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Pervasive structural heterogeneity rewires
glioblastoma chromosomes to sustain
patient-specific transcriptional programs

Ting Xie 1, Adi Danieli-Mackay1, Mariachiara Buccarelli2, Mariano Barbieri1,
Ioanna Papadionysiou1, Q. Giorgio D’Alessandris3,4, Claudia Robens 5,
NadineÜbelmesser 1,OmkarSuhasVinchure6, LiveranaLauretti3,Giorgio Fotia7,
Roland F. Schwarz 5,8, Xiaotao Wang 9,10, Lucia Ricci-Vitiani2,
Jay Gopalakrishnan6,11, Roberto Pallini3 & Argyris Papantonis 1

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by
phenotypic and transcriptional heterogeneity thought to render these tumors
aggressive, resistant to therapy, and inevitably recurrent. However, little is
known about how the spatial organization of GBM genomes underlies this
heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived
glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their
tumor-of-origin; six of these were primary-relapse tumor pairs from the same
patient. We generate and analyze 5 kbp-resolution chromosome conformation
capture (Hi-C) data from all GSCs to systematically map thousands of standa-
loneandcomplex structural variants (SVs) and themultitudeofneoloops arising
as a result. By combining Hi-C, histone modification, and gene expression data
with chromatin folding simulations, we explain how the pervasive, uneven, and
idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional
programs via the formation of new enhancer-promoter contacts. We also show
how even moderately recurrent neoloops can relate to patient-specific vulner-
abilities. Together, our data provide a resource for dissecting GBM biology and
heterogeneity, as well as for informing therapeutic approaches.

Glioblastoma multiforme (GBM) tumors that are wild-type for the IDH
gene constitute themost frequent brainmalignancy in adults1. Despite
surgical resection, GBMs resist chemotherapy, inevitably recur, and
are highly invasive. Hence median patient survival is ~15 months from
the time of diagnosis2, and therapeutic options at recurrence remain

scarce3,4. These are all attributed to the genomic5–7, epigenomic8–10, and
transcriptional heterogeneity of GBMs8,9.

In normal tissue, the three-dimensional (3D) organization of
chromosomes coordinates gene activation and repression to give rise
to homeostatic transcriptional programs11–13. This 3D organization is
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disrupted at multiple levels in the context of human disease, including
cancer14–16. Structural (SVs) and copy number variants (CNVs) in tumor
cells can rewire the 3D genome in ways that allow for the aberrant
activation of oncogenes17,18 or the repression of tumor suppressors19.
For example, deletion of a boundary insulating two neighboring
topologically-associating domains (TADs20) can lead to aberrant
interactions between an oncogene in one TAD and active enhancers in
the other, a phenomenon known as “enhancer hijacking”17,21–24. In
addition, the overall distribution of somatic cancer mutations appears
to be guided by 3D genome folding25.

Recently, it became apparent that by mapping 3D genome orga-
nization using Hi-C (the whole-genome variant of the chromosome
conformation capture (3 C) technology26), we can simultaneously
obtain a highly-resolved map of SVs and CNVs genome-wide27. The
emergence of tools like hicbreakfinder 28 and EagleC29 allows for the
systematic detection of SVs/CNVs in Hi-C data. Via such analyses, the
functional impact of SVs on subtype-specific cancer gene
regulation19,30, as well as on a compendium of cancer lines has been
investigated24,28,31. Still, our understanding of 3D genome organization
in GBM remains limited due to the small number of samples analyzed
to date (i.e., only 5 tumors in Ref.27, and just 4 cell lines in refs. 32–34)
and to the absence of comprehensive SV/CNV co-analysis.

To address this and study the impact of patient-specific SVs, we
derive glioblastoma stem cell-like cells (GSCs) from 24 IDH wt GBM
patients—for three of which we could sample both the primary and the
relapse tumor (see Supplementary Table 1). It is well acknowledged
that the subset of GBM tumor cells with stem cell-like attributes are
implicated in essentially all aspects of GBM initiation, maintenance,
therapy resistance, recurrence, and tissue invasion in vivo35,36. Given
that patient-derived GSCs retain the genomic and functional traits of
their tumors of origin37–39, they hold significant potential for transla-
tional modeling of GBM. Here, we generate 28 high-resolution Hi-C
datasets and analyze them to map structural variation in each patient.
We discover remarkable pervasiveness and variance in SV distribution
across our cohort, giving rise to patient-specific “neo-TADs” and
“neoloops”. We then combine reassembled chromosomal scaffolds
with matching transcriptome and histone mark data to understand
how GBM gene expression and tumor recurrence are supported by
such extensive heterogeneity in 3D genome folding.

Results
Pervasive and widespread structural variation along GSC
chromosomes
We applied in situ Hi-C to 28 low passage IDH wt GSCs, including pairs
derived from primary and recurrent tumors from 3 patients (Fig. 1a) to
generate a total of ~19 billion read pairs. Following stringent filtering,
we were left with >400 million valid read pairs per patient on average
(63.4% mean data usage; Supplementary Table 2). This allowed us to
produce 5 kbp resolution contact maps for each GSC, and confirm
reproducibility by generating additional replicates from two
randomly-selected lines (SCC>0.93; Supplementary Fig. 1a).

We first addressed CNV prevalence in cancer cells40 that can dis-
tort Hi-C contact maps. We verified that CNVs identified using whole-
genome sequencing (WGS) data from an exemplary line, G181, were
essentially identical to those computed via Hi-C data (Supplementary
Fig. 1b) as was previously demonstrated29,33. Next, we applied CNV-
based matrix-balancing24 to Hi-C contact maps to alleviate any dis-
tortions that standard matrix balancing could not (Supplementary
Fig. 1c) and CNV-balanced matrices were used for SV discovery in our
cohort.

For a comprehensive identification of SVs in our GSC cohort, we
applied EagleC29 to 5 kbp resolutionHi-Cmatrices. SVs, even thosewith
breakpoints separated by <100 kbp, produced characteristic signal
aberrations in the contact matrices and were detected with high sen-
sitivity (Supplementary Fig. 1d). In total, wemapped 2675 SVs across 28

Hi-C datasets on top of 591 complex SVs using EagleC (listed in Sup-
plementary Data 1). These comprised 737 (27.6%) interchromosomal
translocations, plus 713 (26.7%) intrachromosomal inversions, 652
(23.4%) deletions and 573 (21.4%) duplications. Of the 1938 intrachro-
mosomal SVs, 57.6% were short- ( < 2 Mbp) and 42.4% long-range ( ≥ 2
Mbp) (for an example from G457 see Fig. 1b,c). Detection of SVs was
robustly reproducible between replicates from the same line (mean
Jaccard index = 0.63; Supplementary Fig. 1e). As a control, EagleC
applied to astrocyte Hi-C data33 returned only 7 SVs. A similar dis-
tribution of SVs was obtained when hicbreakfinderwas used, returning
a total of 1586 SVs (Supplementary Fig. 2a and Supplementary Data 1).
Note that >53% of SVs returned by hicbreakfinder were also identified
using EagleC. SV occurrence across our GSCs was pervasive, with 16
out of 28 samples carrying >80 SVs (the least number of SVs was 24 for
G452C, and the most were 182 for G450). Notably, relapse tumor-
derived GSCs usually carried more SVs than primary tumor-derived
ones (Fig. 1d and Supplementary Fig. 2a). Taken together, these ana-
lyses demonstrate the sensitivity and reproducibility of SVdiscovery in
our collection.

We next asked what the degree of SV recurrence is across our
samples. One-to-one comparisons of HiC-deduced SVs from all sam-
ples (Supplementary Fig. 3) and similarity analysis (Fig. 1e and Sup-
plementary Fig. 2b) revealed remarkable heterogeneity among GSCs
and little recurrence (mean Jaccard index = 0.02). Even mutations
known to be characteristic of GBM were only found in a subset of
samples. For example, EGFR amplification41 was associated with SVs in
just 9 out of 28 lines, while CDKN2A deletion42,43 was more prevalent
and detected in 17 out of 28 lines. Finally, although SVs in GSC pairs
from primary-relapse tumors of the same patient showed somewhat
higher overlap (Jaccard index = 0.21), this did not increase much
(Jaccard index = 0.42) once SVs from the central and peripheral part of
the same tumor (i.e., G452C/P) were considered, further highlighting
the high intra-patient heterogeneity of GBM.

