of spikes
(Nspikes) within the time window (Ttotal), while TTFS coding depends on the first

spike latency (T). Low stimulus input (orange) and high stimulus input (blue) along
with synaptic weights w1 (black) and w2 (purple) correspond to neural spiking
responses. c Schematic and an optical image of artificial neuron device composed
of the integrated In2O3 optoelectronic synaptic transistor and NbOx Mott neuron
(1T1R). d The optoelectronic retina enables synaptic plasticity and rate-temporal
fusion coding. Spiking sensory neurons are activated when EPSPs reach a certain
threshold. The rate-temporal fusion encoding of spiking neurons represents the
characteristics of the stimulus in real-time through the change in the first spike
latency and the spike frequency.
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facilitation (PPF), a behaviour related to short-term plasticity (STP),
was characterised by applying a pair of optical pulses (Supplementary
Fig. 9). The synaptic behaviours of the In2O3 transistors demonstrate
their applicability as optoelectronic synapses in artificial visual neural
networks.

Demonstration of rate and TTFS coding
In the natural visual neural system, neurons appear to represent
recognised features when they emit spikes6. Spike trains (action
potentials) carry information about the average firing rate and spike
time10. Figure 3a illustrates the major differences among rate coding,
TTFS coding, and RTF coding. In rate coding, the intensity of an
external stimulus is represented by the average spiking rate within a
sampling window. However, rate coding has a limited range of sti-
mulus changes, a long processing period, and slow information
transmission. In TTFS coding, a neuron encodes its real-valued sti-
mulus-induced response as its spike latency in response to that sti-
mulus. This single-spike coding scheme enables fast and sparse
information processing, and it enhances sensitivity tominor variations
in input. Thus, multiplexed neural coding schemes operating on dif-
ferent timescales can encode complementary stimulus features,
meeting the physiological constraints and reaction times observed in
humans and animals, thereby enhancing the capacity of the coding
scheme.

To emulate the multiplexed coding scheme observed in the nat-
ural visual system, we implement RTF coding in our artificial visual
neural system by utilising the spike rate and TTFS to encode visual
information. This fast and precise coding scheme could enable a bio-
logically plausible neuromorphic hardware system with high accuracy
and fast emulation of SNN. As described earlier, the NbOx memristor
and In2O3 phototransistor have time-dependent neuronal and synaptic
functionalities, respectively. The In2O3 phototransistor integrated in

series with a two-terminal NbOx memristor results in a 1-transistor-1-
memristor (1T1R) configuration that can fully represent the function-
ality of the visual neural pathway in the retina for data encoding and
processing.

The circuit schematic of the 1T1R artificial spiking visual neuron is
shown in Fig. 3b. An optical laser was used to provide light stimuli
(365 nm) for the In2O3 phototransistor. After the light stimuli was
ceased, a single electrical pulse (VDD = 3 V, 20μs width) was applied to
the drain of the phototransistor under a gate bias voltage (VG = 5 V) to
measure the encoded current pulses. The optical pulses and the drain
current (ID) were regarded as the light stimulus input and artificial
neural signal output, respectively. Due to the TS characteristics of
NbOx, self-sustained spiking can be obtained in a range of
RLRS«Rch«RHRS, where Rch is the channel resistance of the In2O3 tran-
sistor and RHRS and RLRS are the insulating and metallic resistances of
the NbOx memristor, respectively41. When VDD and VG are fixed, Rch is
determined by the parameters of the optical pulses (Supplementary
Fig. 10). The spiking behaviours of the artificial neuron can be altered
by adjusting the Rch values based on a leaky integrate-and-fire (LIF)
model, leading to different spiking durations τintegration (~RchC) (Sup-
plementary Fig. 11). With this approach, we connect the neural coding
behaviour of the artificial visual neuron to the Rch value of the series
transistor, which is configured by visual stimuli42.