Despite their uneven distribution across our collection, SV
breakpoint positions correlated well with particular genomic features.
For example, genomic duplications were strongly biased for strongly
transcribed, GC-rich segments in the active chromatin A-compartment
involvingbreakpoints close toTADboundaries (using astrocyteHi-C as
reference; Fig. 1f). Translocations and inversions also involved gene-/
GC-rich loci, but could be equally near or distal to TAD boundaries,
agreeing with the notion that active gene co-association promotes
rearrangements (especially in the case of translocations44,45). Con-
versely, deletions mostly occurred in AT-rich segments of the inactive
B-compartment (Fig. 1f). Overall, we recorded significant enrichment
for SVs in theA-compartment, particularly in gene-rich stretches and in
the vicinity of TAD boundaries (Fig. 1f). This is in line with the pre-
ferential occurrence of DNA double-strand break hotspots within
accessible, actively transcribed chromatin46,47. Notably, transcription
start sites (TSSs) of genes linked to the GBM transcriptional program
(derived from DisGenet48) were markedly enriched at breakpoint-
associated TAD boundaries (Fig. 1g), suggesting that boundary dis-
ruption can favor oncogene dysregulation and malignant
transformation17,22,49. This also held true for SVs, resulting in gene
fusions. We identified 421 fusion events in mRNA-seq data generated
from each GSC (Fig. 1a), but as Hi-C is more sensitive in detecting
them29, we could identify an additional 902 fusions using EagleC and
492 using hicbreakfinder (SupplementaryData 1) with 137 events found
in both Hi-C and RNA-seq data. Gene fusions had significantly higher
expression than their counterparts in astrocytes, but only when loci
with a CNV ratio of >1.5 were considered (Supplementary Fig. 2c). This
suggests that fusion gene overexpression is linked to genomic ampli-
fication in GBM.

Finally, rather than stochastically distributed along chromo-
somes, SVs show a propensity for clustering, especially in GC-/gene-
rich segments (Fig. 1h and Supplementary Fig. 3b). Such high degree of
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Fig. 1 | Pervasive and uneven SV occurrence discovered by Hi-C analysis of
patient-derived GSCs. aOverview of our cohort from 28 primary (gray) or relapse
GSCs (yellow). NGS data generated from each GSC are indicated. *: WGS data is
available for G181; -R designates GSCs derived from the relapse tumor in a pair, and
–C/P GSCs derived from the central or peripheral part of the same tumor.
b Heatmap of 500 kbp-resolution Hi-C data along all G457 chromosomes. Strong
interchromosomal signals represent translocations. c Circos plot of SVs and CNVs
detected in G457 Hi-C using EagleC. Outer tracks: chromosomes; inner tracks: gain
(red: >2 copies) or loss of genomic segments (blue: <2 copies); lines: translocations
(purple), inversions (gray), deletions (light blue) or duplications (red). d Bar plot
showing the number of SV types identified by EagleC in each GSC line. Lines from
relapse tumors are highlighted (yellow).e Jaccard similarity indexof SVs discovered
in different Hi-C datasets. f Enrichment of breaks from all SV types (columns)

relative to GC content, gene density, gene expression, A/B compartment, or TAD
boundaries (rows). Each density curve represents the quantile distribution of the
particular genomic feature at SV breakpoints compared to random positions. **:
FDR < 10−3; ***: FDR < 10−5 calculated aftermultiple hypothesis corrections on a one-
sided Kolmogorov-Smirnov test based on a sample size of 5,078 genomes con-
taining SVs. g Mean enrichment of GBM-associated gene TSSs in the 100kbp
around TAD boundaries from astrocytes with an SV break in GBM (red), all SV
breaks (green), randomly-selected TAD boundary-associated genes (blue) or all
TAD boundaries (dashed black). h Ideogram of chr7 showing SV distribution from
G181 Hi-C data (above) and gene density (below). i Exemplary Hi-C contact map
from G181 in a 2-Mbp region of chr7 (magenta in panel h) harboring multiple SVs
(circles).
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breakpoint clustering (almost 43% of EagleC-deduced SVs, i.e., 2298
out of 5350, were in clusters) led to complex rearrangements within
relatively small ( < 2 Mbp) genomic stretches (Fig. 1i and Supplemen-
tary Fig. 3b, c). Notably, smaller chromosomes like chr12 (also
remarked on in TCGA WGS data analysis41), chr16 and chr17 carried a
disproportionately high density of SVs (i.e., >3.5 SVs/Mbp compared to
a median of <2 SVs/Mbp; Supplementary Fig. 3c). These results high-
light structural variation in GSCs as a highly pervasive source of het-
erogeneity bound to change the 3D regulatory architecture of GBM
chromatin.

GSC-specific chromatin organization blurs transcriptional sub-
type classification
Despite GBM heterogeneity, bulk and single-cell transcriptome ana-
lyzes have been used to classify GBM entities into few major
subtypes50–53. Wang and colleagues51 classified GBMs as classical
(TCGA-CL), proneural (TCGA-PN), or mesenchymal (TCGA-MES). Nef-
tel and colleagues53 combined single-cell analysis of tumors and TCGA
specimens to define four main GBM states –mesenchymal (MES-like),
astrocyte-like (AC-like), oligodendrocyte-progenitor-like (OPC-like),
andneural progenitor-like (NPC-like)–which reflect distinct neural cell
types influenced by their microenvironment. Finally, Richards and
colleagues53 analyzed a collection of GSCs to uncover a transcriptional
gradient spanning two cellular states reminiscent of neural develop-
ment (DEV) and inflammatory injury response (INJUR).

We used our mRNA-seq data from our 28 GSCs (Fig. 1a) in con-
junction with each of these classifications in order to subtype them. In
PCA plots, GSCs separated well from astrocytes and generated a gra-
dient amongst themselves, in which GSCs from the same patient (i.e.,
primary-relapse or central-peripheral pairs) separated the least, sug-
gesting that intra-patient gene expression differences are less than
inter-patient ones (Supplementary Fig. 4a). We next applied single-
sample gene set enrichment analysis (ssGSEA) using the three classi-
fications discussed above51–53 to find that most of our GSCs as sig-
nificantly associated (empirical P-value < 0.01) with a given subtype
(Supplementary Fig. 4a, b). In all three cases, we found 5-6 GSCs that
did not enrich for any of the provided signatures and, especially for the
4-cell state classification52, many samples with ambiguous, mixed
subtyping (Supplementary Fig. 4b). Still, theME/PN/CL and DEV/INJUR
classifications provided reasonable subclustering of gene expression
profiles for most of our GSCs (Supplementary Fig. 4a). Reassuringly,
the mesenchymal-like GSCs in two different classifications overlapped
for their most part (Supplementary Fig. 4a, b).

Finally, as subtypes of other cancers (e.g., acute myeloid leuke-
mia) were recently shown to classify on the basis of large-scale (i.e.,
compartmental) 3D genome organization features31, we askedwhether
different hierarchical features in our Hi-C data also allow classification
of GSCs into the subtypes deduced above. To this end, we first
removed SV-/CNV-affected regions from our data (which should
explain most inter-patient divergence; see Fig. 1e) and then used dif-
ferent Hi-C features like compartments (using the first principal com-
ponent, PC1, of 50 kbp resolution eigenvectors), insulation scores
delineating TAD boundaries (computed at 25 kbp resolution), all Hi-C
contacts (computed at 10 kbp resolution) or loops (at 5 kbp resolution)
for data clustering. We found that differential PC1 calling, reflecting
GSC-specific differences in eu-/heterochromatin, broadly separated
many (but not all) CL/DEV from MES/INJUR lines, yet this was not a
reflection of the presence or absence of major GBM driver mutation
like amplification of EGFR or loss of CDKN2A/B and PTEN (Supple-
mentary Fig. 4c). All higher-resolution features discriminated only
moderately (i.e., insulation score/Hi-C contacts) or very little (i.e.,
loops) between subtypes (Supplementary Fig. 4d–f). Even samples
with highly similar gene expression profiles like the MES/INJUR G83
and G457 or the CL/DEVG120 and G412R lines (Supplementary Fig. 4a)
did not cluster together (Supplementary Fig. 4c–f).We attribute this to

the pervasive structural heterogeneity that underlies individuality of
each patient-derived line.

GSC-specific SVs underlie neo-domain and neo-loop formation
Induction of SVs along chromosomes does not simply disturb the
integrity of chromosomes and the continuity of gene loci, but also
reorganizes 3D spatial interactions of chromatin to give rise to new
topological domains, termed “neoTADs”28,54. We mapped their for-
mation across all 28 Hi-Cs to identify a total of 2222 neoTADs using
EagleC and 1401 using hicbreakfinder (with 740 found by both tools).
They had a median size of 0.5 Mbp and arose from all SV types (Sup-
plementary Fig. 5a, b). Different GSCs carried vastly different numbers
of neoTADs (from 10 in G452C to 244 in G450; Supplementary Fig. 5b),
again highlighting a remarkable heterogeneity in these GBM speci-
mens. Notably, expression of genes within neoTADs was consistently
higher than that of genes in neighboringTADs (SupplementaryFig. 5c),
as well as of the same genes in astrocytes or GSCs where the specific
neoTAD did not form (Supplementary Fig. 5d). This potentiation of
gene expression holds true even when loci with a CNV-ratio >1.5 were
filtered out (Supplementary Fig. 5c, d). Therefore, neoTADs support
GSC-specific gene activity.

Similarly to neoTADs, SVs also gave rise to “neoloops” char-
acteristic of thepatient-derived lines (Fig. 2a).WeusedNeoloopfinder 24

to identify neoloops in locally reconstructed and normalized for allelic
effects Hi-C maps from all 28 GSCs. Using an FDR cutoff of <0.05, we
found 6331 neoloops across EagleC-deduced SVs and 5297 across
hicbreakfinder -deduced ones (with 2115 shared by both; Supplemen-
tary Data 1). Again, the number of neoloops in each GSC varied sig-
nificantly (from 12 in G28 to 1327 in G148, with amedian of 120; Fig. 2b
and Supplementary Fig. 6a), but we saw little correlation between the
number of SVs and neoloops in our collection (ρ = 0.29) meaning that,
depending on the cellular context, even the same SVs will not always
give rise to neoloops. Hence the need for Hi-C data incorporation on
top of one-dimensional epigenomic and WGS data.

Approximately 50% of EagleC-deduced neoloops in GSCs for
which we also have CTCF binding information (Fig. 1a) were anchored
at CTCF-bound sites (i.e., 772 out of 1579; Fig. 2c), with 88.5% of them
abiding to the expected convergent CTCF motif orientation55. More
than 90%ofneoloopswere <0.8Mbp in size (Fig. 2d), andwe identified
2053 genes associated with neoloops (i.e., within ±5 kbp of either
anchor; more than expected by chance, P =0.017 Fischer’s exact test).
Of these, 858 were protein-coding, and 131 of these protein-coding
genes recurrently associated with neoloops in our cohort, albeit at a
low mean recurrence of 2. Amongst them, 33 (25.2%) have been
reported as GBM-related (e.g., EGFR, PTEN, MTOR) and 29 (22.1%) as
cancer-associated genes (e.g., AGAP2, SOX2). A query using all these
neoloop-associated genes inDisGeNET48 returned a strong enrichment
for characteristic glioma and GBM programs (Fig. 2e), including genes
with a high disease specificity index, like SYF2 or AGAP2. Notably,
neoloops sustained significantly higher expression of their associated
genes in a GSC-specific manner (Fig. 2f–h; with a cutoff of
log2(TPM+ 1) > 0), which contributes to inter-patient transcriptional
heterogeneity. These observation also held true when hicbreakfinder-
deduced neoloops were used for the analysis (Supplementary
Fig. 6b, c).

Much like SV profiles that were largely idiosyncratic, neoloop
recurrence among GSCs was also limited. For instance, the most cor-
related at the loop level unpaired samples, G1 and G213 (Supplemen-
tary Fig. 4f), shared <10% of their neoloops, while even the two
intratumor-derived lines G452C/P shared <42%. Nevertheless, even
limited recurrence becomes relevant in cases where neoloops asso-
ciated with a particular gene locus in different GSCs. In total, 858
protein-coding (plus 1195 non-coding) genes associated with neoloops
in our collection. Of these, 40 protein-coding (plus 59 non-coding)
genes were neoloop-associated in 3 or more GSCs. For example,
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neoloops formed in theHLA-F/-G/-J locus following a 50-kbpdeletion in
8 lines. These neoloops encompassed HLA-J (Fig. 2a), which has been
associated with poorer prognosis in melanoma56 and breast cancer
patients57. HLA-J was expressed significantly higher in GSCs carrying
neoloops in its locus compared to all other in our cohort (Fig. 2i). Itwas

also significantly higher expressed in TCGA data from GBM tumors
compared to control tissue (Fig. 2j). Importantly,HLA-J overexpression
associates with poorer GBMpatient survival overall, but this is not due
to gene amplification (Fig. 2k, l). Another example are the neoloops
forming in the ADAM9 locus (Supplementary Fig. 6d) encoding a cell-
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surface protease implicated in solid tumor biology58. ADAM9 is over-
expressed in neoloop-carrying GSCs in our cohort as well as in TCGA
GBM tumors (Supplementary Fig. 6e, f). This not due to gene ampli-
fication and predicts poorer patient disease-free survival (Supple-
mentary Fig. 6g, h). Together, this data suggests that neoloop
formation can be instructive of patient-specific gene expression pat-
terns, thereby helping us uncover hitherto unknown GBM dependen-
cies and prognostic markers.

Enhancer-promoter neoloops explain GSC-specific gene
dysregulation
Given that expression of genes was higher in GSCs in which they
associate with neoloops (Supplementary Fig. 6a, b), we wanted to
further investigate how neoloops contribute to gene dysregulation in
GBM. To this end, we used Hi-C data from 10 GSCs for which we also
generated H3K27ac CUT&Tag profiles (Fig. 1a). Using these histone
mark profiles on locally-reassembled genomic scaffolds, we were able
to identify putative active enhancers in each line and see that many of
our EagleC-identified neoloops actually represented enhancer-
promoter (E-P) contacts driving GSC-specific gene expression (see
the example of IFIT1 in Fig. 3a, b).

Of 4343 neoloops and 11031 non-neoloops (i.e., loops within a
local assembly that do not span an SVbreakpoint) in these 10GSCs, E-P
neoloopswere significantly overrepresented (35.3%) compared tonon-
neoloops (25.5%; P < 10−5 Fisher’s exact test), while the converse
applied to promoter-promoter (P-P; 9.2% neo- vs 16.9% non-neoloops)
and other loops (33.3% neo- vs 66.6% non-neoloops; Fig. 3c). Critically,
E-P neoloops linked putative enhancers to 192 gene TSSs in these GSCs
to induce expression levels higher than those of 801 genes linked to
non-neoloop enhancers. This also held true for P-P neoloops and their
243 associated genes versus 1055 non-neoloop-associated ones
(Fig. 3d). Similarly, the levels of 238 E-P neoloop-associated genes (85
when amplified lociwere filtered out) were significantly higher in these
10GSCs compared to lines where neoloops do not form (Fig. 3e). Gene
ontology (GO) analysis of E-P/P-P-associated genes revealed that they
were linked to key cancer-related pathways like “GBM signaling”,
“mitotic cell cycle”, “senescence” or “chromatin organization” (Fig. 3f)
arguing in favor of a tumor-specific importance of E-P neoloops.

Finally, we compiled a list of 138 known GBM-/cancer-related
genes thatwe could link with a neoloop andwith at least one SV-linked
event (i.e., with a deletion, duplication or fusion) in our collection. Of
these, 43 associated with at least two such events across our samples,
and we saw that dysregulation could be attributed almost just as often
to neoloop formation in the locus as to the duplication, deletion or
fusion of the gene itself (Fig. 3g). These observations suggest that E-P
neoloops are a regulatory hallmark of GBM, and highly selected for in
the course of tumor development to sustain patient-specific gene
expression patterns.

Modeling neoloop formation as a selective GBM dependency
The pervasive and uneven emergence of SVs and neoloops in our
cohort would inevitably give rise to GSC-specific E-P interactions and
ensuing gene activation. This creates an opportunity of potential
translational value if we could identify tumor-specific dependencies
arising from E-P neoloops activating druggable gene targets or path-
ways. To exemplify this, we selected G148 in which MYC is markedly
overexpressed. This was due to a focal co-amplification of the MYC
gene locus on chr8 together with an Mbp-long segment on chr12 via a
translocation (Supplementary Fig. 7a). This SV brings into spatial
vicinityMYCwith a cluster of co-amplified enhancers via the formation
of neoloops (Fig. 4a) in a structure likely representing extra-
chromosomal DNA (see putative breakpoints mapped in Supplemen-
tary Fig. 7a). This combination of enhancer hijacking and co-
amplification resulted in >10-fold increase in MYC mRNA levels in
this line compared to all other GSCs (or astrocytes; Fig. 4b), which was
also reflected on MYC protein levels (Supplementary Fig. 8a).

We therefore tested whether targeting MYC would selectively
inhibit G148 growth. We treated G148, as well as G62 cells, where no
enhancer hijacking, amplification or MYC overexpression occurs
(Fig. 4b), with the small molecule inhibitor, EN-4. EN-4 specifically
targets Cys171 of MYC to form a covalent bond and impair its binding
to target genes59. GSC treatment with EN-4 led to the selective sup-
pression of MYC and cell proliferation (marked by Ki-67expression) in
MYC-overexpressing G148, but not in G62 (Fig. 4c and Supplementary
Fig. 8b,c). Moreover, EN-4 treatment led to a significant increase in
DNA damage and cell death in G148 compared to G62, as deduced
from TUNEL assays (Fig. 4d and Supplementary Fig. 8d).