Then, we measured the spike patterns generated by the spiking
neuron as a function of light intensity and pulse number. Before light
pulse illumination, initial light exposure was applied (1.57–3.72mW/
cm2, 10 s) to adjust the baseline current value to ~405μA and the Rch

value to a reference value matching the TS characteristics of the NbOx

memristor. After each test, an electrical pulse (VG: 10 V, 20μs) is
applied to the gate electrode of the phototransistor to initialise its
state. This process ensures the restoration of ionised oxygen vacan-
cies, stabilising the channel current to its initial state. Figure 3c shows
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Fig. 2 | Device characteristics of the NbOx neurons and In2O3 optoelectronic
synaptic transistors. a Cross-sectional TEM image of a NbOx Mott neuron.
b Current-voltage characteristics of a NbOx Mott neuron. c Endurance character-
istics of the NbOx Mott neuron, which can fire stably for more than 1010 cycles.
Transient electricalmeasurements show that TS is triggered by a voltage pulsewith

a width of 1μs and an amplitude of 1.60 V. d Cross-sectional TEM image of In2O3

optoelectronic synaptic transistors. e Transfer curves of the In2O3 synapse as a
function of light power density (from 1.57 to 3.72mW/cm2, λ = 365 nm). IDS versus
VG measured at a drain bias of VD = 3 V. f EPSCs (red line) of the In2O3 synaptic TFT
triggered by optical pulses (purple) (λ = 365 nm, 5ms, 5 Hz).
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the spiking behaviour of the artificial visual neuron in response to
different light intensities with a fixed pulse number of 100. The spike
frequency increased monotonically from 0.75 to 1.6MHz as the light
intensity increased from 1.57 to 3.72mW/cm2 (Fig. 3e). This behaviour
can be attributed to the light-generated photocurrent, which leads to a
decrease in Rch. Importantly, as the light intensity increased, the first
spike latencydecreased from7.29 to 1.2μs (Fig. 3f). In addition, spiking
behaviours related to the pulse number were demonstrated. Figure 3d
shows the spike patterns obtained with various optical pulse numbers
and a fixed light intensity of 1.71mW/cm2. Similarly, increasing the
optical pulse number leads to an increase in the number of

photogenerated carriers due to the optoelectronic synaptic char-
acteristics of the In2O3 phototransistor, resulting in lower Rch. As a
result, the artificial neuron has an increased spiking frequency
(0.35–1.85MHz) and a reduced first spike latency (13–1.04μs) with
increasing light pulse number (50–500), as shown in Fig. 3g, h,
respectively. Thus, the visual stimuli information was successfully
encoded into fast and precise electrical spikes via the artificial spiking
visual neuron. This resembles the behaviour of biological visual neu-
rons and demonstrates the potential of SNN with integrated rate and
TTFS coding. Meanwhile, the NbOx Mott memristor with a smaller
footprint (1μm× 1μm) and In2O3 phototransistor could be
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representations of biological neural coding models, including rate coding (blue
line), TTFS coding (purple line), and RTF coding (red line). b Schematic circuit of
1T1R synapses and neurons. The optical pulse and the current waveform were
regarded as the input and output signals, respectively. An electric pulse VDD (3V,
20μs) was applied to read the spike behaviour with a VG bias of 5 V. c, d Spiking

behaviours of the 1T1R device triggered by various UV (c) illumination intensities
and (d) optical pulse numbers. e, f The effect of the light intensity on the (e) spike
frequency and (f) first spike latency. g, h The effect of the optical pulse number on
the (g) spike frequency and (h) first spike latency. i Inhibitory voltage input can
modulate the firing rate and the first-spike times.

Article https://doi.org/10.1038/s41467-024-48103-9

Nature Communications |         (2024) 15:3689 5



monolithically integrated on the same chip with a conventional
microfabrication process (Supplementary Fig. 12). The scale-down of
the NbOxMott memristor could further reduce both the light-induced
firing threshold and power consumption. As a result, the RTF photo-
encoding can be achieved under white light illumination without any
initial light exposure (Supplementary Fig. 13).

In addition, the gate-controlled electrical properties of the
synaptic phototransistor enable the representation of input stimuli
with electrically configurable synaptic potentiation and depression
behaviours; thus, the proposed device canmimic the process bywhich
biological neurons recognise excitatory and inhibitory stimuli43. As
shown in Fig. 3i, the spiking rate and latency can both be adjusted
based on VG. The spiking rate increased from 0.85 to 1.8MHz, and the
latency decreased from 5.55 to 1.16μs (Supplementary Fig. 14) as VG

increased (from 3.5 to 6.0V) because of the increase in the channel
conductance of the phototransistor (Supplementary Fig. 15). Thus,
with its multiterminal configurability, the proposed artificial visual
neuron could emulate the heterosynaptic plasticity of biological sen-
sory neurons42.