Given this selective dependency of G148 onMYC overexpression,
we argued that being able to predict the formation of gene-activating
E-P neoloops on a patient-specific basis could inform treatment
options, as suchneoloops are selected during tumordevelopment and
could represent new dependencies. To achieve this, we built on the in
silico PRISMR approach previously used to predict ectopic regulatory
interactions due to congenital disease-causing SVs60. In its original
implementation, PRISMR could only predict such interactions in cis by
inferring binding site distribution along the polymer that best repro-
duces the Hi-C matrix of a genomic region in its wild-type configura-
tion. Then, ectopic interactions are predicted by reshuffling the
polymer in accordancewith SVs and recalculating newHi-C contacts60.
As we wanted to model a structural variant occurring in trans, we
modified the approach to infer binding site distribution in an extended
segment of chr12 (i.e., chr12: 57.66-58.33 Mbp) using data from G275R
that does not carry any SVs in the region, but in conjunction with RNA-
seq and H3K27ac signal from G148 to ensure faithful Hi-C contact
prediction using a probabilistic approach (see Supplementary Fig. 7b
and “Methods” for details). Following optimization of binding classes
(Supplementary Fig. 7c,d), we found that the three best-correlated

Fig. 2 | Extensive neoloop occurrence supports GSC-specific programs.
a ExemplaryHi-C contactmaps fromG275R andG402Raround a 50kbpdeletion in
theHLA locus.Neoloops forming across the breakpoint are indicated (blue circles).
b Bar plot showing the number of neoloops identified in each GSC line based on
EagleC SVs. Lines derived from relapse tumors are indicated (yellow). c Line plot
showing CTCF binding signal in the 400 kbp around all neoloop anchors. Inset:
Aggregate peak analysis (APA) plot for all neoloops detected. d Bar plot showing
the percent of neoloops of different sizes. e Signatures of neoloop-associated
genes from the DisGeNET database; P-values calculated using two-sided Fisher’s
exact tests without multiple comparison adjustments. f Box plots (band shows the
mean, each box extends between 1st and 3rd quartile, and whiskers extend 1.5x the
interquartile range) showing mean expression of neoloop-associated genes in
GSCswith neoloops (green) or astrocytes (black)with andwithout filtering out loci
with >1.5 CNV. *: P = 1.377e-51 (left) and 2.435e-09 (right), two-sidedWilcoxon rank-
sum test. Source data for this panel are provided as a Source Data file. g APA plots

of neoloops specific to G402R or G148. h Box plots (drawn as in panel f) show
expression of genes associated with GSC-specific neoloops from panel f. *:
P = 3.472e-03 (left) and 8.179e-07 (right), two-sided Wilcoxon rank-sum test.
Sourcedata for this panel are provided as a SourceDatafile. iBoxplots (drawn as in
panel f) showHLA-J expression in GSCs carrying (magenta) or not neoloops in this
locus (black). *P =0.008; two-sided Student’s t-test). Source data for this panel are
provided as a Source Data file. j Box plots (drawn as in panel f) show HLA-J
expression in TCGA GBM tumor and matching normal tissue *P <0.01; two-sided
Mann-Whitney U-test. k Kaplan-Meier survival curves for GBM patients with HLA-J
high/low expression. P-value calculated using a two-sided log-rank test. l Violin
plots (medians indicated by white circles, and 1st/3rd quartile span by black boxes)
showing CNV in the HLA-J locus from TCGA GBM tumors with high (top 25%,
magenta) or lowHLA-J expression (bottom 25%, green). P =0.184; two-sidedMann-
Whitney U-test. Source data for this panel are provided as a Source Data file.
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ones inG148 recapitulated inputRNA-seq andH3K27acprofiles (Fig. 4e
and Supplementary Fig. 7b).

In turn, the inferred classes of binding sites gave rise to highly
similar contact matrices for the experiment and simulation
(ρ = 0.65). In G148, we could predict the formation of neoloops
connecting MYC on chr8 to the active putative enhancers on chr12
(Fig. 4f, left), while for G394, where no translocation and amplifi-
cation occur, no neoloops were predicted (Fig. 4f, right). This was
also reflected in the 3D models rendered from the simulations,
whereby hubs between hijacked enhancers and the MYC locus
formed in G148 (Fig. 4g) but not in G394 data (Supplementary
Fig. 7e). Remarkably, our 3D models showed the mutually exclusive
formation of contacts between the MYC promoter and enhancer
beads of either class 1 or 7 (Fig. 4e–g and Supplementary Fig. 7f).
These differential conformations (Fig. 4g) gave rise to a

heterogeneous population of 3D models, which reflected different
predicted MYC activation levels (calculated as in ref. 61). Models
with different enhancer-promoter contacts cluster away from one
another and lead to variable levels of MYC activation (Supplemen-
tary Fig. 7g, h). Thus, we can now model the impact of SVs also in
trans using a minimal set of epigenetic tracks to model structural
aberrations also in trans that could represent potential patient-
specific vulnerabilities.

GBM relapse associates with divergent SV occurrence and 3D
genome folding
GBM isof themost aggressively recurring tumors,withpatients usually
succumbing within ~1 year of relapse1. Our collection included GSCs
from three such primary and relapse tumor pairs (G275/R,G402/R, and
G412/R; Fig. 1a), and we generated Hi-C, mRNA-seq, and H3K27ac data

Fig. 3 | Enhancer-promoter neoloops in GSC-specific gene regulation.
a ExemplaryHi-C contactmap fromG275Raround a 1.24-Mbp inversion in the IFIT1
locus. Enhancer-promoter neoloops forming across the breakpoint are indicated
(blue circles). The same locus of G412, where no inversion occurs, provides a
control. b Plot showing mean (line) ±SEM and GSC-specific IFIT1 RNA-seq levels
(circles) in lines with (orange; n = 2) or without the inversion (gray; n = 8) or in
astrocytes (black; n = 2). *: P =0.0042, unpaired two-sided Student’s t-test. Source
data for this panel areprovidedas a SourceDatafile.cBarplot showing the fraction
of neo- or non-neoloops around EagleC SVs representing enhancer-promoter (E-P),
enhancer-enhancer (E-E), promoter-promoter (P-P) or other loops. *: P = 6.34e-34
(E-P), 0.1e-99 (E-E), 9.08e-34 (P-P) and0.1e-99 (other), two-sided Fisher’s exact test.
Source data for this panel are provided as a Source Data file. d Box plots (bands
show themean, each box extends between 1st and 3rd quartile, and whiskers extend

1.5x the interquartile range) comparing expression of genes involved in enhancer-
promoter (E-P), promoter-promoter (P-P) or other neoloops with and without fil-
tering out loci with >1.5 CNV. *: P = (left to right) 0.0007, 0.0447 and 0.0053, two-
sided Mann-Whitney U-test. Source data for this panel are provided as a Source
Data file. e As in panel (d) but showing expression of E-P neoloop-associated genes
in GSCs with (green) or without neoloops (gray) or in astrocytes (black). *: P = (left
to right) 4.55e-20, 4.47e-20, 0.023, 0.039, and 1.82e-10, two-sided Wilcoxon rank-
sum test. Source data for this panel are provided as a Source Data file. f GO terms
associated with genes involved in E-P (red) or P-P neoloops (blue); P-values cal-
culated using two-sided Fisher’s exact tests without multiple comparison adjust-
ments. g Heatmap showing duplication, deletion, neoloop, or gene fusion
occurrence for 43 known cancer-associated gene loci.
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from these pairs in an attempt to understand their reemergence fol-
lowing therapy keeping in mind that the standard-of-care for GBM
patients is highly mutagenic radiochemotherapy.

A first observation was that, like all other GSCs we studied,
these paired lines also showed high divergence in the number
(Fig. 1d) and position of SVs mapped after applying either EagleC or
hicbreakfinder to Hi-C (Fig. 5a and Supplementary Fig. 9a, b).

Relapse lines G275R, G402R, and G412R shared 33%, 33%, and 47% of
EagleC-deduced SVs with their primary tumor-derived GSCs,
respectively (with overlap being quite similar for hicbreakfinder
-deduced SVs; Fig. 5b and Supplementary Fig. 9c, d). Gene expres-
sion upon relapse also diverged markedly (with just 30 up- and 8
downregulated genes shared by all three pairs, and <14% shared by
any two pairs; Supplementary Fig. 9e). They also displayed, in

Fig. 4 | GSC-specific dependencies uncovered by neoloop analyzes and simu-
lations. a Exemplary Hi-C contact map from G148 around a translocation break-
point involving the MYC locus. Enhancer-promoter neoloops forming across the
breakpoint are indicated (blue circles) and aligned to RNA-seq, H3K27ac, and CNV
tracks. Absence of neoloops in G394 (below), where no translocation occurs,
provides a control. b Plot showing mean (line) ±SEM GSC-specificMYC expression
(circles) in cells with (orange; n = 1) or without the chr8:chr12 translocation (gray;
n = 9) or in astrocytes (black; n = 2). Source data for this panel are provided as a
Source Data file.c, Plots showing the percentage of cells ±SD staining positive for
MYC or Ki-67 in untreated (red) or EN4-treated MYC-high G148 (green) from n = 4
independent experiments; treatment of the MYC-low G62 provides a control. *:
P =0.038 (for MYC) and 0.021 (for Ki-67), unpaired two-sided Student’s t-test.
Source data for this panel are provided as a Source Data file. d As in panel (c) but
showing the percentage of cells ±SD positive for TUNEL staining from n = 4

independent experiments. *: P =0.00025, unpaired two-sided Student’s t-test.
Source data for this panel are provided as a Source Data file. e Heatmaps showing
correlation of each class of polymer beads with H3K27ac and RNA-seq data from
G148 that carries the chr8:chr12 translocation (left) or G394 that does not (right).
Classeswith a correlationof >0.2 are shown. f Left: Contactmaps fromHi-C (top) or
simulations (bottom) around the translocation breakpoint in G148 are shown
aligned to polymer bead classes. Enhancer-promoter neoloops forming across the
breakpoint are indicated (blue circles). Right: As in the left hand-side panel, but for
G394 that does not carry the translocation. g Representative 3D renderings of the
twomajor configurations resulting from chr8:chr12 ecDNA translocation involving
theMYC locus. Beads from binding classes 1, 7, and 11 that best predict folding are
color-coded as in panel d, and differentialMYC-enhancer interactions indicated
(yellow halo).
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pairwise comparisons, the accumulation of new SVs/CNVs in known
GBM and general oncogenic drivers (e.g., EGFR or CDK6 amplifica-
tions in G402R and G275R, respectively; Fig. 5a and Supplementary
Fig. 9a, b). Interestingly, when all pairs were considered, relapse
GSCs showed a statistically significant increase in translocations
(from 40 in primary lines to 90 in relapse ones – P < 0.001, Fisher’s

exact test) associated with GBM-relevant genes (gda>0.01, listed in
Supplementary Data 2), while deletions and inversions decreased by
~12% (P < 0.05, Fisher’s exact test). In spite of all this, differentially
expressed genes did converge to a few pathways in relapse-derived
GSCs, like “neurogenesis” or “nervous system development” (Fig. 5c
and Supplementary Fig. 9f).
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We next asked which level of 3D genome organization was most
involved in the divergent transcriptional profiles we recorded.
Switching between A- and B-compartments or association with chro-
matin loops each explained 10%or less of the gene expression changes
seen (Fig. 5d). Association with enhancers though explained on aver-
age twice asmany differentially-expressed genes (Fig. 5d), and a larger
fraction of E-P loops was dynamically lost or gained between the GSC
pairs, thus highlighting their regulatory significance (Fig. 5e). We
identified ~800primary- and ~1000 relapse-specific loops per pair (826
and 327 for G275/R, 681 and 1366 for G402/R, and 934 and 1531 for
G412/R; Fig. 5f and Supplementary Fig. 9g,h). We stratified these loops
on whether they were specific to primary (“lost”) or relapse GSCs
(“gain”), shared by a GSC pair but showing increase (“K27ac gain”) or
decrease in H3K27ac signal in relapse (“K27ac loss”) or remained
unchanged. After assigning genes to the promoter anchor of these
loops, we found that expression levels of thousands of genes from all
three pairs were on average significantly higher (for “gain” loops) or
lower (for “loss” loops) than those of genes associatedwith unchanged
loops (Fig. 5f and Supplementary Fig. 9g, h). A considerable fraction of
these loops were neoloops forming as a result of primary- or relapse-
specific SVs. These neoloops often facilitated enhancer hijacking
leading to aberrant gene overexpression (see example in Fig. 5g).
Remarkably though, we found little recurrence of misexpressed genes
associated with neoloops or with other SV types within a pair. Speci-
fically, G275R, G402R andG412R shared 59%, 29%, and 34%of neoloop-
associated genes with their primary tumor-derived counterparts,
respectively (with overlap being similar for neoloops identified based
on hicbreakfinder -deduced SVs; Fig. 5b and Supplementary Fig. 9c, d).
This suggests that GBM relapse, as reflected in GSCs, associates with a
set of SVs that are not a mere evolution of those in the primary tumor.
Moreover, despite some convergence in the pathways affected,we saw
marked individuality in the transcriptional programs of each GSC pair
supported by 3D genome rewiring.

Finally, we used Hi-C and RNA-seq data to compare a pair of GSCs
derived from the central and peripheral regions of the same
GBM tumor (i.e., G452C/P). Surprisingly, we found that the periphery
only shared ~50% of its SVs with the center regardless of EagleC or
hicbreakfinder being used, with multiple G452C SVs lost in G452P
(Supplementary Fig. 10a, b). This held true also for the genes asso-
ciated with neoloops in the pair (Supplementary Fig. 10b). In line with
the transcriptional subtype divergence of these GSCs (Supplementary
Fig. 4a, b), we found pathways like “nervous system development”,
“regulation of signaling” or “ECM organization” enriched in the central
over the peripheral GSCs (Supplementary Fig. 10c) in conjunctionwith
~200 prominent GSC-specific loops in either line (Supplementary
Fig. 10d). This further affirms the pervasive heterogeneity in our GBM-
derived collection, to the extent that even different parts of the same
tumor diversify at the level of 3D genome architecture and gene
regulation.

Discussion
We generated 5 kbp-resolution Hi-C maps from 28 patient-derived
GSCs and used their contact structure to identify tens to hundreds of
SVs per sample. This highly resolved view of genomic rearrangements
revealed a pervasive (16 out of 28 samples carried >80 SVs) yet very
uneven SV distribution among samples (even between GSCs derived
from two different parts of the same tumor). Despite their extreme
heterogeneity and largely non-recurrent nature, SVs were not sto-
chastically distributed along chromosomes. They clustered together in
hotspots aligning well with GC-/gene-rich regions in the A- (i.e., tran-
scriptionally active) chromatin compartment and near TAD bound-
aries. When we focused on SV breakpoints near TSSs of genes
associated with the GBM transcriptional program, we found enrich-
ment for TAD boundaries. This affirms that disruption of positions of
3D chromatin insulation favors oncogene activation, malignant trans-
formation, and tumor growth62. Notably, in gliomas with IDH gain-of-
function mutations, hypermethylation of CTCF sites at insulator ele-
ments prevents binding to alsodisrupt boundary formation22. Thus, we
can envisage the development of interventions that act to preserve
TADboundary integrity and counteractGBMprogression in the future.

However, our collection consists exclusively of IDH wt samples,
and insulation disruption can only be a result of SVs. Still, previous
“pan-cancer” analyses showed that <14% of TAD boundary deletions
actually result in a > 2-fold increase in gene expression of adjacent
loci23. Thus, we exploited our high-resolution Hi-C data and a large
number of samples assayed to uncover a key result of GBM rearran-
gements: the formation of hundreds to thousands (median = 120) of
neoloops in patient genomes. Genes associated with neoloops were
not only significantly higher expressed compared to counterparts
without neoloops (thus, explaining intra-patient heterogeneity), but
also enriched for genes characteristic of the GBM transcriptional
program. Moreover, some recurrence in neoloop-associated genes
couldbe observed (e.g.,HLA-Joverexpression associatedwith neoloop
formation in 8 out of 28 GSCs). Notably, a substantial fraction of these
neoloops ( > 35%) ectopically linked gene promoters with active
enhancers leading to their activation in a tumor-specific manner. In
fact, the formation of such potentiating neoloops can explain the
overexpression of knownGBMdrivers, like EGFR andMTOR, in GSCs in
cases where gene amplification or fusion does not. Having established
how GBM inter-patient heterogeneity extends to and is supported by
3D genome refolding, we can envisage patient-specific vulnerabilities
to be uncovered on the basis of 3D genomics analyses that might be
able to inform personalized treatment decisions. We exemplify this by
mapping and modeling 3D chromatin neo-structures in theMYC locus
leading to selective sensitivity of a single GSC to a small molecule
inhibitor59.