Correlated synaptic plasticity and neural spiking dynamics
In biological sensory neural systems, stimulus information is repre-
sented via distributed neurons and synapse networks43. Synaptic
plasticity describes the strength of communication between pre- and
postsynaptic neurons in response to action potentials and is important
in learning, memory, and forgetting44. In the human visual system
(Fig. 4a), a visual neuron does not fire spikes until sufficient optical
stimuli are receivedbecause the accumulated charge leaks away.When
the accumulated charges (synaptic weights) contributed by the
synapse surpass the threshold of the neuron, the neuron fires stimuli-
relevant spike trains, enabling complex sensory and cognitive func-
tions. Biological visual sensitisation occurs when repetitive series of
brief stimuli are delivered at constant intensity, which increases per-
ception sensitivity, facilitating precise sensory encoding and high
responsiveness during dynamic visual processing45–47.

To emulate biological synaptic plasticity, we utilise the artificial
spiking visual neuron to achieve highly correlated synaptic plasticity
and implement spiking neural dynamics at the device level. Based on
optoelectronic synaptic plasticity (Supplementary Fig. 16), the In2O3

phototransistor can feasibly emulate the synaptic behaviours related
to sensing, memory, and forgetting. Figure 4b illustrates the optical
and electrical input schemes to reveal the correlations between
optoelectronic synaptic plasticity and relevant neural spiking patterns.
The optical input pulses were applied for a series of time windows
(t0–t4, learning) and ceased, and the device was kept in the dark in the
remaining time windows (t4–t7, forgetting). Moreover, electrical input
pulseswere applied throughout the process to record the output spike
patterns.

Themeasured results are shown in Fig. 4c. Initially, the device is at
rest and does not fire spikes without optical input (t0 = 0 s). When a
series of optical pulses is applied (t1 = 10 s), obvious spiking patterns
can be observed. The LIF neuron fires spikes when the voltage applied
to thememristor reaches a threshold, showing activity-dependent RTF
coding. As the applied time of the input optical pulses increased from
10 to 60 s (t1–t3), the spiking frequency increased from 1 to 1.55MHz
(Fig. 4e), and the first spike latency decayed exponentially from 3.51 to
1.19μs (Fig. 4f). After the light pulsewas stopped (t3 = 60 s), the neuron
continued spiking due to the LTP properties of the synaptic photo-
transistor, with a linearly decreasing spike frequency (1.55 to
0.80MHz) and an exponentially increasing first spike latency
(1.19–4.90μs) over time (t3–t6, Fig. 4d).When the idle time is sufficient
(t7 = 25min), the artificial neuron returns to the resting state and stops
spiking. The spiking frequency and latency values after light illumina-
tion are shown in Fig. 4e, f, respectively. In addition, the ‘forgetting’
behaviours can be adjusted based on the input light intensity. In the

idle time, stronger input light intensity leads to neural spiking with
both a longer period and longer latency, as shown in Fig. 4g, h,
respectively. Furthermore, the RTF coding properties are related to
the number of input light pulses (Supplementary Fig. 17). These cor-
related synaptic and neural spiking behaviours resemble natural
learning and forgetting behaviours in a biologically plausible way at
the device level.

To visualise the correlations between synaptic plasticity and the
coding scheme, we constructed a simulation mushroom image map
with 50× 50 pixels to demonstrate the rate and TTFS coding results.
The simulated mushroom image shows patterns of light illumination
with intensities ranging from 1.71 to 3.73mW/cm2 (Fig. 4i). The rate and
TTFS encoding data fromFig. 4g, hwere utilised to create themap; the
light intensity was encoded as the spike frequency within the range of
0–1.6MHz, and the first spike latency was within the range of 0–10μs.
By incorporating synaptic plasticity, artificial visual neurons can
achieve dynamic encoding across a broad range of time scales. With
the rate coding scheme, because the spiking frequency related to the
opto-synaptic weights decayed linearly (Fig. 4g), the image intensity
gradually weakened over time without obvious contrast change
(Fig. 4i, upper panel). In contrast, with the TTFS coding scheme, as the
first spike latency increased exponentially, the image exhibited shar-
pened contrast as the intensity weakened over time (Fig. 4i, lower
panel). Thus, by integrating both rate and temporal TTFS coding, the
artificial visual neuron can biomimetically mimic human learning,
memory, and forgetting behaviours.