Finally, as GBM relapse is essentially inevitable and the major
hurdle in prolonging patient survival, studies have compared the
genomic landscape of primary versus relapse IDH wt GBMs. However,

Fig. 5 | 3D genome folding differentiates relapse from primary GBM samples.
a Circos plots of SVs and CNVs in G402 and G402R identified by hicbreakfinder
(top) or EagleC (bottom). Outer tracks: chromosomes; inner tracks: gain (red: >2
copies) or loss of genomic segments (blue: <2 copies); lines: translocations (pur-
ple), inversions (gray), deletions (light blue) or duplications (red). Aligned below
the Circos plots are the top GBM-associated genes (gda>0.01) that are common to
both lines or specific to each, and linked to a particular SV type (color-coded).
**: TheMIR31-associated translocation in the relapse line is different to the primary
one.b Venndiagrams showing shared and unique SVs or neoloop-associated genes
in primary and relapse Hi-C data identified by hicbreakfinder (top) or EagleC (bot-
tom). c GO terms associated with differentially-expressed genes in primary versus
relapse G402. P-values calculated using two-sided Fisher’s exact tests without
multiple comparison adjustment. d Percent (mean± SEM) of differentially-
expressed genes explained from n= 3 primary/relapse pairs by A/B-compartment,
loop or enhancer changes in all GSC pairs. *: P =0.0145, unpaired two-sided

Student’s t-test. Source data for this panel are provided as a Source Data file. e As in
panel d, but for differentially-expressed genes linked to E-P loops gained (orange),
lost (green) or not changed upon relapse (gray). *: P =0.0331, unpaired two-sided
Student’s t-test. Source data for this panel are provided as a Source Data file. f Left:
APA plot for neoloops specific to primary or relapse GSC pairs. Right: Box plots
(bands show themean, each box extends between 1st and 3rd quartile, and whiskers
extend 1.5x the interquartile range) showing changes in the expression of genes
associated with loops gained (red) or lost (blue), having increased (orange) or
decreased H3K27ac (light blue), or not changing in relapse (white). *: P (from left to
right) = 1.60e-05, 2.09e-01, 3.26e-12 and 4.26e-12, two-sided Wilcoxon-Mann-
Whitney test. Source data for this panel are provided as a Source Data file. g Hi-C
contactmaps around a 17.6-Mbp deletion on chr9 specific to G402R shown aligned
to overlaid RNA-seq and H3K27ac tracks from primary (black) and relapse samples
(yellow). G402-specific neoloops are indicated (blue circles).
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they have reached contrasting conclusions. For example, Körber and
colleagues63 studied 21 primary-relapse tumor pairs using deepWGS to
conclude that most of tumor evolution (including mutational selec-
tion) occurs prior even to primary diagnosis and, thus, relapse tumors
share an overall similar landscape. This contrasts earlier work64 and
clinical experience, whereby GBM recurs tumultuously within a few
months, and relapse tumors show little genetic resemblance to pri-
mary ones. One explanation for this disparity could be the local versus
distal regrowth of tumors that seems to correlate with higher versus
lower genetic resemblance63,64. Here, we studied three primary-relapse
GSC pairs that recurred locally but in three different brain regions (i.e.,
occipital, frontal, parietal), following the exact same chemo- and
radiotherapy regime. Our data on SV distribution and neoloop for-
mation in each pair rather argue for reduced similarity. For instance,
despite a consistent increase of SVs in relapse GSCs, there was an
equally consistent loss of primary-specific SVs in relapse genomes.
This can be explained by the two entities belonging to different (or
very early diverging) tumor evolution trajectories. In addition, as our
samples represent the stem cell-like compartment of GBM tumors, this
could also mean that different GSC populations emerge after primary
tumor resection and therapy that give rise to relapse tumors with
divergent characteristics and resistance. We hypothesize that the for-
mation of such dynamic 3D structures as neoloops is a means for
expanding regulatory options in tumor cells and that neoloops are
equally subject to tumor evolution as classical genomic alterations
(e.g., amplifications and deletions) as they can support significant
transcriptional effects. As a result, high SV dissimilarity may be less
telling than high neoloop dissimilarity, as the latter can directly affect
gene expression. Hence, relapse GSCs do diverge significantly from
primary ones as regards their loop-level regulatory landscape despite
local reemergence.

In summary, our Hi-C data constitute a valuable resource for GBM
and exemplify how3Dgenomics canbe used to dissectpatient-specific
chromosomal effects. These can, in turn, help improve our under-
standing of GBMprogression and rationally identify hitherto unknown
prognostic markers and therapeutic vulnerabilities in the face of per-
vasive heterogeneity.

Methods
GSC generation and cell culture
Research reported here complies with all relevant national and inter-
national regulations, including the Declaration of Helsinki. The col-
lection andprocessing of all sampleswas approved by the Ethics Board
of the University Hospital, Catholic University of Rome (Prot. ID CE
2253), with informed consent obtained from all GBM patients. GBM
tumors from 24 patients who underwent surgery at diagnosis (n = 11)
or relapse (n = 17, as 3 initially-resected patients were also part of the
relapse group) and standard radiochemotherapy at the Institute of
Neurosurgery, Catholic University of Rome, were used to produce 28
GBM stem-like cell (GSC) lines. The key inclusion criteria were a GBM
diagnosis (at first diagnosis or relapse; WHO Grade IV glioma), good
patient functional status (Karnofsky score >70), often followed a
standard Stupp protocol (for detailed profiles see Supplementary
Table 1). Patient recruitment and study strategy was indiscriminatory
towards biological sex, which was self-reported. We do not present
data disaggregated for sex and gender formost analyses (SV detection
is presented on a patient-by-patient basis in Supplementary Fig. 2) as
the study design and patient numbers would not be sufficient for this
(only 7 female GBM patients were recruited out of a total of 24).

For GSC generation, resected specimens were mechanically dis-
sociated, and each resulting cell suspensionwas cultured in serum-free
DMEM/F12 medium (ThermoFisher Scientific) containing 2mM L-glu-
tamine, 0.6% glucose, 9.6mg/mL putrescine, 6.3 ng/mL progesterone,
5.2 ng/mLsodium selenite, 0.025mg/mL insulin, 0.1mg/mL transferrin
sodium salt (Sigma Aldrich), human recombinant epidermal growth

factor (hEGF; #AF-100-15, Peprotech; 20ng/mL), basic fibroblast
growth factor (b-FGF; #100-18B, Peprotech; 10 ng/mL) and heparin
(2mg/mL; Sigma Aldrich) at 37 °C under 5% CO2. Proliferating cell
cultures typically require 3 to 4 weeks to be established. GSCs were
validated by Short Tandem Repeat (STR) DNA fingerprinting using
nine highly polymorphic STR loci plus amelogenin (Cell ID™ System,
Promega Inc). All GSC profiles were queried in public databases to
affirm authenticity65, and their in vivo tumorigenic potential was
assayed by intracranial cell injection into immunocompromised mice,
resulting in tumors with the same antigen expression and histological
tissue organization as the tumor of origin66,67. Please refer requests for
GSCs to R.P. or L.R.-V.

MYC inhibition and immunofluorescence experiments
For MYC inhibition experiments, GSCs #148 (MYChigh) and #62
(MYClow) were grown as described above, but using cell culture dishes
coatedwith growth factor-reducedMatrigel (Corning) and dissociated
using Accutase (Thermo Fisher) for passaging. Once expanded, GSCs
were seededon 12mmsterile coverslips placed ineachwell of a 24-well
tissue culture plate. Cells were treated with either 50 µM of the small
molecule inhibitor EN-4 (Selleckchem)59 or with an equivalent volume
of DMSO for 48 h. All experiments were performed in at least three
independent biological replicates. Following drug treatment, media
was aspirated, and the cells were fixed in 4% paraformaldehyde (PFA)
for 1 h at room temperature. Cells were next permeabilized in 0.5%
TritonX-100 inPBS for 10min andblockedwith0.5% fishgelatin in PBS
for 1 h at room temperature.

MYC- and Ki67-positive cells were evaluated via immuno-
fluorescence. In brief, primary antibody stainings were at 4 °C
overnight, followed by 3×5-min PBS washes. Then, coverslips were
incubated with anti-rabbit fluorophore-conjugated secondary anti-
bodies (Sigma Aldrich) for 1 h at room temperature. The two pri-
mary antibodies used were rabbit polyclonal anti-Ki67 (Cat. No.
AB9260, Merck Millipore; 1:1000 dilution) and rabbit polyclonal
anti-MYC (Cat No. 10828-1-AP, Proteintech; 1:1000 dilution), while
nuclei were also counterstained using DAPI. For TUNEL stainings,
the DeadEndTM Fluoremetric TUNEL kit (#TB235, Promega) was used
according to the manufacturer’s instructions. Finally, coverslips
weremounted, and three raw images from random fields of view per
coverslip were acquired using a Leica SP8 scanning confocal
microscope (20x or 63x objective). Maximum intensity projection
images were used, and MYC mean fluorescent intensity or the per-
centage of TUNEL-, Ki67-, andMYC-positive cells in each sample was
computed using ImageJ.