Implementation of rate and TTFS coding in SNN
We considered an autonomous driving task to demonstrate the
advantages of our artificial visual neuron, including its sensory
encoding and processing capabilities. Prediction tasks in complex
traffic conditions, such as turning and overtaking at high speeds,
require fast scene encoding and signal processing abilities2. An SNN
with RTF coding and LIF neuron characteristics is proposed to satisfy
these requirements. The RTF coding scheme has a high temporal
resolution that is two orders of magnitude better than that of con-
ventional image sensors. In addition, LIF neurons with temporal fea-
ture extraction abilities allow the SNN to process the input timing
sequence signals better than other deep neural networks.

As shown in Fig. 5a, we utilised different coding schemes,
including rate, TTFS, and RTF coding schemes, to encode the external
road conditions as spike trains to implement the SNN. In the rate
coding scheme, the light intensity of each pixel in an image is encoded
as a spike train, where the spike number has a linear relationship with
the light intensity (Supplementary Fig. 18). In the TTFS coding scheme,
the input light intensity is converted into the first spike latency time,
which follows an exponential decay law (Supplementary Fig. 19). In
TTFS coding, the higher the value of the input intensity is, the earlier
the spike firing time. In the RTF coding scheme, pixel values are
encoded as spike trains with linear frequency and nonlinear temporal
information (Supplementary Fig. 20). These three coding schemes are
detailed in Supplementary Note 1–3. The multiplexed coding method
has superior spiking temporal resolution and combines the advantages
of the rate and TTFS coding schemes. Thus, the multiplexed coding
scheme enables rapid and precise perception of visual stimuli in real-
world environments.

As a demonstration, an SNN model based on ResNet-18 with LIF
neurons is proposed to predict the steering angle and speed of an
autonomous car27,48–53. The proposed SNN model is composed of 17
spike layers and one fully connected layer. The spike layer employs
convolution kernels to computemembrane potential updates with the
LIF neurons. These updates are subsequently integrated into the
neurons’ membrane potential and compared to a threshold to deter-
mine the spike firing rate (“Methods”). The external scene information,
determined based on the public dataset (DAVIS Driving Dataset 2017),
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comprises records of driving variables collected under different road
conditions over 1000 km (Fig. 5a)54. This data is captured at a resolu-
tion of 100 × 140 pixels and encoded by our artificial visual neuron as
14k spike trains, which serve as inputs to the SNN model. The final
output layer includes a single neuron, representing either the steering
angle or the speed in various prediction tasks.

Two different road conditions, a turning road and a high-speed
driving road, are selected to demonstrate the performance of the
hardware-based SNN. As shown in Fig. 5b, the steering angle predicted
by the RTF coding scheme is approximately equal to the ground truth.
The rate coding scheme predicts a value similar to the ground truth,
while the TTFS coding method cannot fit the ground truth. The loss
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curves of different coding techniques for predicting the steering angle
are depicted in Fig. 5c. The final loss of the rate coding scheme is lower
than that of the TTFS coding scheme because the TTFS coding scheme
emits only one spike per pixel and thus cannot provide sufficient
information for the processing algorithm. In comparison, the RTF cod-
ing schemewith linear frequency and nonlinear temporal characteristics
achieves the best performance, with a loss of 0.5 after 50 epochs.

As shown in Fig. 5d, TTFS coding with a lower spike firing rate
leads to a higher mean square loss, which represents the poor fitting
performance between the predicted results and the recorded values in
the dataset. The rate coding scheme with a multispike encoding
mechanism leads to a lower loss between the predicted values and
ground truth. The RTF coding schemewith a spike firing rate similar to
the rate coding scheme leads to a significantly decreased loss,
achieving the best fitting performance for the recorded vehicle para-
meters of the driving car. In addition, as the change in the speed of the

self-driving car is small at the curves in the road, the loss functions
differ only slightly among the three encoding methods (Supplemen-
tary Fig. 21).

As shown in Fig. 5e, the comparison results indicate that the speed
values predicted by the RTF coding scheme are similar to the ground
truth when driving at high speeds. The RTF coding scheme has a lower
loss than the TTFS and rate coding schemes, which proves the super-
iority of this fusion coding method with frequency and temporal
characteristics (Fig. 5f, g). Similarly, high-speed driving roads have
smaller corners, and the loss values of the steering angle predictions
with the three coding schemes are approximately the same (Supple-
mentary Fig. 22). Overall, based on the rapid and precise prediction
ability of the RTF coding scheme and the temporal feature extraction
ability of LIF neurons, our proposed SNN could accurately predict the
steering angle and speed of autonomous vehicles in various tasks
under different road conditions.
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Discussion
In summary, an artificial visual spiking neuron composed of an In2O3

synaptic phototransistor and a NbOx memristor-based LIF neuron was
experimentally demonstrated. The artificial neuron enables multi-
plexed rate and TTFS coding of external visual information. The pro-
posedRTF encoding schemecan achieve precise timing and rapidly and
accurately encode the original input information. The artificial neuron
has fast spike latency coding from 13.00 to 1.04μs, tunable firing fre-
quency coding from0.35 to 1.85MHz, lowenergy consumption (1.06 nJ/
spike), high endurance (> 1010), and multiplexed information encoding
capabilities. The RTF encoding scheme results are consistent with real-
world ground truth data, and an SNN with the proposed RTF coding
scheme achieves high accuracy for steering and speed prediction for
self-driving vehicles. The complementary coding capability of the arti-
ficial neuronensures rapid andpreciseperception capability in complex
environments, demonstrating the high efficacy of SNN.

Methods
Preparation of NbOx memristors and In2O3 optoelectronic
synaptic transistors
The NbOx memristors were fabricated as follows: After photo-
lithography and lift-off processes were applied, the bottom Ti (5 nm)/
Pt (35 nm) electrodes were deposited on a Si/SiO2 substrate by e-beam
evaporation. Then, 35 nm NbOx active layers were deposited by mag-
netron sputtering, and patterned with photolithography and lift-off
processes at room temperature. Afterwards, the top Ti (5 nm)/Pt
(35 nm) electrodes were grown by e-beam evaporation and patterned
by photolithography and lift-off processes. The two-terminal metal-
insulator-metal structure was integrated into the source of the tran-
sistor. The Mott memristors have a working area of 7μm×7μm.

The In2O3 optoelectronic synaptic transistors were fabricated as
follows: A precursor solution of In2O3 with a concentration of 0.1M
waspreparedbydissolving indiumnitrate in 2-methoxyethanol (2-ME).
To enhance the exothermic combustion reaction, acetylacetone
(AcAc) and ammonium hydroxide (NH3·H2O) were added to the solu-
tion in equimolar quantities to indium nitrate. The solution was vig-
orously stirred overnight and filtered using a 0.2μm syringe filter
before utilisation. A substrate consisting of a highly doped (p++) silicon
wafer with a 100 nm thermally grown SiO2 layer was employed. Fol-
lowing a UV-ozone treatment for 10min, the precursor solution was
spin-coated at a speed of 3000 rpm for 45 s, and subsequently, the
device was prebaked at 100 °C. The device was then baked at 200 °C
for 5min, and conventional photolithography was performed. The
pattern was achieved by etching in a mixed solution of diluted
hydrochloric acid and deionized water (1:15, v-v) for 5 s. The In2O3

channels were then annealed in air at a temperature of 300 °C for one
hour. Finally, the Ni/Au (8 nm/50 nm) source/drain electrodes were
thermally evaporated utilising the lift-off process to obtain a channel
width/length (W/L) of 400 µm/10 µm.