In situ Hi-C and data processing
Hi-C was performed on 0.5-1 million cells from each GSC line using the
Hi-C+ kit (Arima Genomics) according to the manufacturer’s instruc-
tions. Following sequencing on a NovaSeq platform (Illumina), Hi-C
reads were aligned to the reference genome GRCh38 using bwa mem
(v0.7.17) with “-SP5M”. Invalid data, including PCR duplicates and read
pairs mapping to the same restriction fragment, were removed using
pairtools (v0.3.0)68. runHiC (v0.8.4-r1; https://zenodo.org/badge/doi/
10.5281/zenodo) and cooler (v0.8.6)69 were used to construct contact
matrices at various resolutions. Raw Hi-C matrices were corrected
using a modified matrix balancing method to account for CNV effects
and other systematic biases including mappability, GC content, and
restriction enzyme sites, all processed via Neoloopfinder
(v0.3.0.post4)24. Stratum-adjusted correlation coefficients (SCC)
between any two Hi-C contact matrices samples were calculated using
HiCrep (v0.2.3)70 at 10 kbp resolution.

PC1 was calculated, and A-/B-compartments identified at a reso-
lution of 50kbp using the cooltools (v0.3.2)68 call-compartment func-
tion. Insulation scores and TADs were identified at 25 kbp resolution
using the cooltools (v0.3.2) insulation function. Chromatin loops were
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identified at 5-, 10-, and 25 kbp resolution on the basis of interaction
probabilities > 0.95 and then merged using peakachu (v1.2.0)71. Sig-
nificant differential loops were determined using the diffPeakachu
function via the Gaussian mixture model of the peakachu probability
score (FDR < 0.05). For 5- and 10 kbp loops, we extended anchors by
5 kbp when searching for associated TSSs to define loop-associated
genes; for 25 kbp-resolution loops, no extension was applied.

To compare chromatin organization between GSC subtypes,
hierarchical structural features (PC1, insulation scores, and loops)
were used for unsupervised clustering of GSC samples with sig-
nificant subtype enrichment scores. For PC1 and the insulation score,
pairwise correlations were calculated per each genomic bin in all
samples. For loops, differential loops between GSC pairs were iden-
tified as described above, and then Jaccard similarity indexes based
on shared loops were calculated (we consider two loops as “the
same” only if the midpoint of each anchor in one loop is within
<50 kbp from the anchor midpoint in the other) before hierarchical
clustering was performed on all matrices using average linkage and
correlation distance metrics.

Identification of structural variants (SVs) in Hi-C data
Structural variants, including inversions, deletions, duplications, and
interchromosomal translocations, were detected and annotated using
EagleC (v0.1.3)29 on Hi-C data, which predicts SV breakpoints at single-
kbp resolution and combines predictions from 5-, 10-, and 50 kbp
resolutions. For 10- and 50kbp predictions, EagleC further searches
for the most probable local breakpoint coordinates within 5-kbp Hi-C
contact maps so that all reported SVs are at the same resolution. In
more detail, we divided the human reference genome (GRCh38) into
1 kbp bins and calculated a suite of metrics per bin to summarize a
variety of propertieswithpotential relevance to thedistributionof SVs.
To test for association between SV types and genome properties, each
property was compared between SV breakpoint positions (randomly
choosing one side of each breakpoint junction to reduce dependence
between observations) and a set of 1000 randomly-shuffled SVs,
keeping the SVbreakpoint ends at the samedistance and chromosome
as those of bona fide ones. For each genome property and each SV
type, real observationswerepooled togetherwith 1000 sets of random
ones and rank-transformed and normalized on a 0-1 scale. Under the
null hypothesis of no event-versus-property association, the ranks of
the real observations would follow a uniform distribution. We tested
this for each SV type using a Kolmogorov–Smirnov test with a
Benjamini–Yekutieli FDR correction across the entire suite of tests and
set the threshold for significance reporting at 0.01. To define dupli-
cated and deleted genes induced by SVs, we used both orientation
information of SV breakpoints and copy number profiles. Duplications
were defined as intrachromosomal SVs with −+, ++, or −− orientations,
and the genomic interval between breakpoints had a copy number
ratio >1.35, while deletions were also defined as intrachromosomal SVs
but with the +− orientation, and the genomic interval had a copy
number ratio <0.65, considering allelic heterogeneity. Copy number
profiles inferred from Hi-C were used in this calculation24. Local Hi-C
maps surrounding SV breakpoints were reconstructed, and Hi-C sig-
nals across the breakpoints normalized due to the heterozygosity of
the SVs and the potential heterogeneity of our patient-derived GSC
samples. Then, neoTADs (predicted at 25 kbp resolution) and neo-
loops (predicted at 5-, 10-, and 25 kbp resolutions with an FDR <0.05
and then merged) on each local reconstructed map were detected. All
steps were processed using Neoloopfinder (v0.3.0.post4). Finally, we
used RNA-seq to identify fusion genes in all GSC samples using Arriba
(v2.3.0)72. In parallel, we also used Hi-C processed via the EagleC
(v0.1.3) annotate-gene-fusion function, as it can additionally detect
intronic gene fusions29. In the end, fusion genes detected via both
approaches were merged to provide a final list. All SVs, CNVs, neo-
loops, and fusion genes are listed in Supplementary Data 1.

RNA sequencing (RNA-seq) and data processing
GSCs grown to near-confluence in a T25 flask were directly lysed using
Trizol (Invitrogen), total RNA was isolated using the DirectZol kit
(Zymo), and used for standard poly(A)+ selection and library pre-
paration with the TruSeq kit (Illumina). Following sequencing to at
least 20 million reads on a NovaSeq platform (Illumina), reads were
processed following the ENCODE pipeline (https://github.com/
ENCODE-DCC/rna-seq-pipeline). Reads pairs were aligned to the
human reference genome (GRCh38) and transcriptome (Gencode.v29)
using STAR (v2.6.0c)73. Gene and isoform expression quantification
was performed using RSEM (v1.3.3)74. Read coverage tracks (BigWig)
were generated and normalized by scale factor using the bamCoverage
function of deepTools2 (v3.5.1)75. Differentially-expressed genes were
determined using RSEM (v1.3.3; rsem-run-ebseq function) with an FDR
cutoff of <0.05. For the purpose of comparing expression levels across
samples, we used “transcripts per million” (TPM) as the metric of
choice and included all genes expressed at log2(TPM+ 1) > 0.

For subtype classification, gene signatures from three different
publications were used51–53, and single-sample gene set enrichment
analysis (ssGSEA) was conducted via R (ssGSEA). For eachGSC, ssGSEA
evaluated normalized enrichment scores for each signature set with
TPM as input. Two-sided P-values of each sample were calculated by
the corresponding normalized enrichment score via the Z2p package
and used to determine the most significant subtypes for a given GSC
expression profile.

Cleavage Under Target and tagmentation (CUT&Tag) and data
processing
GSCswere lifted fromplates using accutase (Sigma-Aldrich). Typically,
0.5 million cells were processed using the CUT&Tag-IT kit (Active
Motif) and 1μg of anti-CTCF (Active Motif #61311) or anti-H3K27ac
antibody (Active Motif #9133) as per manufacturer’s instructions and
the resulting libraries were sequenced on a NextSeq500 platform
(Illumina) to obtain at least 107 reads. Read pairs were aligned to the
human reference genome GRCh38 using Bowtie2 (v2.3.4.1), PCR
duplicates were removed using the MarkDuplicates function in Picard
tools (v2.20.7), and read coverage tracks (BigWig) were generated and
normalized with the RPCG parameter using the bamCoverage function
of deepTools2 (v3.5.1)75. Peaks were called using SEACR (v1.3)76 with an
FDR cutoff of <0.01.

Whole-genome sequencing (WGS) data processing
For WGS, read pairs were first mapped to GRCh38 by BWA mem
(v0.7.17), and duplicate reads were removed by Picard (v2.20.7) as
above. WGS-based CNV profiles and segments were calculated via the
CNVkit (v0.9.9)77 batch function using the “--segment-method hmm-
tumor -m wgs --drop-low-coverage --target-avg-size 25000” parameters.

TCGA data analysis
Kaplan-Meyer curves were generated via GEPIA2 (Gene Expression
Profiling Interactive Analysis 2, v7.0)78 based on 162GBM samples from
TCGA. Median gene expression values were used as a high-low group
cutoff. Expression comparison between samples of glioblastoma and
normal tissues were performed using GEPIA2 (v7.0) based on publicly-
available TCGA and GTEx data.

Simulations of SV impact on 3D genome folding
In order to predict neoloops forming as a result of translocations, we
used a polymer physics-based approach previously used to predict
ectopic interactions in cis arising in congenital disease-causing struc-
tural variations, PRISMR60. PRISMR models chromatin as a polymeric
structure bearing sites of potential binding by proteins represented as
floating particles in solution79,80. The thermodynamic properties of this
model can be used to infer the binding site distribution along the
polymer that best reproduces the Hi-C matrix of the genomic region
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lacking the structural variation, while ectopic interactions are pre-
dicted by reshuffling the polymer in accordancewith the variation and
recalculating the new Hi-C contacts. Here, we modified the PRISMR
approach to simulate neoloop formation by a translocation involving
the MYC locus on chr8 and a large intergenic segment of chr12 (chr8:
127.71-127.78 Mbp; chr12: 57.7-58.155 Mbp); this occurs only in sample
G148 of our cohort. Similar data from G394, where the translocation
does not occur and MYC is inactive, provided a negative control.

To predict the best binding sites distribution for the hybrid region
in G148, we first inferred them on an extended region on chr12 (i.e.,
chr12: 57.66-58.33Mbp) usingHi-C data fromG275R that carries no SVs
across this segment. We then correlated the binding site distribution
deduced from G275R with RNA-seq and H3K27ac CUT&Tag data from
the same region inG148 to ensure good prediction of Hi-C contacts via
a probabilistic approach using these correlations to extend binding
site distribution prediction around the MYC locus on chr8 (i.e., chr8:
127.71-127.78 Mbp). Our approach repurposed PRISMR that finds the
best minimum of the difference between the real Hi-C matrix and the
reconstructed Hi-Cmatrix via a simulated annealing (SA) optimization
procedure spanning the space of binding site distributions for a given
number of classes. A contact matrix is then reconstructed via a mean-
field approximation using contact probability profiles characterized in
standard coil-globule polymer physics60,79,80. Estimation of the best
number of binding site classes and the best λ (i.e., the regularization
term used in PRISMR SA to penalize total binding site abundance and
reduce overfitting) was as described60. In brief, SA was executed for a
range of λ values, and the best λ was selected when the cost function
raised ~10% above the starting plateau (Supplementary Fig. 7c). Simi-
larly, SA was executed for an increasing number of binding sites clas-
ses, M, until the cost function did not show significant reduction
(M = 11 was selected; Supplementary Fig. 7d). For this, experimental
(input) Hi-C data was first smoothed via a Gaussian filter (0.5 bin), and
similarity between the simulated and original contact matrices was
estimated using distance-corrected Pearson’s correlations (whichwere
0.65 and 0.45 for G148 and G394, respectively). Also, to account for
chromatin persistence length effects in our 5 kbp resolution deduced
Hi-C matrices, SA was applied independently for different monomer
lengths by interpolating and scaling contact probability profiles
accordingly, albeit with a significant increase in computing burden. To
speed up optimization convergence, we modified SA to generate, at
every iteration, multiple tentative modifications of the binding site
configuration (rather than one in ref. 60) that were simultaneously
evaluated. This allowed us to estimate an optimal monomer length
~20% longer than the 5 kb resolution.

To extend the prediction of binding site distribution to the MYC
locus on chr8, we applied a probabilistic approach, using RNA-seq and
H3K27ac data as a bridge between chromosomes. If PC is the prob-
ability of finding the binding sites class C in the region of interest, PT is
the probability of finding the epigenetic track T, and corr(C,T) is the
correlation between C and T, then the conditional probability P(C |T)
to observe C given T can be obtained by inverting the following
equations:

cov C,Tð Þ= P C \ Tð Þ � PCPT = P CjTð ÞPT � PCPT ð1Þ

corr C,Tð Þ= cov C,Tð Þ
ðPC ð1� PC ÞPT ð1� PT ÞÞ1=2

ð2Þ

Here we define corr(C,T) as the correlation between the PRISMR-
inferred best binding sites distributions (C) and the RNA-seq and
H3K27ac tracks on the extended region chr12:57.66-58.33Mbp (T), and
PC (PT) as the frequency of observing C (T) in the same region. Oncewe
have P(C |T), we canestimate the probability of finding a binding site of
class C in position x in region chr8:127.71-127.78Mbp from the

frequency of T as follows:

PC xð Þ=
X

i2RNAseq,H3K27ac

P CjTi

� �
PTi

xð Þ ð3Þ

In this formula, we neglected the intersection terms between
PRNAseq and PH3K27ac as their correlation is quite low ( < 0.2). When
applying (3) we considered only (C,T) couples with a correlation of
>0.2. Equations (1,2) follow from the very definition of correlation and
covariance where cov(C,T) = cov(1 C,1 T) and 1X is the indicator function,
so the expected values in the covariance equal the probabilities:

E Xð Þ=pX ; var Xð Þ=pX 1� pX

� � ð4Þ

Prediction of contact maps for circular chromatin
carrying an SV
To faithfully predict the contact map of the polymer carrying the SV,
we modified the mean-field contact map reconstruction by assuming
the circular topology of the chromatin fiber. We assumed that the
linear distance between any pair of beads in the SV, used to assign
the probability of contact, is given by the minimal distance within the
circular structure of the fiber. Then, we validated this assumption with
full 3D molecular dynamics simulations of the circular polymer.

For theMYC translocation, identification of the complete region is
not straightforward, probably because of significant population het-
erogeneity. As a conservative assumption, we added an 80kbp inert
buffer region that closes the two flanks ofMYC translocation and does
not affectMYC locus dynamics if not for the circular topology induced.
To validate the mean-field predicted circular topolog- corrected neo-
loops and get access to further quantities of interest, e.g., MYC
expression, we informed real 3D polymer physics simulations with the
circular topology of the translocation and with the predicted binding
sites, as detailed in the next section.

Simulation of 3D structure and dynamics of the
reconstructed SV
To predict the 3D structure and dynamics of the genomic region
bearing the translocation, we employed the SBS model via Molecular
Dynamics simulations in a classical Langevin and velocity-Verlet fra-
mework with standard parameters60,79,80. The energy of interaction
between binding sites and binders was set to 4 KBT, while the binders’
concentration was set to 200 nmol/liter. Randomly generated poly-
mers and binder configurations were allowed to evolve and find the
steady state beforemeasuring the probability of contact. From the SBS
predicted structures, we estimated the degree of MYC triplet coloca-
lization with regions A and B with respect to what was expected by
random independent pair-wise probability via the correlation coeffi-
cient:

corr A,Bð Þ= PMYC,A,B � PMYC,A PMYC,B

PMYC,A 1� PMYC,A

� �
PMYC,B 1� PMYC,B

� �� �1
2

ð5Þ

From the SBS polymer distancematrixwe also estimated the level
of in-silico single-allele MYC expression with respect to the average
level F following the formula in ref.61:

log
X

i
dMYC,i

�1
=F

� �
ð6Þ

where dMYC,I is the distance between MYC and i corresponding to a
H3K27ac or RNA-seq peak.

Statistics and reproducibility
All P-values were calculated using R, and their results were considered
significant if P < 0.05 unless stated otherwise.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Hi-C, RNA-seq, WGS, and CUT&Tag data not containing identifiable
patient information have been deposited in the NCBI Gene Expression
Omnibus (GEO) database under accession code GSE229966. Raw Hi-C,
RNA-seq, and CUT&Tag data are protected by national policy andmay
be released for research use only upon request to A.P. (Email: argyr-
is.papantonis@med.uni-goettingen.de) and approval by the UMG
Ethics Board; the time frame for this will not exceed one month. GBM-
associated genes used in this study are available in DisGenet v7.0
[https://www.disgenet.org/]48, data on CNVs of TCGA samples in the
cBioPortal [https://www.cbioportal.org/], and cancer-related genes via
the Bushman lab [http://www.bushmanlab.org/assets/doc/allOnco_
May2018.tsv]. Astrocyte RNA-seq data81 are available in the Sequence
Read Archive under accession code SRP103788. Source data are pro-
vided in this paper.

Code availability
All code used to analyze Hi-C, RNA-seq, WGS, and CUT&Tag data82 is
available at https://github.com/xieting0603/GBM; the custom code
used to perform simulations83 is available at https://github.com/
marianoimperatore/MeanFieldChromatin.git.
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