Device characterisation
The cross-section TEM and HRTEM images were obtained with a
transmission electronmicroscope (FEI TecnaiTF-20,UK) and analysed.
Room-temperature electrical measurements were carried out using a
Summit 1100B-M Probe Station. The DC mode was measured by an
Agilent B1500 semiconductor parameter analyser. A B1530A fast
measurement unit module was used to simultaneously generate the
voltage pulse and measure the response current.

SNN processing framework for the autonomous driving task
The processing framework consists of neural coding techniques and
the SNN model. Three different coding techniques, including rate,
TTFS, and RTF coding, were adopted in this task. The frame signal of
the road conditions was obtained from a public dataset (DAVIS Driving
Dataset 2017). The rate coding scheme converts each pixel value in the

frame into a spike train with a firing rate proportional to the light
intensity. In addition, the generated spikes follow a Poisson distribu-
tion. The TTFS coding scheme utilises only one spike to encode the
light intensity of each pixel, and the firing time attenuates exponen-
tially with increasing light intensity. With this scheme, higher light
intensity leads to earlier spike firing times. The RTF scheme coding
combines the characteristics of the above twomethods, and the input
pixel grey values are encoded as pulse trains with a firing time
(1.2–20.0μs) and firing rate (0–1.6MHz). Finally, these three coding
schemes are all implemented over 15 time steps.

The SNNmodel used in this task has a ResNet-18 architecture, and
LIF neurons are used to process the input spikes. The numbers of LIF
neurons in layers 1, 2–5, 6–9, 10–13, and 14–17 are 14 k, 896 k, 448 k,
160 k, and 120 k, respectively. LIF neurons have dynamic features and
are thus powerful and energy-efficient in predicting the steering angle
and speed. The updated value of themembrane potential is calculated
by inputting the presynaptic neuronal spikes Xi of the neuron multi-
plied by the synaptic weights Wi, and the membrane potential of the
postsynaptic neuron in the next layer is calculated as follows:

Vmemðt + 1Þ= βVmemðtÞ+
Xk

i= 1

WT
i XiðtÞ � R βVmemðtÞ+

Xk

i = 1

WT
i X iðtÞ

" #

ð1Þ

R=
1, if Vmem>Vth

0, otherwise

�
ð2Þ

where β and k are the membrane potential decay rate and the number
of neurons in this layer, respectively. T is the transposition operation.
If the membrane potential of the LIF neuron is more than the thresh-
old, the neuron generates a spike, which is used as the input to the next
layer. Then, the membrane potential is reset to zero.

In this experiment, themean absolute error (MAE) loss function is
adopted to evaluate the difference between the predicted value and
the ground truth label in the dataset. The loss is computed as follows:

Lossðx,yÞ= 1
n

Xn

i= 1

����yi � xi

���� ð3Þ

Then, to train the proposed SNN, a surrogate gradient descent
algorithm—backpropagation through time (BPTT)—is used to update
the synaptic weights. In the BPTT scheme, the network is unrolled in
the time dimension to calculate theweight update value. The details of
the weight update process are as follows:

Δwl =
X

n

∂Ltotal
∂olt

∂olt
∂Vl

t

∂Vl
t

∂wl
ð4Þ

∂olt
∂Vl

t

=
H0

1ðVi � VthÞ, if olt = S
l
t

1, if olt =V
l
t

(
ð5Þ

where wl is the weight in the spike layers, and Ltotal is the total loss
between the prediction and the ground truth label in the dataset. olt ,V

l
t

andwl are the output of the neuron, themembrane potential of the LIF
neuron at time t, and the weight in the spike layers. Slt is the output
spike of the LIF neuron at time t. The shifted Arctan function
H1ðxÞ= 1

π arctanðπxÞ+ 1
2 is used as the surrogate function to replace the

Heaviside function of the LIF neuron during the backpropagation
process. In addition, the dataset consists of 20 k scene frames, which
are divided into training and testing sets. The first 80% of the data are
used to train themodel, and the remaining 20% of the data are used to
validate the model’s performance. Finally, we use dropout and reg-
ularisation to prevent overfitting and improve model performance.
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Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author upon
request. Source data are provided with this paper.

Code availability
The code for the SNN with the proposed RTF coding scheme is avail-
able from the corresponding author with detailed explanations upon
request.
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